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Abstract. Argon2i is a data-independent memory hard function that
won the password hashing competition. The password hashing algorithm
has already been incorporated into several open source crypto libraries
such as libsodium. In this paper we analyze the cumulative memory cost
of computing Argon2i. On the positive side we provide a lower bound
for Argon2i. On the negative side we exhibit an improved attack against
Argon2i which demonstrates that our lower bound is nearly tight. In
particular, we show that

(1) An Argon2i DAG is
(
e, O
(
n3/e3

))
)-reducible.

(2) The cumulative pebbling cost for Argon2i is at most O
(
n1.768

)
. This

improves upon the previous best upper bound of O
(
n1.8
)

[AB17].

(3) Argon2i DAG is
(
e, Ω̃
(
n3/e3

))
-depth robust. By contrast, analysis

of [ABP17a] only established that Argon2i was
(
e, Ω̃
(
n2/e2

))
-depth

robust.
(4) The cumulative pebbling complexity of Argon2i is at least Ω̃

(
n1.75

)
.

This improves on the previous best bound of Ω
(
n1.66

)
[ABP17a] and

demonstrates that Argon2i has higher cumulative memory cost than
competing proposals such as Catena or Balloon Hashing.

We also show that Argon2i has high fractional depth-robustness which
strongly suggests that data-dependent modes of Argon2 are resistant to
space-time tradeoff attacks.

1 Introduction

Memory-hard functions (MHFs) are a promising primitive to help protect low
entropy user passwords against offline attacks. MHFs can generally be divided
into two categories: data-dependent (dMHF) and data-independent (iMHF).
A data-independent MHF (iMHF) is characterized by the property that the
memory-access pattern induced by an honest evaluation algorithm is not depen-
dent on the input to the function (e.g., the password). In contexts such as pass-
word hashing, iMHFs are useful for their resistance to side-channel attacks such
as cache-timing [Ber]1.
1 Unfortunately, this resistance to side-channel attacks has a price; we now know that

the dMHFs scrypt enjoys strictly greater memory-hardness [ACP+17] than can
possibly be achieved for a very broad class of iMHFs [AB16].
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Both in theory and in practice, iMHFs (e.g.,[BDK16,CGBS16,CJMS14,
Cox14,Wu15,Pin14,AABSJ14]) can be viewed as a directed acyclic graph (DAG)
which describes how inputs and outputs of various calls to an underlying com-
pression function are related. That is, the function fG,h can be fully specified
in terms of a DAG G and a round function h. The input to the function is the
label of the source node(s) and the output of the function is the label of the sink
node(s). The label of node v is computed by applying the round function h to
the labels of v’s parents.

The goal of a MHF is to ensure that it is cost prohibitive for an attacker to
evaluate fG,t millions or billions of times even if the attacker can use customized
hardware (e.g., FPGAs, ASICs). Thus, we wish to lower bound the “cumulative
memory complexity” or “amortized area-time complexity” of any algorithm that
computes fG,h.

1.1 iMHFs, Graph Pebbling and Depth-Robustness

In the parallel random oracle model, the memory hardness of the iMHF fG,h

can be characterized using the parallel black pebbling game on the graph
G [AS15,CGBS16,FLW13]. In particular, the “cumulative memory complexity”
or “amortized area-time complexity” of fG,h is (essentially) equivalent to the
cumulative cost of any legal black pebbling of G in the parallel Random Oracle
Model (pROM) [AS15]. Given a directed acyclic graph (DAG) G = (V,E), the
goal of the (parallel) black pebbling game is to place pebbles on all sink nodes
of G (not necessarily simultaneously). The game is played in rounds and we use
Pi ⊆ V to denote the set of currently pebbled nodes on round i. Initially all nodes
are unpebbled, P0 = ∅, and in each round i ≥ 1 we may only include v ∈ Pi if
all of v’s parents were pebbled in the previous configuration (parents(v) ⊆ Pi−1)
or if v was already pebbled in the last round (v ∈ Pi−1). The cumulative cost of
the pebbling is defined to be |P1| + . . . + |Pt|.

Graph pebbling is a particularly useful as a tool to analyze the security of
an iMHF [AS15]. A pebbling of G naturally corresponds to an algorithm to
compute the iMHF. Alwen and Serbinenko [AS15] proved that in the parallel
random oracle model (pROM) of computation, any algorithm evaluating such an
iMHF could be reduced to a pebbling strategy with (approximately) the same
cumulative memory cost.

Recently it has been shown that for a DAG G to have high “amortized area-
time complexity” it is both necessary [ABP17a] and sufficient [AB16] for G to be
very depth-robust, where an (e, d, b)-block depth robust DAG G has the property
that after removing any subset S ⊆ V (G) of up to e blocks of b-consecutive
nodes (and adjacent edges) there remains a directed path of length d in G − S
(when b = 1 we simply say that G is (e, d)-depth robust). It is particularly
important to understand the depth-robustness and cumulative pebbling cost of
iMHF candidates.
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1.2 Argon2i

Of particular importance is the iMHF candidate Argon2i [BDK15], winner of the
password hashing competition. Argon2i is being considered for standardization
by the Cryptography Form Research Group (CFRG) of the IRTF [BDKJ16]2.

While significant progress has been made in the last two years in under-
standing the depth-robustness and cumulative pebbling complexity of candidate
iMHFs (e.g., see Table 1) there is still a large gap in the lower and upper bounds
for Argon2i, which is arguably the most important iMHF candidate to under-
stand. A table summarizing the asymptotic cumulative complexity of various
iMHFs can be found in Table 1.

Table 1. Overview of the asymptotic cumulative complexity of various iMHF.

