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ABSTRACT ARTICLE HISTORY
Motivated by interest in the geometry of high intensity events of Received 5 August 2017
turbulent flows, we examine the spatial correlation functions of Accepted 27 December 2017
sets where turbulent events are particularly intense. These sets are

defined using indicator functions on excursion and iso-value sets. IKEYWC.)RDS .

. . . . . sotropic turbulence; chaos
Their geometric scaling properties are analysed by examining pos- and fractals; direct numerical
sible power-law decay of their radial correlation function. We apply simulation
the analysis to enstrophy, dissipation and velocity gradient invariants
Q and R and their joint spatial distributions, using data from a direct
numerical simulation of isotropic turbulence at Re, ~ 430. While no
fractal scaling is found in the inertial range using box-counting in the
finite Reynolds number flow considered here, power-law scaling in
the inertial range is found in the radial correlation functions. Thus, a
geometric characterisation in terms of these sets’ correlation dimen-
sion is possible. Strong dependence on the enstrophy and dissipation
threshold is found, consistent with multifractal behaviour. Neverthe-
less, the lack of scaling of the box-counting analysis precludes direct
quantitative comparisons with earlier work based on multifractal for-
malism. Surprising trends, such as a lower correlation dimension for
strong dissipation events compared to strong enstrophy events, are
observed and interpreted in terms of spatial coherence of vortices in
the flow.

1. Introduction

Dissipation rate and enstrophy have been observables of great interest in turbulence
research due to their dynamical significance for the evolution of flow and their rich spa-
tial structure and intermittent nature [1]. In a view dating back to Kolmogorov [2,3]
and Obukhov [4], the transfer of kinetic energy from large to small scales proceeds
as a self-similar cascade process accompanied with increasing intermittency of intense
events, and these are often associated with large values of dissipation rate and enstro-
phy. The presence of power-laws in the velocity spectrum, velocity structure functions and
moments of velocity gradients and dissipation are seen as an indication of such self-similar
behaviour.
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One of the most common ways to study the resultant intermittent behaviour has been
through multifractal formalism. It has its origin in works by Kolmogorov [3] and Obukhov
[4] who assumed a lognormal distribution for the dissipation rate, with alternative models
proposed by Novikov and Stewart [5], Novikov [6-8], Mandelbrot [9] and Frisch et al. [10].
The multifractal approach was formalised explicitly in Frisch and Parisi [11], see also Benzi
et al. [12], making connections to fractal geometry.

In such methodology, special attention is paid to the power-law scaling of high-order
moments of velocity increments (structure functions) or dissipation rates. The approach
then invokes a continuous distribution of fractal dimensions D(h) of spatial sets where the
velocity increments across a distance r scale with a local Holder exponent A, according to
|u(x + ) — u(x)] ~ " [12] (u(x) is a component of the fluid velocity and r is a displace-
ment in the same direction). A description in terms of local scaling for the dissipation rate
€ and the distribution of its local exponents « with a fractal dimension flor) has also been
used [13,14]. The multifractal formalism as applied to turbulence has been reviewed in
Refs. [1,11,15]. In this formalism, the directly measured quantities are the various statis-
tical moments such as (|u(x + r) — u(x)|) or (€!) (where €, is the dissipation averaged
in a box of size r) while the fractal dimension functions D(h) and f(«) are determined
indirectly using the Legendre transformation [1] applied to the scaling exponents of the
moments. The majority of these prior data analyses were done using one-dimensional (1D)
experimental surrogates for dissipation rates while only in the last decade have full three-
dimensional (3D) Direct Numerical Simulations (DNS) begun to approach high-enough
Reynolds numbers for the possible power-law scaling to be discernible [16,17].

Inspite of the significant success of the multifractal formalism to encapsulate many dif-
ferent phenomena observed since (e.g. multi-point correlations [18], time correlations [19],
extended self-similarity [20] and varying viscous scales [21]), direct determination of the
fractal dimensions as a geometric characterisation of the sets of high-intensity events has
been far less common. An early attempt to study the scale-invariance of histograms of sin-
gularities [22] and to deduce the dimension from these scalings has met with mixed suc-
cess due to strong finite-size corrections and was thus limited to data at very high Reynolds
numbers.

Thus, the status of power-law scaling of geometric features of strong events in turbu-
lence remains unsettled. In the present work, we seek a geometric characterisation of high-
intensity events in turbulence that does not rely on statistical moments of the variable
but that identifies the high-intensity regions directly based on thresholding of the respec-
tive variables of interest. A previous study along these lines was presented by Moisy and
Jimenez [23]. They applied a box-counting analysis to high-intensity enstrophy and dissi-
pation region but did not observe power-law scaling. However, they did observe the hier-
archical clustering of structures raising the possibility of power-law scaling in other quan-
tities besides box-counting. In the present work, we ask whether power-law scaling can be
identified for such geometric sets using analyses beyond box-counting, at Reynolds num-
bers attainable with DNS. In seeking such direct geometric observables and their possible
power-law scaling, we are also motivated by other fields. For instance, the scaling analysis
of geometrical properties of excursion sets has been applied for random sets in probabil-
ity theory and the theory of random fields [24], and also has been used for the analysis of
matter distributions in cosmology [25-27].
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In this study, we employ a direct way to study regions of varying intensity of enstrophy
and dissipation rate: instead of computing moments of the observable (or box-averaged
observable) itself, we first define a geometric set as the set of points where the variables
exceed a threshold (or fall into a range of values). We use the indicator function that takes
on a value of one inside the set of interest and zero outside. Such geometric sets form con-
voluted clusters of complicated shapes. For example, high-intensity regions of vorticity are
known to be arranged into elongated (worm-like) structures, representing vortices [28,29].
Nominally, each one of these structures would be characterised by a dimension equal to
unity. However, it is also well known that these vortices are clustered into regions with pos-
sible multi-scaling properties and the scaling of a collection of such vortices is not necessar-
ily obvious. Conversely, high-dissipation events are often thought to be distributed along
sheets, although again these may have complex spatial structure not necessarily leading to
a dimension of two. Once the set is identified, we then compute its two-point correlation
function and seek to identify possible inertial-range power-law decay of the tails of the
correlation functions. To compare our results with those of Moisy and Jimenez [23], we
also perform a direct box-counting analysis of these sets to establish whether direct fractal
scaling can be identified in the inertial range of turbulence.

Furthermore, we extend the analysis to the geometry of sets where both dissipation and
enstrophy take on certain values. A ‘joint multifractal’ formalism was introduced previously
[30], but was also based on scaling of joint moments rather than directly based on possible
fractal scaling of the geometric objects that arise from joint distributions of enstrophy and
dissipation. Besides enstrophy and dissipation, we also explore the spatial structure of sets
formed by two velocity gradient invariants Q and R, observables that have elicited consider-
able interest in recent years [31]. The data-set to be considered for this analysis is isotropic
turbulence at a Taylor-scale Reynolds number of Re; =~ 433 obtained from DNS of forced
Navier-Stokes equations [32]. We first define the variables of interest and then apply the
analysis to the various quantities and joint distributions. The present analysis will be lim-
ited to isotropic turbulence at a single Reynolds number. Analysis of the effects of Reynolds
number, numerical resolution and similar issues will be left for future studies.

2. Definitions and data-set

The typical observables we are interested in are scalar quantities derived from the velocity
gradient tensor Vu. These scalar fields describe the rate of rotation (based on the antisym-
metric part of Vu) and the rate of fluid material deformation (via the symmetric part of
Vu). Specifically, the two scalar fields that will be considered are defined according to

: *(x) I(V )’ ! 0iu;0 (1)
0 (x) = =(V X W) = =€ ix€um0ith ;01
D) ) > k€Kl jOI
$2(x) = Si;Sij,  where (2)
1 1
Sij = E(V“'l‘ Vu');; = 5(3#;‘ + 9u;) 3)

Note that the dissipation is given by €(x) = 2vS8%*(x), where v is the fluid kinematic vis-
cosity. Hence, we refer to $* as the dissipation henceforth. A significant number of prior
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studies have focused on dissipation and enstrophy such as [33-36]; also, other observables
of interest are two scalar invariants of the velocity gradient tensor, called Q and R, defined
by the following equations:

Qx) = —% TH[(Vu)’] = %wz _g (4)

R(x) = —% Tr[(Vu)’] = — det Vu (5)

In the flow, the above observables assume a range of values, with $?, »?/2 being non-
negative while Q, R can be both positive or negative. Excursion sets are the set of points
x where such observables are above (or below) a certain threshold, for example w?/2 > x
(x will denote the threshold). We analyse the indicator function ®, (x) of the set of points
which satisfies the stated condition. Given a set of interest associated with a threshold yx,
we define its indicator function according to

1, ifx € set of interest associated with threshold x
0,x) = ] (6)
0, otherwise

An analogous definition can be made for ‘interval-based’ sets, for example, we can define
the region where enstrophy assumes values between x _ and x ,i.e. x_ < @*/2 < x.From
here on, the latter regions will also be referred to as ‘iso-sets, when x _ and y . are very close
in value, in which the difference is much smaller then their absolute value.