Algorithm Lowerbound Upperbound Appearing In

Argon2i-A Ω̃
(
n1.6̄
)

Õ
(
n1.708

)
[ABP17a]

Argon2i-B O
(
n1.8
)

[AB17]

Argon2i-B Ω̃
(
n1.6̄
)

[ABP17a]

Argon2i-B Ω̃
(
n1.75

)
O
(
n1.767

)
This Work

Balloon-Hashing Ω̃
(
n1.5
)

Õ
(
n1.625

)
[ABP17a]

Balloon-Hashing: Single Buffer (SB) Ω̃
(
n1.6̄
)

Õ
(
n1.708

)
[ABP17a]

Catena Ω̃
(
n1.5
)

Õ
(
n1.625

)
[ABP17a]

(Existential Result) Ω
(

n2

logn

)
[ABP17a]

DRSample Ω
(

n2

logn

)
[ABH17]

Arbitrary iMHF O
(

n2 log logn
logn

)
[AB16]

1.3 Results

We first completely characterize the depth-robustness of Argon2i in Theorem 1,
and then apply our bounds to develop (nearly tight) upper and lower bounds

2 The specification of Argon2i has changed several times. Older versions of the specifi-
cation constructed G by sampling edges uniformly at random, while this distribution
has been modified to a non-uniform distribution in newer versions. Following [AB17]
we use Argon2i-A to refer to all (older) versions of the algorithm that used a uni-
form edge distribution. We use Argon2i-B to refer to all versions of the algorithm
that use the new non-uniform edge distribution (including the current version that
is being considered for standardization by the Cryptography Form Research Group
(CFRG) of the IRTF [BDKJ16]). Since we are primarily interested in analyzing the
current version of the algorithm we will sometimes simply write Argon2i instead of
Argon2i-B. By contrast, we will always write Argon2i-A whenever we refer to the
earlier version.
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on the cumulative pebbling cost of Argon2i — see Theorems 2 and 3. For com-
parison, the previous best known upper bound for Argon2i was O

(
n1.8

)
and

the best known lower bound was Ω
(
n5/3

)
. Our new bounds are O

(
n1.7676

)
and

Ω̃
(
n7/4

)
respectively.

Interestingly, Theorem 1 shows that Argon2i is more depth-robust than
Argon2i-A as well as other competing iMHFs such as Catena [FLW13] or
BalloonHashing [CGBS16]3. Furthermore,Theorem2 in combinationwith attacks
of Alwen et al. [ABP17a] show that Argon2i enjoys strictly greater cumulative
memory complexity than Catena [FLW13] or Balloon Hashing [CGBS16] as well
as the earlier version Argon2i-A.

Theorem 1. Argon2i is
(
e, Ω̃(n3/e3), Ω(n/e)

)
-block depth robust with high

probability.

Theorem 2. For any ε > 0 the cumulative pebbling cost of a random Argon2i
DAG G is at most Π

‖
cc(G) = O(n1+a+ε) with high probability, where a =

1/3+
√

1+4/9

2 ≈ 0.7676.

Theorem 3. With high probability, the cumulative pebbling cost of a random
Argon2i DAG G is at least Π

‖
cc(G) = Ω̃

(
n7/4

)
with high probability.

Theorem 4. If G contains all of the edges of the form (i − 1, i) for 1 < i ≤ n
and is (e, d, b)-block depth robust, then G is

(
e
2 , d, eb

2n

)
-fractional depth robust.

Techniques. To upper bound the depth-robustness of Argon2i we use the layered
attack of [AB16]. Once we know that Argon2i is depth-reducible for multiple
different points (ei, di) along a curve, then we can apply a recursive pebbling
attack of Alwen et al. [ABP17a] to obtain the upper bounds on cumulative
pebbling complexity from Theorem 2.

Lower bounding the depth-robustness of Argon2i is significantly more chal-
lenging. We adapt and generalize techniques from Erdos et al. [EGS75] to reason
about the depth-robustness of meta-graph Gm of an Argon2i DAG G (essentially,
the meta-graph is formed by compressing each group of m sequential nodes in G
into a single point to obtain a new graph with n′ = n/m nodes). We prove that
for appropriate choice of m and r∗ that the meta-graph is a local expander mean-
ing that for every r ≥ r∗ every node x ≤ (n/m) + 1 − 2r the sets [x, x + r − 1]
and [x + r, x + 2r − 1] are connected by an expander graph. We then use local
expansion to lower bound the depth-robustness of Gm. Finally, we can apply a
result of Alwen et al. [ABP17a] to translate this bound to a lower bound on the
block depth robustness of Gm.

Finally, we extend ideas from [ABP17a] to lower bound the cumulative peb-
bling complexity of an Argon2i DAG. Essentially, we show that any pebbling

3 Argon2i is not as depth-robust as the theoretically optimal constructions of [ABP17a],
but at the moment this construction is purely theoretical while Argon2i has been
deployed in crypto libraries such as libsodium.
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strategy must either keep Ω̃
(
n0.75

)
pebbles on the graph during most peb-

bling rounds or repebble a
(
Ω̃

(
n0.75

)
, Ω̃

(
n0.75

))
-depth robust graph Ω̃

(
n0.25

)

times. In the first case the cumulative cost is at least Ω
(
n × n0.75

)
since

we have at least n pebbling rounds and in the second case we also have
that cumulative cost is at least Ω

(
n0.25 × n1.5

)
since the cost to repebble a(

e = Ω̃
(
n0.75

)
, d = Ω̃

(
n0.75

))
-depth robust graph is at least ed [ABP17a].

2 Related Work

[ABW03] noticed that that cache-misses are more egalitarian than computation
and therefore proposed the use of functions which maximize the number of expen-
sive cache misses, “memory-bound” functions. Percival [Per09] observed that
memory costs seemed to be more stable across different architectures and pro-
posed the use of memory-hard functions (MHFs) for password hashing. Since the
cost of computing the function is primarily memory related (storing/retrieving
data values) and cannot be significantly reduced by constructing an ASIC, there
presently seems to be a consensus that memory hard functions are the “right
tool” for constructing moderately expensive functions. In fact, all entrants in the
password hashing competition claimed some form of memory hardness [PHC].
Percival [Per09] introduced a candidate memory hard function called scrypt,
which has subsequently been shown to be vulnerable to side-channel attacks as
its computation yields a memory access pattern that is data-dependent (i.e.,
depends on the secret input/password). On the positive side this function has
been shown to require maximum possible cumulative memory complexity to
evaluate [ACP+17].

Alwen and Blocki [AB16] gave an attack on Argon2i-A (an earlier version of
Argon2i) with cumulative memory complexity O(n1.75 log n) as well as several
other iMHF candidates. They later extended the attack to Argon2i-B (the cur-
rent version) showing that the function has complexity O(n1.8) [AB17]. Alwen
and Blocki [AB16] also showed that any iMHF has cumulative memory com-
plexity at most O

(
n2 log log n

log n

)
, and Alwen et al. [ABP17a] later constructed

a graph with cumulative pebbling complexity at least Ω
(

n2 log log n
log n

)
. Alwen

et al. [ABP17a] also found a “recursive version” of the [AB16] attack which fur-
ther reduced the cumulative memory complexity of Argon2i-A to Õ

(
n1.708

)
. At

the same time they established a lower bound of Ω̃
(
n1.6̄

)
for Argon2i-A and

Argon2i-B.
Depth-robust graphs have found several applications in theoretical computer

science e.g., proving lowerbounds on circuit complexity and Turing machine
time [Val77,PR80,Sch82,Sch83]. [MMV13] constructed proofs of sequential work
using depth-robust graph and more recently depth-robust graphs were used
to prove lower bounds in the domain of proof complexity [AdRNV16]. Recent
results [AB16,ABP17a] demonstrate that depth-robustness is a necessary and
sufficient property for a secure iMHF. Several constructions of graphs with low
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indegree exhibiting this asymptotically optimally depth-robustness are given in
the literature [EGS75,PR80,Sch82,Sch83,MMV13,ABP17b] but none of these
constructions are suitable for practical deployment.

3 Preliminaries

Let N denote the set {0, 1, . . .} and N
+ = {1, 2, . . .}. Let N≥c = {c, c+1, c+2, . . .}

for c ∈ N. Define [n] to be the set {1, 2, . . . , n} and [a, b] = {a, a+1, . . . , b} where
a, b ∈ N with a ≤ b.

We say that a directed acyclic graph (DAG) G = (V,E) has size n if |V | = n.
We shall assume that G is labeled in topological order. A node v ∈ V has indegree
δ = indeg(v) if there exist δ incoming edges δ = |(V ×{v})∩E|. More generally,
we say that G has indegree δ = indeg(G) if the maximum indegree of any node of
G is δ. A node with indegree 0 is called a source node and a node with no outgoing
edges is called a sink. We use parentsG(v) = {u ∈ V : (u, v) ∈ E} to denote the
parents of a node v ∈ V . In general, we use ancestorsG(v) =

⋃
i≥1 parents

i
G(v) to

denote the set of all ancestors of v — here, parents2G(v) = parentsG (parentsG(v))
denotes the grandparents of v and parentsi+1

G (v) = parentsG
(
parentsiG(v)

)
. When

G is clear from context we will simply write parents (ancestors). We denote the
set of all sinks of G with sinks(G) = {v ∈ V : �(v, u) ∈ E} — note that
ancestors (sinks(G)) = V . We often consider the set of all DAGs of equal size
Gn = {G = (V,E) : |V | = n} and often will bound the maximum indegree
Gn,δ = {G ∈ Gn : indeg(G) ≤ δ}. For directed path p = (v1, v2, . . . , vz) in
G, its length is the number of nodes it traverses, length(p) := z. The depth
d = depth(G) of DAG G is the length of the longest directed path in G.

We will often consider graphs obtained from other graphs by removing sub-
sets of nodes. Therefore if S ⊂ V , then we denote by G − S the DAG obtained
from G by removing nodes S and incident edges. The following is a central
definition to our work.

Definition 1 (Block Depth-Robustness). Given a node v, let N(v, b) = {v−
b+1, . . . , v} denote a segment of b consecutive nodes ending at v. Similarly, given
a set S ⊆ V, let N(S, b) = ∪v∈SN(v, b). We say that a DAG G is (e, d, b)-block-
depth-robust if for every set S ⊆ V of size |S| ≤ e, we have depth(G−N(s, b)) ≥
d. If b = 1, we simply say G is (e, d)-depth-robust and if G is not (e, d)-depth-
robust, we say that G is (e, d)-depth-reducible.

Observe when b > 1 (e, d, b)-block-depth robustness is a strictly stronger notion
that (e, d)-depth-robustness since the set N(S, b) of nodes that we remove may
have size as large as |N(S, b)| = eb. Thus, (e, d, b ≥ 1)-block depth robustness
implies (e, d)-depth robustness. However, (e, d)-depth robustness only implies
(e/b, d, b)-block depth robustness.

We fix our notation for the parallel graph pebbling game following [AS15].

Definition 2 (Parallel/Sequential Graph Pebbling). Let G = (V,E) be a
DAG and let T ⊆ V be a target set of nodes to be pebbled. A pebbling config-
uration (of G) is a subset Pi ⊆ V . A legal parallel pebbling of T is a sequence
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P = (P0, . . . , Pt) of pebbling configurations of G where P0 = ∅ and which satisfies
conditions 1 & 2 below.

1. At some step every target node is pebbled (though not necessarily simultane-
ously).

∀x ∈ T ∃z ≤ t : x ∈ Pz.

2. Pebbles are added only when their predecessors already have a pebble at the
end of the previous step.

∀i ∈ [t] : x ∈ (Pi \ Pi−1) ⇒ parents(x) ⊆ Pi−1.

We denote with PG,T (and P‖
G,T ) the set of all legal (parallel) pebblings of G

with target set T . We will be mostly interested in the case where T = sinks(G)
and then will simply write P‖

G.

We remark that in the sequential black pebbling game, we face the additional
restriction that at most one pebble is place in each step (∀i ∈ [t] : |Pi\Pi−1| ≤ 1),
while in the parallel black pebbling game there is no such restriction. The cumu-
lative complexity of a pebbling P = {P0, . . . , Pt} ∈ P‖

G is defined to be Πcc(P ) =∑
i∈[t] |Pi|. The cumulative cost of pebbling a graph G a target set T ⊆ V is defined

to be
Π‖

cc(G,T ) = min
P∈P‖

G,T

Πcc(P ) .

When T = sinks(G), we simplify notation and write Π
‖
cc(G) = min

P∈P‖
G

Πcc(P ).

3.1 Edge Distribution of Argon2i-B

Definition 3 gives the edge distribution for the single-lane/single-pass version
of Argon2i-B. The definition also captures the core of the Argon2i-B edge dis-
tribution for multiple lane/multiple-pass variants of Argon2i-B. While we focus
on the single-lane/single-pass variant for ease of exposition, we stress that all of
our results can be extended to multiple-lane/multiple-pass versions of Argon2i-B
provided that the parameters τ, � = O(1) are constants. Here, � is the number
of lanes and τ is the number of passes and in practice these parameters � and τ
will be always be constants.

Definition 3. The Argon2i-B is a graph G = (V = [n], E), where E = {(i, i +
1) : i ∈ [n−1]}∪{(r(i), i)}, where r(i) is a random value distributed as follows:

Pr[r(i) = j] = Pr
x∈[N ]

[
i

(
1 − x2

N2

)
∈ (j − 1, j]

]
,

since i
(
1 − x2

N2

)
is not always an integer. Note that we assume n � N . In the

current Argon2i-B implementation we have, N = 232. By contrast, we will have
n ≤ 224 in practice.
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3.2 Metagraphs

We will use the notion of a metagraph in our analysis. Fix an arbitrary integer
m ∈ [n] and set n′ = �n/m�. Given a DAG G, we will define a DAG Gm called
the metagraph of G. For this, we use the following sets. For all i ∈ [n′], let
Mi = [(i − 1)m + 1, im] ⊆ V . Moreover, we denote the first and last thirds
respectively of Mi with

MF
i =

[
(i − 1)m + 1, (i − 1)m +

⌊m

3

⌋]
⊆ Mi ,

and

ML
i =

[
(i − 1)m +

⌈
2m

3

⌉
+ 1, im

]
⊆ Mi .