Various statistical features of these sets can be used to characterise their spatial distribu-
tion. We are especially interested in the two-point structure of these sets and thus focus on
the correlation function of ®, (x) defined as

Cy(r) = (0, (x)0, (x +1)) )

where the average is understood as a spatial average over positions x when applied to sta-
tistically homogeneous flows. Note that we are not subtracting the averages of the indica-
tor function (i.e. we do not define fluctuations of the indicator function but leave it as 0’s
and 1%).

In isotropic turbulence, the more compact quantity is the angular average of the 3D
correlation function:

Cy(r) =

1 ~
o/ C,(r)dS2, (8)

i.e. the normalised, radial correlation function. Phenomenologically, one may expect
power-law decaying behaviour C, (r) ~ K, r " for r in the inertial range due to the
expected self-similar behaviour of turbulence in that range of scales. The power-law expo-
nent y, is expected, however, to depend on the threshold. Writing the expected scal-
ing behaviour with its dimensional dependencies and possibly a Reynolds number and
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quantity-dependent prefactor K, , we write:

vy
C, (r) ~ K, (Rey) (%) s r>>mn, r<lAL (9)

where 7 is the Kolmogorov scale and L is the integral scale of the flow. The scaling expo-
nent y, is expected to be positive, consistent with a decay of the correlation at increasing
distance. A more geometric interpretation of the exponent y, can be invoked by recalling
that the correlation dimension D is defined based on the scaling of the correlation function
according to C, (r) ~ r?~ £ [37], where E is the dimensionality of the embedding space
(here, E = 3). Thus, the dimension corresponding to a correlation decay exponent y, is
D(x) =3 —y,-

For this work, we chose to perform our analysis on a snapshot from the Johns Hopkins
Turbulence Database. The data comes from a DNS of forced isotropic turbulence perfor-
mance on a 1024° periodic grid, using a pseudo-spectral parallel code. The attained Taylor-
scale-based Reynolds number is Re; ~ 433 time averaged over the database time period,
and Re; ~ 426 for the specific time-step used in the present analysis (¢ = 0.0). The domain
is a periodic cube of size [0, 277]°, in which the data frames were stored after the simula-
tion reached a statistically stationary state. Additional details of the data-set can be found
in [32,38]. In order to establish the scaling range corresponding to the turbulence iner-
tial range for comparison with the present results, we evaluate the longitudinal structure
function as an average over the three Cartesian directions:

Dy (r) = u——Z<<u,<x+re) — ui(%))?) (10)

rms i=0

where e; is the unit vector in the direction of the velocity component u;, and 12 =
3 Ly .o U7 is the square of the root-mean-square (RMS) velocity.

In order to evaluate enstrophy and dissipation, the velocity gradients are calculated with
spectral accuracy using Fast Fourier Transform (FFT). For our present analysis, we did not
use the databases’ finite differencing or Spline differencing tools since these are less accurate
compared to spectral methods that were also used during the DNS. As further explained in
Appendix 1, the analysis was done on a server near the database using notebooks provided
by a dedicated compute environment (the SciServer system). For differentiation, a 3D FFT
operation is applied to the velocity field to obtain the velocity field in Fourier space, then
the components are multiplied by the respective wavenumbers (ik;) to obtain the velocity
gradient in the x; direction. Finally, the inverse FFT is applied to obtain the velocity gra-
dients in physical space. This allows us to obtain A; = 0;u; data from the velocity field
u. The observables we are interested in (dissipation $?, enstrophy w?/2, Q and R) are then
computed in physical space.

To compute the correlation functions efficiently in 3D, a 3D FFT is applied to ®,(x)
over the 1024° data-cube, yielding @ (k) in Fourier space. To @ @* is then apphed the
inverse Fourier transform, resulting in C(r), which is the full 3D two point correlation
function. The radial integration is done by evaluating a histogram based on the radial /|r[?
values computed over the resulting grid. This effectively performs the angular average by
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Figure 1. Volume rendering of (a) the enstrophy excursion set corresponding to the function %a)gx x) =
%wz(x)(@;”o(g)(x) and (b) of the dissipation excursion set corresponding to the function S (x) =

$? (x)®§0<sz) (x) on a 5123 subset of the full data-set, with one-eighth in volume. The visualisations were

generated using the YT-project python visualisation library [39].

dividing the weighted average of the two-point correlation and the base /|r|? histogram.
More details are provided in Appendix 1.

3. Excursion set analysis

The excursion set indicator function for a given scalar field A, like enstrophy A = w?/2 or
dissipation A = %, is defined as

0% (x) = H(ARX) — x) = {1’ FAG) = X ()

0, otherwise

where x is the threshold applied on the scalar A. We begin by considering enstrophy excur-
sion sets. Figure 1 shows a volume rendering of the scalar function corresponding to enstro-
phy above the threshold x = 20(S?), given by Jw? (x) = ;&*(x)©s, (x). Note for con-
sistency, all threshold values are indicated as multiples of (S*) which are equally relevant to
enstrophy here since in isotropic turbulence (§?) = %(a)z). As can be seen in Figure 1(a),
this set has a very rich structure with familiar elongated strong vortices visible.