We define the metagraph Gm = (Vm, Em) as follows:

Nodes: Vm contains one node vi per set Mi. We call vi the simple node and Mi

its meta-node.
Edges: If the end of a meta-node ML

i is connected to the beginning MF
j of

another meta-node we connect their simple nodes.

Vm = {vi : i ∈ [n′]} Em = {(vi, vj) : E ∩ (ML
i × MF

j ) �= ∅}.

Claim 1 is a simple extension of a result from [ABP17a], which will be useful in
our analysis.

Claim 1 ([ABP17a], Claim 1). If Gm is (e, d)-depth robust, then G is(
e
2 , dm

3 ,m
)
-block depth robust.

4 Depth-Reducibility of Argon2iB

In this section, we show that the Argon2i-B is depth reducible with high probabil-
ity. Then, using results from previous layered attacks (such as [AB16,ABP17a]),
we show an upper bound on the computational complexity of Argon2i-B.

Theorem 5. With high probability, the Argon2i-B graph is
(
e,Ω

((
n
e

)3))
-

depth reducible.

Proof. Recall that for node i, Argon2i-B creates an edge from i to parent node
i
(
1 − x2

N2

)
, where x ∈ [N ] is picked uniformly at random. Suppose we remove

a node between every g nodes, leaving gap size g. Suppose also that we have L
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layers, each of size n
L . Let i be in layer α, so that i ∈ [

(α − 1) n
L , α n

L

]
. Then the

probability that the parent of i is also in layer α, for α > 1, is

Pr
[
(α − 1)

n

L
≤ i

(
1 − x2

N2

)]
≤ Pr

[
(α − 1)

n

iL
≤

(
1 − x2

N2

)]

= Pr
[(

x2

N2

)
≤ iL − (α − 1)n

iL

]

≤ Pr
[(

x2

N2

)
≤ αn − (α − 1)n

iL

]

≤ Pr
[(

x2

N2

)
≤ n

(α − 1)n

]

≤ 1√
α − 1

Thus, the expected number of in-layer edges is at most

n

L

(
1 +

1√
1

+
1√
2

+
1√
3

+ . . .

)
<

n

L

(

2
∫ L

1

1√
α − 1

dα

)

= 4
n√
L

.

Hence, if we remove a node between every g nodes, as well as all in-layer edges,
we have e = n

g + 4n√
L

. We can apply standard concentration bounds to show
that the number of in-layer edges is tightly concentrated around the mean. As a
result, the depth is at most g nodes each gap over all L layers, d = gL. Therefore,
Argon2i-B is

(
n
g + 4n√

L
, gL

)
depth reducible. Setting g =

√
L shows

(
5n√

L
, L3/2

)

depth reducibility. Consequently, for e = 5n√
L

, then L3/2 =
(
5n
e

)3, and the result
follows.

Given function f , we say that G is f -reducible if G is (f(d), d)-reducible for each
value d ∈ [n]. Theorem 6, due to Alwen et al. [ABP17a], upper bounds Π

‖
cc(G)

for any f -reducible DAG.

Theorem 6 ([ABP17a], Theorem 8). Let G be a f-reducible DAG on n nodes
then if f(d) = Õ

(
n
db

)
for some constant 0 < b ≤ 2

3 then for any constant
ε > 0, the cumulative pebbling cost of G is at most Π

‖
cc(G) = O(n1+a+ε), where

a = 1−2b+
√
1+4b2

2 .

Reminder of Theorem 2. For any ε > 0 the cumulative pebbling cost of a
random Argon2i DAG G is at most Π

‖
cc(G) = O(n1+a+ε) with high probability,

where a = 1/3+
√

1+4/9

2 ≈ 0.7676.

Proof of Theorem 2: By Theorem 5, the Argon2i-B graph is f -reducible for
b = 1

3 with high probability, and the result follows. ��



454 J. Blocki and S. Zhou

5 Depth-Robustness for Argon2iB

In this section we show the general block-depth robustness curve of a random
Argon2i-B DAG. We will ultimately use these results to lower bound the cumu-
lative pebbling of an Argon2i-B DAG in Sect. 6. Interestingly, our lower bound
from Theorem 1 matches the upper bound from Theorem 5 in the last section
up to logarithmic factors. Thus, both results are essentially tight.

Reminder of Theorem 1. Argon2i is
(
e, Ω̃(n3/e3), Ω(n/e)

)
-block depth

robust with high probability.

The notion of a (δ, r∗)-local expander will be useful in our proofs. Definition
4 extends the basic notion of a δ-local expander from [EGS75]. [EGS75] showed
that for a sufficiently small constant δ, any δ-local expander is (Ω(n), Ω(n))-
depth robust.

Definition 4. A directed acyclic graph G (with n nodes) is a (δ, r∗)-local
expander if for all r ≥ r∗ and for all x ≤ n−2r+1 and all A ⊆ {x, . . . , x+r−1},
B ⊆ {x+ r, . . . , x+2r−1} such that |A|, |B| ≥ δr, we have E(G)∩ (A×B) �= ∅.
That is, there exists an edge from some node in A to some node in B. If r∗ = 1,
then we say G is a δ-local expander.

Proof Overview: We set m = Ω(n/e) and construct a metagraph Gm for a
random Argon2i-B graph, and bound the probability that two metanodes in
Gm are connected, using Claims 2 and 3. Using these bounds, we show that
the metagraph Gm for a random Argon2i-B graph is a (δ, r∗)-local expander
with high probability for r∗ = Ω̃(e3/n2) (we will be interested in the realm
where e = Ω(n2/3)) and some suitably small constant δ > 0. We then divide the
metagraph into several layers. With respect to a set S, we call a layer “good” if
S does not remove too many elements from the layer. We then show that there
exists a long path between these layers, which indicates that the remaining graph
has high depth.

We now show that the Argon2i-B class of graphs is a (δ, r∗)-local expander
with high probability. Given a directed acyclic graph G with n nodes sampled
from the Argon2i-B distribution, let Gm be the graph with the metanodes of G,
where each metanode has size m = 6n1/3 log n, so that Gm has n

m = n2/3

6 log n nodes.
First, given two metanodes x, y ∈ Gm with x < y, we bound the probability that
for node i in metanode y, there exists an edge from x to i.

Claim 2. For each x, y ∈ Gm with y > x and node i in metanode y, there
exists an edge from the last third of metanode x to node i with probability at
least 1

12
√

y
√

y−x+1
.

Claim 3. For any two metanodes x, y ∈ Gm with x < y, the last third of x is
connected to the first third of y with probability at least m

√
m

m
√

m+36
√

n(y−x+1)
.
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This allows us to show that the probability there exist subsets A ⊆ [x, x+ r − 1]
and B ⊆ [x + r, x + 2r − 1] of size δr such that A has no edge to B is at most
e−δr log(1+

√
log n)

(
r
δr

)2. We then use Stirling’s approximation to show this term
is negligible, and then apply the union bound over all vertices x and all r ≥ r∗,
which shows that the metagraph Gm (for Argon2i) is a (δ, r∗)-local expander
with high probability.

Lemma 1. Let m = n/(20000e) then for r∗ = Ω̃(e3/n2) = Ω̃(n/m3) the meta-
graph Gm (for Argon2i) is a (δ, r∗)-local expander with high probability.

We now divide Gm into layers L1, L2, . . . Ln/(mr∗) of size r∗ each. Say that a
layer Li is c-good with respect to a subset S ⊆ V (Gm) if for all t ≥ 0 we have
∣
∣
∣
∣
∣
∣

S ∩
⎛

⎝

i+t−1⋃

j=i

Lj

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ c

∣
∣
∣
∣
∣
∣

⎛

⎝

i+t−1⋃

j=i

Lj

⎞

⎠

∣
∣
∣
∣
∣
∣

, and

∣
∣
∣
∣
∣
∣

S ∩
⎛

⎝

i⋃

j=i−t+1

Lj

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ c

∣
∣
∣
∣
∣
∣

⎛

⎝

i⋃

j=i−t+1

Lj

⎞

⎠

∣
∣
∣
∣
∣
∣

,

We ultimately want to argue that Gm −S has a path through these good layers.

Claim 4. If |S| < n/(10000m) then at least half of the layers L1, L2, . . . Ln/(mr∗)
are (1/1000)-good with respect to S.

Fixing a set S let H1,S ,H2,S , . . . , denote the c-good layers and let R1,S = H1,S −
S and let Ri+1,S = {x ∈ Hi+1,S | x can be reached from some y ∈ Ri,S in
Gm − S}.

Lemma 2. Suppose that for any S with |S| ≤ e and i ≤ n/(2mr∗), the set
Ri,S �= ∅. Then Gm is (e = n/(10000m), n/(2mr∗))-depth robust and G is (e =
n/(20000m), n/(6r∗),m)-block depth robust.

Proof. Removing any e = n/(10000m) nodes from Gm, there is still a path
passing through each good layer since Ri,S �= ∅ and there are at least n/(2mr∗)
good layers. Thus, Gm is (e = n/(10000m), n/(2mr∗))-depth robust. Then block
depth robustness follows from Claim 1. Intuitively, removing e = n/(20000m)
blocks of nodes of size m from G can affect at most n/(10000m) metanodes.
Thus, there is a path of length (m/3)n/(2mr∗) = n/(6r∗) through G, and so G
is (e = n/(20000m), n/(6r∗),m)-block depth robust.

We now show that the number of nodes in each reachable good layer Ri,S is
relatively high, which allows us to construct a path through the nodes in each
of these layers. We first show that if two good layers Hi,S and Hi+1,S are close
to each other, then no intermediate layer contains too many nodes in S, so we
can use expansion to inductively argue that each intermediate layer has many
reachable nodes from Ri,S , and it follows that Ri+1,S is large. On the other
hand, if Hi,S and Hi+1,S have a large number of intermediate layers in between,
then the argument becomes slightly more involved. However, we can use local
expansion to argue that most of the intermediate layers have the property that
most of the nodes in that layer are reachable. We then use a careful argument
to show that as we move close to layer Hi+1,S , the density of layers with this
property increases. It then follows that Ri+1,S is large. See Fig. 1 for example.
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Lemma 3. Suppose that Gm is a (δ, r∗)-local expander with δ = 1/16 and let
S ⊆ V (Gm) be given such that |S| ≤ n/(10000m). Then, |Ri,S | ≥ 7r∗/8.

Proof of Theorem 1: Let m = n/20000e and let G be a random Argon2i
DAG. Lemma 1 shows that the metagraph Gm of a random Argon2i DAG G is
a (δ, r∗)-local expander with high probability for r∗ = Ω̃

(
e3/n2

)
. Now fix any

set S ⊆ Gm of size |S| ≤ e. Claim 4 now implies we have at least n/(2mr∗) good
layers H1,S , . . . ,Hn/(2mr∗). Theorem 1 now follows by applying Lemma 3 and
Lemma 2. ��

6 Cumulative Pebbling Cost of Argon2iB

We now use the depth-robust results to show a lower bound on the cumulative
pebbling complexity of Argon2iB. Given a pebbling of G, we show in Theorem 7
that if at any point the number of pebbles on G is low, then we must completely
re-pebble a depth-robust graph. We then appeal to a result which provides a
lower bound on the cost of pebbling a depth-robust graph.

Theorem 7. Suppose G is a DAG that has an edge from [i, i + b − 1] to[
j, j + 128n log n

b

]
for all n

2 ≤ j ≤ n − 128n log n
b and 1 ≤ i ≤ n

2 − b + 1. If

the subgraph induced by nodes
[
1, n

2

]
is (e, d, b)-block depth robust, then the cost

to pebble G is at least min
(

en
8 , edb

1024 log n

)
.

First, we exhibit a property which occurs if the number of pebbles on G is low:

Lemma 4. Suppose G is a DAG that has an edge from [i, i + b − 1] to[
j, j + 128n log n

b

]
for all n

2 ≤ j ≤ n − 128n log n
b and 1 ≤ i ≤ n

2 − b + 1. Sup-

pose also that the subgraph induced by nodes
[
1, n

2

]
is (e, d, b)-block depth robust.

For a subset S ⊂ [
1, n

2

]
, if |S| < e

2 , then H = ancestorsG−S

([
j, j + 128n log n

b

])

is
(

e
2 , d

)
-depth robust.

Proof. Let G1 denote the subgraph induced by first n
2 nodes. Note that H con-

tains the graph W = G1 − ⋃
x∈S [x − b + 1, x] since there exists an edge from

each interval [x − b + 1, x]. Moreover, W is
(

e
2 , d, b

)
-block depth robust since G1

is (e, d, b)-block depth robust contains only e
2 additional blocks. Finally, since W

is a subgraph of H, then H is
(

e
2 , d

)
-depth robust.