As a comparison, we also present in Figure 1(b) the visualisation of the dissipation field
for the same threshold, i.e. S (x) = §*(x)®3 (52 (%) which provides us with some use-
ful insights. The most striking feature is that the overall geometric distribution of high-
intensity regions for dissipation closely follows the ones for high enstrophy, though the
smaller scale details differ. The second feature is that at small-scales, the dissipation appears
to be less 1D-like and more sheet-like, but that when viewed at larger scales, in comparison
to its enstrophy counterpart. As will be seen, this fact will be visible also quantitatively in

the correlation function results.
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Figure 2. (a) Radial two-point correlation function for the w?/2 > 20(S%) excursion set. (b) Second-order
longitudinal velocity structure function D, as function of distance r. The dotted line is the classical Kol-
mogorov prediction for the longitudinal second-order structure function with C; = 2.0 (the small differ-
ence with the leading coefficient that is usually closer to C; = 2.1 can be attributed to statistical conver-
gence since we are only using a single snapshot).

3.1. Correlation function-based scaling

The radial two-point correlation function of the enstrophy excursion set corresponding
to x = 20(S?) is plotted in log-log axes in Figure 2(a). A power-law tail is clearly visible
over about a decade, between 42.5 n < r < 425 7. This range corresponds, roughly, to the
inertial range of the studied data-set. For direct comparison, we computed the second-order
structure functions for the data-set, as shown in Figure 2(b). The structure function has a
scaling exponent of about £, = 0.68 which is the known value (slightly above the K41 value
of 2/3 due to intermittency, [1]). These plots allow us to compare the quality and range of
the power-laws found in both observables. The most important fact to notice is that the
range where the two-point correlation function exhibits a near power-law behaviour (the
interval 42.5 n < r < 425 n) is the same as in the structure function. A similar behaviour
will be observed for all the excursion, iso-sets and joint distribution sets studied in this
work.

The scaling exponent observed in Figure 2 for the enstrophy excursion set at the given
threshold is about y, ~ 0.76, implying a ‘correlation dimension’ of about D(x) ~ 2.23.
Thus, while the topology of each individual vortex structure is visibly more 1D, as a set
its two-point structure is significantly more ‘space-filling’ with a correlation structure that
decays more slowly on average than a collection of isolated vortices.

It is important to note that correlation functions were evaluated for the indicator func-
tion distribution directly (i.e. a field of ones and zeros), and not the ‘fluctuation’ of the indi-
cator function away from its spatial mean which would include negative values by necessity.
We also tried to perform calculations on the subtracted version of the correlation function,
but the resulting correlation functions do not present as clear a power-law behaviour in
the inertial range as the one without subtracting the mean. One plausibility argument for
this observation is that the correlation function without subtracting the mean more readily
corresponds to the definition of the mass dimension in which the mass in spheres of radius
r is evaluated, and scaling with distance r is used to define the mass dimension [37].

3.2. Box-counting-based dimensions

As an independent measure of fractal dimension for the excursion sets, we can also com-
pute the box-counting dimension and the box-counting-based correlation dimension. The



304 J.H.ELSAS ET AL.

10° : : 1071
: : ‘ —  w?/2>20(S?)

10°

_10*
2

103

2
105 w?/2>20(52)

1 : : -6 3 3
10, o 107 107 10° 10750 107 102 10°

r/n r/n

Figure 3. (a) Box-counting dimension plot for the enstrophy excursion set with threshold x = 20(5?). (b)
Box-counting-based correlation dimension plot for the same set. The black line represents the D, = D,
~ 3 scaling expected for large scales of the box-counting calculation, since at large scales the clusters
appear space-filling.

box-counting procedure for evaluating both of these dimensions is based on a set of cubes
B,k of size r and location identified by indices k = (k;, k, k3) so that a cube’s corner is
located at [k, kpr, kar] with ki, ky, ks € Z,and 0 < k; < [27/r]. We assign a measure to
each cube, given by

1
My (Brx) = V—/ O, (x)d’x, where V,, =/ O, (x)d’x (12)

2 JB,x [0,27]3

The scaling of N,, the number of boxes needed to cover the set, and of Xy, (B 1)? is
used to define the box-counting dimension and the box-counting-based correlation dimen-
sion, respectively. We thus compute

Ny = [ty (Bu)l°, where pi, (Byi)® = (13)

1, if [, k@)X(x)d3x> 0
X 0

, otherwise

as well as

My(r) =) [y (B)P (14)

k

The behaviour N, ~ (r/n)~"0 defines the box-counting dimension Dy, and M, (r) ~
(r/n)P2 defines the box-counting-based correlation dimension, D, [14,40].

The implementation of the box-counting dimension is done as follows: the positions of
all points in the set are histogrammed using the cubic-box boundaries as the bins bound-
aries. For each bin with non-zero count, the bin was normalised to 1, and all other bins
are left to 0. The resulting histogram is summed, yielding the number of boxes that inter-
sect the set of interest, N,. The box size r ranges between 4.25 n and 850 . For the box-
counting-based correlation dimension, the computation is similar, but instead of normal-
ising the resulting count, we compute the sum of the bin values squared, which amounts to
the 1, (B, k)* calculation.

The results for the box-counting dimension can be seen in Figure 3(a) and the box-
counting-based correlation dimension plot is presented in Figure 3(b). The most notable
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Figure 4. (a) Enstrophy and (b) Dissipation PDFs, computed from DNS of forced isotropic turbulence at
Re, ~430. The dashed blue line is the same PDF computed using a different analysis programme for this
same data-set as reported in Ref. [41]. (c) Enstrophy and dissipation joint PDF. Similar PDFs can be found
in Yeung et al. [42] for (a) and (b), and in Borue and Orszag [43] for (c).

teature of both plots is the lack of an inertial range scaling behaviour, in contrast with the
structure function and the correlation dimension for the same set, Figure 2(a). One can
discern a scaling at small scales r < 20 n approaching the integral scale. Similar conclusions
are reached from the plots in Figure 3(b). Similar lack of scaling in the inertial range was
reported by Moisy and Jiménez [23], for a lower Reynolds number DNS, which suggests
that the lack of scaling may not be due to low Reynolds number only. Hence, no inertial-
range power-law scaling is found for the box-counting approach applied to the excursion
set of enstrophy. We have verified that the same is true for dissipation and all other variables
considered in this paper (not shown but some limited results will be shown later). Hence,
we focus our further analysis on the correlation-function-based analysis and scaling. We
have tested that the correlation and box-counting algorithms yield correct results based on
a 3D fractal set of known dimension (the Menger sponge), as summarised in Appendix 2.

3.3. Dependence on threshold, and dissipation-based excursion sets

In this section, we examine the correlation function scaling as a function of threshold and
also present a similar analysis for the dissipation $*. To place the thresholds in proper con-
text, in Figure (4), we present the probability density function (PDF) for both enstrophy
and dissipation, together with their joint PDF, for the data-set we used. Varying the thresh-
old yx, we can probe different intensities of events, therefore different sectors of the PDFs.
We present, in Figure (5), the results for the correlation functions for several thresholds,
ranging from x = 1(S?) to x = 50(S?), for both enstrophy (see Figure 5(a,b))and for dissi-
pation (Figure 5(c,d)).
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Figure 5. Radial correlation functions for enstrophy w?/2 (a,b) and dissipation S? (c,d) computed from the
DNS of forced isotropic turbulence at Re, ~ 430. The thresholds x range from 1(5%) t0 50(S?). Thresholds
are {1, 2,3, 4, 5} for (a,c), and {7, 10, 15, 30, 50} for (b,d).

Clearly, all correlation functions shown in Figure 5 present power-law behaviour within
the inertial range regardless of the observable probed and the value of the threshold. As
expected, the correlation dimension has a monotonically decreasing behaviour as a func-
tion of the threshold, indicating that high-intensity sets become less and less space-filling.
Such threshold dependence is not observed for a random non-intermittent field, as dis-
cussed in Appendix 3.

Comparing the values presented in Figure 5(a,c) with 5(b,d) confirms the initial obser-
vations made about Figure 1, in which is clear that the fractal dimensions associated with
dissipation sets are systematically lower than the ones of the enstrophy sets, for the same
thresholding value.

This behaviour is, initially, counterintuitive due to the expectation that enstrophy should
be distributed along tubes, i.e. elongated 1D sets, while dissipation should be distributed
along sheets. This behaviour is expected on the smallest, viscous, scales but does not seem
to be reflected in the inertial range behaviour, at least not in the correlation function scaling.

Another feature visible in Figure 1 is that enstrophy and strain-rate are quite highly
correlated, which can also be inferred from the overall shape of the joint PDF shown in
Figure 4(c). Quantitatively, we confirmed this by computing the correlation coefficients as
follows:

(8 = () (@2 = ()
P D = w2 — e e 1)
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Figure 6. Box-counting dimension calculation for enstrophy (a) and dissipation (b) excursion sets show-
ing lack of power-law scaling in the inertial range. The black line represents the D, = 3 scaling expected
for large scales. The legend denotes > x/(S?) threshold for each line.