Lemma 5 ([ABP17a], Corollary 2). Given a DAG G = (V,E) and subsets
S, T ⊂ V such that S ∩ T = ∅, let G′ = G − (V/ancestorsG−S(T )). If G′ is (e, d)-
depth robust, then the cost of pebblingG−S with target set T isΠ

‖
cc(G−S, T ) > ed.

We now prove Theorem 7.

Proof of Theorem 7: For each interval of length 256n log n
b , let t1 denote the

first time we pebble the first node, let t2 denote the first time we pebble the
middle node of the interval, and let t3 denote the first time we pebble the last
node of the interval. We show

∑
t∈[t1,t3]

|Pt| ≥ min{en log(n)/(2b), ed/2}. Then
a pebbling do at least one of the following:
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1. Keep e
2 pebbles on G for at least 128n log n

b steps (i.e., during the entire interval
[t1, t2])

2. Pay
(

e
2

)
d to repebble a (e/2, d)-depth robust DAG during before round t3.

(Lemma 4)

In the first case, |Pt| ≥ e
2 for each t ∈ [t1, t2], which is at least 128n log n

b time
steps. In the second case, there exists t ∈ [t1, t2] such that |Pt| < e

2 . Then by
Lemmas 4 and 5,

∑
t∈[t1,t3]

|Pt| ≥ ed
2 . The cost of the first case is 64en log n

b and
the cost of the second case is ed

2 . Since the last n/2 nodes can be partitioned
into (n/2)/(256(n/b) log n) = b/(512 log n) such intervals, then the cost is at
least

(
b

512 log n

)
min

(
64en log n

2b , ed
2

)
, and the result follows. ��

We now provide a lower bound on the probability that there exists an edge
between two nodes in the Argon2iB graph.

Claim 5. Let i, j ∈ [n] be given (i �= j) and let G be a random Argon2iB DAG on
n nodes. There exists an edge from node j to i in G with probability at least 1

4n .

Using the bound on the probability of two nodes being connected, we can also
lower bound the probability that two intervals are connected in the Argon2iB
graph.

Lemma 6. Let b ≥ 1 be a constant. Then with high probability, an Argon2iB
DAG has the property that for all pairs i, j such that n

2 ≤ j ≤ n − 128n log n
b and

1 ≤ i ≤ n
2 − b + 1 there is an edge from [i, i + b − 1] to

[
j, j + 128n log n

b

]
.

Proof. By Claim 5, the probability that there exists an edge from a specific
node y ∈ [i, i+ b−1] to a specific node x ∈

[
j, j + 128n log n

b

]
is at least 1

4n . Then

the expected number of edges from [i, i + b − 1] to
[
j, j + 128n log n

b

]
is at least

1
4n (128n log n) = 32 log n. By Chernoff bounds, the probability that there exists

no edge from [i, i + b − 1] to
[
j, j + 128n log n

b

]
is at most 1

n4 . Taking a union
bound over all possible intervals, the graph of Argon2iB is a DAG that has an
edge from [i, i + b − 1] to

[
j, j + 128n log n

b

]
and all n

2 + j ≤ n − 128n log n
b and

1 ≤ i ≤ n
2 − b + 1 with probability at least 1 − 1

n2 .

We now have all the tools to lower bound the computational complexity of
Argon2iB.

Reminder of Theorem 3. With high probability, the cumulative pebbling cost
of a random Argon2i DAG G is at least Π

‖
cc(G) = Ω̃

(
n7/4

)
with high probability.

Proof of Theorem 3: The result follows Theorem 7, Lemma 6, and setting
e = d = n3/4 and b = n1/4. ��
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7 Fractional Depth-Robustness

Thus far, our analysis has focused on Argon2i, the data-independent mode
of operation for Argon2. In this section, we argue that our analysis of the
depth-robustness of Argon2i has important security implications for both data-
dependent modes of operation: Argon2 and Argon2id. In particular, we prove
a generic relationship between block-depth robustness and fractional depth-
robustness of any block-depth robust DAG such as Argon2i. Intuitively, frac-
tional depth-robustness says that even if we delete e vertices from the DAG that
a large fraction of the remaining vertices have depth ≥ d in the remaining graph.

In the context of a dMHF fractional depth-robustness is a significant met-
ric because the attacker will be repeatedly challenged for a random data-label.
Intuitively, if the attacker reduces memory usage and only stores e data labels,
then there is a good chance that the attacker will need time ≥ d to respond to
each challenge. It is known that SCRYPT has cumulative memory complexity
Ω(n2). However, SCRYPT allows for dramatic space-time trade-off attacks (e.g.,
attackers could evaluate SCRYPT with memory O(1) if they are willing to run in
time O(n2)). Our results are compelling evidence for the hypothesis that similar
time space-trade offs are not possible for Argon2 or Argon2id without incurring
a dramatic increase in cumulative memory complexity (We believe that provid-
ing a formal proof of this claim could be a fruitful avenue of future research).
In particular, our results provide strong evidence that any evaluation algorithm
either (1) requires space Ω

(
n0.99

)
for at least n steps, or (2) has cumulative

memory complexity ω
(
n2

)
since it should take time Ω̃

(
n3/e3

)
= Ω̃

(
n2ε × n

e

)

on average to respond to a random challenge on with any configuration with
space e = O(n1−ε). By contrast for SCRYPT, it may only take time Ω(n/e)
to respond to a random challenge starting from a configuration with space e —
while this is sufficient to ensure cumulative memory complexity Ω(n2), it does
not prevent space-time trade-off attacks.

Definition 5. Recall that the depth of a specific vertex v in graph G, denoted
depth(v,G) is the length of the longest path to v in G. We say that a DAG
G = (V,E) is (e, d, f)-fractionally depth robust if for all S ⊆ V with |S| ≤ e,
we have

|{v ∈ V : depth(v,G − S) ≥ d}| ≥ f · n.

Then we have the following theorem which relates fractional depth-robustness
and block depth-robustness.

Reminder of Theorem 4. If G contains all of the edges of the form (i − 1, i)
for 1 < i ≤ n and is (e, d, b)-block depth robust, then G is

(
e
2 , d, eb

2n

)
-fractional

depth robust.

Proof of Theorem 4: Suppose, by way of contradiction, that G is not(
e
2 , d, eb

2n

)
-fractionally depth robust. Then let S be a set of size e

2 such that at
most eb

2n nodes in G have depth at least d. Now consider the following procedure:
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Let S′ = ∅.
Repeat until depth

(
G − (⋃

v∈S′ [v, v + b − 1] ∪ S
))

< d:

(1) Let v be the topologically first node s.t

depth

(

v,G −
(

S ∪
⋃

v∈S′
[v, v + b − 1]

))

≥ d .