(log $2/(52)) (log ?/2(5%)))
log 8, log w*/2) = =0.67. 16
plog S log e /2) = () 2 ((log at/2(5))1) (1o

The non-negligible correlation between enstrophy and dissipation has been noted
before, see, e.g. [34-36].

For comparison, we present, in Figure 6, the box-counting dimension for these same
sets, based on thresholding enstrophy and dissipation. They present the same features as in
Figure 3(a,b). At the smallest scales, we can see that most high-enstrophy sets approach a
slope of -1 but very high thresholds lead to even shallower (smaller-in-magnitude) slopes,
consistent with broken-up, less coherent vortex events. For the dissipation structures, at
small scales, we see a range of slopes between -2 for intermediate thresholds (consistent
with sheets) but also decreasing continuously towards -1 and lower for higher thresholds.
For larger scales, we notice again that all excursion sets saturate the box-counting to a
slope of ~—3 due to the homogeneity (space-fillingness) of the turbulence structures at
the largest scales.

The lack of scaling of box-counting results in the inertial range make connection of the
correlation function-based exponent D(x) = 3 — y, with a fractal dimension not as clear
as one would hope. Therefore, while from here on we will refer to D(x) = 3 — y, as the
correlation dimension, we must keep these limitations in mind.

4. Interval-based (iso) sets

An interesting alternative to considering the excursion sets is to compute interval-based
sets, which correspond to the sets in which the observable is between x _ and yx ., a lower
and an upper threshold, respectively. These sets are defined according to

1, ify_. <A®X) <
X = (x) < x+ (17)
0, otherwise

®*,  (x) = HA® — x)H(x: — AX) = {
They correspond to subsets of the excursion set near the lowest threshold, i.e. near the
iso-threshold set bounding the excursion set. In fact, this procedure yields a good approx-
imation for an ‘iso-set’ when (. — x_)/x_ < 1.
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Figure 7. Radial correlation functions for enstrophy w?/2 and dissipation S computed from the DNS of
forced isotropic turbulence at Re, ~ 430. The thresholds x range from 1(5?) to 50(S?). The results are for
shells of thickness Xy —Xx_=005x_, for both enstrophy, (a) and (b), and for dissipation, (d) and (e).
Thresholds are {1, 2, 3, 4, 5} for (a,d), and {7, 10, 15, 30, 50} for (b,e). As a band-width sensitivity test, we
computed correlation functions for shells of varying thickness with base threshold x _ = 20($?), for both
enstrophy (c) and dissipation (f), for thickness ranging from 100% to 0.5%. Legend denotes € [x _/(S?),
X+/(52)] interval for each observable.

We compute the two-point correlation function using x_ varying in the same set as
the thresholds of the previous section, and x; = 1.05x_ = (1 + A)x_, which roughly
corresponds to a thin shell of the inner boundary of the excursion set of threshold x _.
We prefer a multiplicative, rather than additive, relationship between x . and x_ because
it amounts to equally sized logarithmic bins. We also refer to these ‘interval-based’ sets as
‘shell’ sets.

The results of this analysis are presented in Figure 7(a,b) for enstrophy and in
Figure 7(c,d) for dissipation. As is visible, the resulting two-point correlations also present
robust power-law scaling in the same inertial range as the previous excursion set correlation
functions.

In order to establish the robustness of results with regards to the ‘thickness’ of the band
of thresholds defining the bin for the iso-set, we computed correlation functions for shells
of varying thickness with base threshold x _ = 20(S?), for both enstrophy and dissipation.
As can be seen in Figure 7(c) for enstrophy, the resulting power-law can be observed to
be robust regardless of the tested thickness. Also, the resulting exponent is insensitive to
the thickness, unless very thick shells are used, in which case we are actually closer to an
excursion set than to a proper interval-based (iso) set. A similar result can be obtained for
the dissipation, as seen in Figure 7(f). Again, we repeated the box-counting dimensions
computation for reference (not shown), and observed that there is no power-law in the
inertial range.

To exemplify the difference in behaviour between excursion sets and interval-based sets
correlation functions, we computed both types of sets for the lower threshold at 20(S?) in
both cases. One observes that they differ, mostly, on the small r region, which is an imprint
of the fact that shell-based sets have a ‘hollow’ shape compared to the excursion sets. The
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Figure 8. (a) Comparison of excursion sets with thin shell sets starting at similar threshold values; (b)
Interval-based sets dimensions, as a function of the probed intensity x/(S?).

absolute value of the normalised correlation function is lower for shells than for the respec-
tive excursion sets, due to lower volume fraction, as expected. The correlation slope is flatter,
having a higher compensated exponent (i.e. more ‘space-filling’).