(2) Set S′ = S′ ∪ {v}.

Return S′ ∪ (
S \ ⋃

v∈S′ [v, v + b − 1]
)
.

We remark that during round i, the interval [v, v + b − 1] either (1) covers
b nodes at depth at least d in G − Si, or (2) covers some node in the set S0.
Since at most eb

2 nodes in G − (Si ∪ S) have depth at least d the first case
can happen at most e/2 times. Similarly, the second case can happen at most
|S| = e

2 times, and each time we hit this case we decrease the size of the set∣
∣S \ ⋃

v∈S′ [v, v + b − 1]
∣
∣ by at least one. Thus, the above procedure returns a set

S′ of size |S′| ≤ e such that depth(G − ⋃
v∈S′ [v, v + b − 1]) < d. But then, the

longest path in the resulting graph is at most d − 1, which contradicts that G is
(e, d, b)-block depth robust. ��

Corollary 1. Argon2i is
(
e, Ω̃(n3/e3), Ω(1)

)
-fractional depth robust with high

probability.
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A Missing Proofs

Reminder of Claim 2. For each x, y ∈ Gm with y > x and node i in metanode
y, there exists an edge from the last third of metanode x to node i with probability
at least 1

12
√

y
√

y−x+1
.

Proof of Claim 2: Recall that for node i, Argon2iB creates an edge from i to
parent node i

(
1 − k2

N2

)
, where k ∈ [N ] is picked uniformly at random. Thus, for

nodes i, j ∈ G with i > j, there exists an edge from node j to i with probability
at least
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Pr
[
(x − 1)m + 1 ≤ i

(
1 − k2

N2

)
≤

(
x − 1 +

1
3

)
m

]

= Pr
[(

x − 1 +
1
6

)
m ≤ ym

(
1 − k2

N2

)
≤

(
x − 1 +

1
3

)
m

]

≥ Pr
[
y − x + 5

6

y
≥ k2

N2
≥ y − x + 2

3

y

]

≥
√

y − x + 5
6

y
−

√
y − x + 2

3

y

≥ 1
6
√

y(2
√

y − x + 1)
=

1
12

√
y
√

y − x + 1
.

��
Reminder of Claim 3. For any two metanodes x, y ∈ Gm with x < y, the
last third of x is connected to the first third of y with probability at least

m
√

m

m
√

m+36
√

n(y−x+1)
.

Proof of Claim 3: Let p be the probability that the final third of x is connected
to the first third of y. Let Ei be the event that the ith node of metanode y is
the first node in y to which there exists an edge from the last third of metanode
x, so that by Claim 2, Pr [E1] ≥ 1

12
√

y
√

y−x+1
. Note that furthermore, Pr [Ei] is

the probability that there exists an edge from the last third of metanode x to
the ith node of metanode y and no previous metanode of y. Hence, Pr [Ei] ≥

1
12

√
y
√

y−x+1
(1 − p). Thus,

p = Pr [E1] + Pr [E2] + . . . + Pr
[
Em/3

]

≥
(m

3

) 1
12

√
y
√

y − x + 1
(1 − p).

Setting α =
(

m
3

)
1

12
√

y
√

y−x+1
, then it follows that p + αp ≥ α, so that p ≥ α

1+α .
Since y ≤ n

m ,

p ≥ m/36
√

y(y − x + 1) + m/36
≥ m

√
m

m
√

m + 36
√

n(y − x + 1)

��
Reminder of Lemma 1. Let m = n/(20000e) then for r∗ = Ω̃(e3/n2) =
Ω̃(n/m3) the metagraph Gm (for Argon2i) is a (δ, r∗)-local expander with high
probability.

Proof of Lemma 1: Let r ≥ r∗ and A ⊆ {x, . . . , x+r−1}, B ⊆ {x+r, . . . , x+
2r−1} be subsets of size δr, for some x ≤ n−2r+1. By Stirling’s approximation,

√
2πrr+1/2e−r ≤ r! ≤ err+1/2e−r.
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Then it follows that
(

r

δr

)
≤ err+1/2e−r

2π(δr)δr+1/2(r − δr)r−δr+1/2e−r

≤ e

2πδδr+1/2(1 − δ)r−δr+1/2
√

r

=
e1+δr log 1

δ +(r−δr) log 1
1−δ

2π
√

rδ(1 − δ)

For two specific metanodes in A and B, the probability the pair is connected
is at least m

√
m

m
√

m+36
√

nr
by Claim 3. For 36

√
nr ≥ m

√
m, the probability is at least

m
√

m
72

√
nr

(otherwise, for 36
√

nr < m
√

m, the probability is at least 1
2 > m

√
m

72
√

nr
).

Now, let p be the probability that there exists an edge from A to a specific
metanode in B. Furthermore, let Ei be the event that the ith metanode of A is
the first node from which there exists an edge from a specific metanode of B, so
that, Pr [E1] ≥ m

√
m

72
√

nr
. For Ei to occurs, that must exist an edge from the last

third of metanode x to the ith node of metanode y and no previous metanode
of y, so then Pr [Ei] ≥ m

√
m

72
√

nr
(1 − p). Thus,

p = Pr [E1] + Pr [E2] + . . . + Pr
[
E|A|

]

≥ (δr)
m

√
m

72
√

nr
(1 − p).

Since r ≥ r∗ = Ω̃(n/m3), it follows for an appropriate choice of r′ that p ≥√
log n(1 − p). Thus, p ≥

√
log n

1+
√
log n

is the probability that there exists an edge
from A to a specific metanode in B.

Now, taking the probability over all δr metanodes in B, the probability that
A and B are not connected is at most

(1 − p)δr =
(

1
1 +

√
log n

)δr

= e−δr log(1+
√
log n)

Since there are
(

r
δr

)2 such sets A and B, the probability that there exists A
and B in the above intervals which are not connected by an edge is at most

e−δr log(1+
√
log n)

(
r

δr

)2

by a simple union bound. Then from the above Stirling approximation, the
probability is at most

exp
(

2 + 2δr log
1
δ

+ 2(r − δr) log
1

1 − δ
− δr log(1 +

√
log n)

)
1

4π2rδ(1 − δ)
,
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where −δr log(1 +
√

log n) is the dominant term in the exponent. Again taking
r ≥ r∗ = Ω

(
n log n

m3

)
, the probability that Gm is not a δ-local expander is at

most

Pr [∃r ≥ r∗, x, A,B with no edge] ≤ n
∑

r≥r∗

e−Ω(r log log n)

4π2rδ(1 − δ)

= o

(
1
n

)
.