In order to present the complete information of scaling exponents as a function of
threshold, we present D(x) = 3 — y, as a function of threshold corresponding to loga-
rithmically spaced bins. The computation is done for both enstrophy and dissipation shell
sets. Overall, both observables present the same qualitative behaviour, but enstrophy con-
sistently shows a higher correlation-based dimension. Prior results [30] have shown that
enstrophy is ‘more intermittent’ than dissipation and thus the present results may appear to
be counterintuitive, as mentioned before in section 3. Present results show that the decay
of spatial correlation is slower with distance for the high enstrophy region as compared to
the high dissipation regions which must be more ‘broken-up’ and less coherent, consistent
with what is seen in the visualisation, Figure 1(b). We conjecture that the slow correlation
decay reflects the underling highly elongated structure of high vorticity regions, which is
not the same for most of the other observables.

The graph of dimension versus threshold in Figure 8(b) is reminiscent of the plots of
singularity spectra D(h) commonly measured via Legendre transforms in the multifrac-
tal formalism [11,12]. In order to establish a connection between the two approaches, we
would need to know how to connect the local thresholds we use to the ‘local singularity
strength K’ It is expected that such a relationship will depend on Reynolds number and
would also depend in non-trivial ways on prefactors. In the absence of a detailed analysis
as function of Reynolds number, we cannot at this stage provide clear connection of the
present results with the multifractal formalism and we relegate this aspect to future work.

5. Joint Iso-set analysis
As done for a single scalar, it is possible to define joint excursion sets for both enstrophy
w?/2 and dissipation §* = §;;S;;, according to

O 1 (X) = O(@*/2 = X,)O(S* = Xe)

Xe Xe
1, ifw?> x,and S$?* >
_'Xa) _ X€ (18)
0, otherwise
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Figure 9. Set of representative log-log plots showing power-law scaling of the correlation functions for
joint shell sets on enstrophy w?/2 and dissipation S. Values correspond to (w?/2, $) in the rectangle
shown.

The radial correlation function of these sets are computed following the same approach
as in the previous Section 3. Representative results are shown in Figure 9(a,b). We observe
the same overall power-law behaviour seen in the single excursion sets, in the same range
of length-scales corresponding to the inertial range. Similarly, we can define joint interval-
based sets according to

B4 o a®) =00 /2 = x)O (X (1 4+ A,) — 0?/2)O(S* — x)O(Xc (1 + AL) — §)

)1 ifxe 0?2 < x,(1+A,) and xe < 8 < x (14 A) (19)
N 0, otherwise

For very small spacings A, there might be numerical and statistical problems due to the
very small number of points on a finite data-set. Therefore, the map of the joint two-point
correlation function is only accurate for the centre-most region, away from the skirt of
the joint probability distribution function, in Figure (10). Though not shown here, we also
performed sensitivity analysis to the bin size, analogously to that presented in Figure 7(c,f),
and similar results were obtained.

One feature we observe in Figure (10) is the presence of an inverted/rotated ‘L-shaped’
region of constant dimension, indicating a near independence of the geometrical distribu-
tion of one of the observables. This indicates that the regions with either average enstrophy
or dissipation are dominated by space-filling geometry, irrespective of the value of the other
quantity within those regions. As regions of very high or very low enstrophy and dissipation
are probed, we observe lower and lower correlation dimension D(X,, Xe) = 3 — Vyo.xe>
as expected. The lowest observed compensated exponent on the probed region is around
D(xw> xe) = 1.2.

Considering the values along the diagonal where $* = w?/2, or Q = 0, i.e.
Dgiag(x) = D(x, x), we can approximate the joint distribution only in terms of this func-
tion, i.e. D(Xw» X¢) = Daiag(max {x, X}). This approximation reproduces the L-shaped
pattern quite well (not shown), suggesting that any Q # 0 regions have, to a first approxi-
mation, the dimension associated with the Q = 0 hull for the component with the highest
intensity, of either S? or w?/2.

Note that the shape of the joint distribution is remarkably similar to the contour plots
of the conditional mean pressure reported in Yeung et al. [42]. While pressure depends
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Figure10. Joint correlation function exponent D(x,, x.) = 3 — v, , forjointinterval-based sets, with

equally spaced logarithmic bins A = A = A_ = 0.28, with the same bins utilised to compute the joint
PDF in Figure 4(c).