Thus, Gm is a δ-local expander with high probability. ��
Reminder of Claim 4. If |S| < n/(10000m) then at least half of the layers
L1, L2, . . . Ln/(mr∗) are (1/1000)-good with respect to S.

Proof of Claim 4: Let i1 be the index of the first layer Li1 such that for some
x1 > 0 we have

∣
∣
∣S ∩

(⋃i1+x1−1
t=i1

Lt

)∣
∣
∣ ≥ c

∣
∣
∣
(⋃i1+x1−1

t=i Lt

)∣
∣
∣. Once i1 < . . . <

ij−1 and x1, . . . , xj−1 have been defined we let ij be the least layer such that

ij > ij−1 + xj−1 and there exists xj > 0 such that
∣
∣
∣S ∩

(⋃ij+xj−1
t=ij

Lt

)∣
∣
∣ ≥

c
∣
∣
∣
(⋃ij+xj−1

t=ij
Lt

)∣
∣
∣ (assuming that such a pair ij , xj exists). Let i1 + x1 < i2,

i2 + x2 < i3, . . . ik−1 + xk−1 < ik denote a maximal such sequence and let

F =
k⋃

t=1

[it, xt − 1] .

Observe that by construction of F we have |S| ≥ c
∣
∣
∣
⋃

j∈F Lj

∣
∣
∣ = c|F |r∗,

which means that |F | ≤ |S| /(cr∗) = n/(10000cmr∗). Similarly, we can
define a maximal sequence i∗1 > . . . > i∗k∗ such that i∗j − x∗

j > i∗j+1 and∣
∣
∣S ∩

(⋃i∗
j

t=i∗
j −x∗

j+1 Lt

)∣
∣
∣ ≥ c

∣
∣
∣
(⋃i∗

j

t=i∗
j −x∗

j+1 Lt

)∣
∣
∣ for each j. A similar argument

shows that |B| ≤ |S| /(cr∗) = n/(10000cmr∗), where B =
⋃k

t=1 [i∗t − x∗
t + 1, i∗t ].

Finally, we note that if Li is not c-good then i ∈ F ∪ B. Thus, at most
n/(5000cmr∗) layers are not c-good, which means that the number of c =
(1/1000)-good layers is at least

n

mr∗ − n

5mr∗ ≥ n

2mr∗ .

��
Reminder of Lemma 3. Suppose that Gm is a (δ, r∗)-local expander with δ =
1/16 and let S ⊆ V (Gm) be given such that |S| ≤ n/(10000m). Then, |Ri,S | ≥
7r∗/8.

Proof of Lemma 3: We prove by induction. For the base case, we set R1 =
H1,S −S. Thus, |R1| = |H1,S − S| ≥ r∗−(1/1000)r∗, since H1,S is (1/1000)-good
with respect to S.
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Now, suppose that |Rj | ≥ 7r∗/8 for each j ≤ i. If layers Hi,S and Hi+1,S are
within 100 intermediate layers, then since Hi,S is (1/1000)-good with respect to
S, it follows that at most 100/1000 = 1/10 of the nodes in Hi+1,S are also in S.
Moreover, since Gm is a (δ, r∗)-local expander with δ = 1/16, then at most δr∗

additional nodes in Hi+1,S are not reachable from Hi,S . Therefore,

|Ri+1,S | ≥ |Hi+1,S − S| − δr∗ ≥ (1 − 1/1000 − 1/16)r∗ ≥ (7/8)r∗ .

Otherwise, suppose more than 100 intermediate layers separate layers Hi,S

and Hi+1,S . Figure 1 provides a visual illustration of our argument in this second
case. Let Y1, . . . , Yk denote the intermediate layers between Hi,S and Hi+1,S , so
that k > 100. Let j be the integer such that 2j ≤ k < 2j+1. Since Hi,S is
(1/1000)-good with respect to S, at most 2j+1r∗/1000 nodes in Y1 ∪ . . .∪Yk can
be in S. Thus, at least (1/8)-fraction of the nodes in Yk−2j−1 , . . . , Yk−2j−2+1 are
reachable from Ri. We now show this is sufficient.

Suppose that at least (1/8)-fraction of the nodes in Yk−2u, . . . , Yk−u−1 are
reachable from Ri. Then at least (7/8)-fraction of nodes in Yk−u, . . . , Yk−u/2 are
reachable from Ri, since layer Hi+1 is both (1/1000)-good and a (δ, r∗)-local
expander with δ = 1/16. (Note: we are now using layer Hi+1, not layer Hi).
It follows that at least (7/8)-fraction of the nodes in Yk are reachable from Ri.
Again,

|Ri+1,S | ≥ |Hi+1,S − S| − δr∗ ≥ (1 − 1/1000 − 1/16)r∗ ≥ (7/8)r∗ .

Thus, at least (7/8)-fraction of the nodes in Hi+1 are reachable, and so |Ri+1,S | ≥
(7/8)r∗. ��

. . . . . .

. . . . . .

. . . . . .

Hi,S

Ri,S

Hi+1,S

Ri+1,S

Y1 ∪ Y2 Yk−1 ∪ Yk
6⋃

j=3

Yj

k−2⋃

j=k−5

Yj

Fig. 1. The red area represents deleted nodes in the set S ⊆ V (Gm). Because the layers
Hi,S and Hi+1,S are both (1/1000)-good with respect to S the number of deleted nodes
in each oval cannot be too large. The green area in each oval represents nodes that are
reachable from Ri,S and are not in the deleted set S; other nodes are colored white.
An inductive argument shows that the number of white nodes in each oval cannot be
too large since Gm is a local expander. (Color figure online)
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Reminder of Claim 5. Let i, j ∈ [n] be given (i �= j) and let G be a random
Argon2iB DAG on n nodes. There exists an edge from node j to i in G with
probability at least 1

4n .

Proof of Claim 5: Recall that for node i, Argon2iB creates an edge from i to
parent node i

(
1 − x2

N2

)
, where x ∈ [N ] is picked uniformly at random. Thus,

for i, j ∈ G with i > j, there exists an edge from node j to i with probability at
least

Pr
[
j ≤ i

(
1 − x2

N2

)
≤ j +

1
2

]
= Pr

[
i − j

i
≥ x2

N2
≥ i − j − 1

2

i

]

≥ Pr
[
1 ≥ x2

N2
≥ 1 − 1

2n

]

≥ 1
4n

.
��
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