Figure 11. Volume rendering of (a) the Q velocity gradient invariant excursion set for negative Q < —2(S?),
i.e. corresponding to the function Q,, (x) = —Q(x)@;& (x) and (b) the Q excursion set for positive

Q > 2(5?), i.e. corresponding to the function Q. (x) = Q(x)@%sz) (x) on a 5123 subset of the full data.
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Figure 12. Volume rendering of (a) the R velocity gradient invariant excursion set corresponding to
the function R, (x) = —R(x)@;&)(x) and (b) of the R set corresponding to the function R, (x) =

R(x)®§(52> (x) on a subset of the full cube, with one-eighth in volume.
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Figure13. PDFsof Q (a) and R (b) PDFs. (c) Qand R joint PDF, a similar joint PDF can be seen in the reference
Meneveau [45] and Nomura and Post [50].

directly on the spatial distribution of vorticity and strain-rate in the flow, establishing a
direct connection to the correlation exponents appears non-trivial.

6. Scaling analysis of spatial distribution of invariants Q and R

Following the work done in the previous sections, we seek to probe the geometrical struc-
ture of the observables Q and R defined in Equation (4). Since both quantities are signed,
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Figure 15. Set of representative log-log plots for power-law of the correlation functions for joint shell
sets for Q and R velocity gradient invariants.

we computed their PDFs as function of thresholds in linear instead of logarithmic scale.
First, we present the PDFs of both quantities, in Figure 13(a,b), and the joint PDF of Q and
R in Figure 13(c). We notice the characteristic tear-drop shape in the joint PDE with the
right-most region following the so-called Vieillefosse tail as Q = — 337 R**. More details
can be found in Refs. [44-47].

The quantities in Figure 13(a,b) were plotted on inverse hyperbolic sine (asinh) axis. The
asymptotic behaviour of asinh for large values is to approach log, while being linear close
to the origin. These features allow us to have a reasonably undistorted view of the PDF near
the origin, and also verify if there is any power-law behaviour on the tails of the PDE, for
either positive or negative values of the quantities of interest. In this case, it appears that
no power-law behaviour is visible in the tails of the PDFs of Q and R, on either positive or
negative sides.

Before proceeding to analyse the spatial correlation functions of the corresponding shell
sets, it is useful to present visualisations of the Q and R scalar fields. In Figure 11, we
observe that the overall, middle and large-scale spatial distributions strongly resemble the
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ones present earlier in Figure 1, especially comparing Figure 1(a) and Figure 11(b). This
resemblance is expected since Q > 0 thresholds are often used as vortex visualisations (the
Q-criterion [48]). Negative Q regions are more correlated with high-straining region, again
as expected based on the identity Q = w?/2 — §°.

Visualisations of spatial distributions of the scalar R are less common in the literature
(although see discussion in Ref. [49]). Interestingly, we observe that negative R distribu-
tions, in Figure 12(a), include slightly more elongated structures than the positive R distri-
butions, Figure 12(b). Hence, the regions in which both Q and R show elongated structures
are in the upper-left quadrant of the RQ plane, the vortex-stretching quadrant.

To quantify the spatial correlation structure, the correlation functions of interval-sets
are computed as before, for various thresholds of Q and R. Similar to what is observed for
enstrophy and dissipation, we find clear power-laws in the two-point correlation functions
associated with the iso-sets of Q and R, as exemplified in Figure 14(a).

The measured correlation dimensions, as a function of the threshold y, are presented
in Figure 14(b). The basic behaviour of the correlation dimension mimics the PDF of the
corresponding observable, as can be seen comparing Figures 13(a,b) and 14(b).

For the analysis of joint Q and R sets, we present some representative log-log plots in
Figure 15(a,b), which showcase that the correlation function presents power-law behaviour
for these sets as well. The full joint correlation dimension distribution is presented in
Figure 16.

The most striking feature of Figure (16) is the top-bottom asymmetry of the Q > 0
and Q < 0 regions for the correlation-based dimension. The dimension is clearly larger
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in the rotation-dominated regions at Q > 0. This is consistent with the fact that, for the
same threshold, correlation dimensions associated with enstrophy iso-sets are higher than
dissipation iso-sets (Figure 8(b)). Clearly, the geometric features of the joint distribution
differ from the joint PDF in Figure 13(c). That is to say, regions with high PDF need not
have higher (more space-filling) correlation-based dimension.

7. Conclusions

We have analysed a turbulence data-set from DNS at a moderately high Reynolds number,
with the specific aim to identify scaling laws characterising the spatial distribution of phe-
nomena of various magnitudes. Both excursion sets and iso-sets (thin bands) have been
considered for enstrophy, dissipation (or square-strain-rate) and the two invariants Q and
R. The variable Q has also often been used for flow visualisation and high positive values of
Q can be used to identify vortices. The spatial distributions are first defined using an indi-
cator function and the radial correlation function of the indicator function distribution is
evaluated. In all cases, we find clear power-law decay in these correlations for separation
distances falling within the inertial range of turbulence. The scaling range is insensitive to
the thresholds and variables of interest. We confirmed this is the same scaling range char-
acterising power-law scaling of the traditional velocity structure function.

Even though the correlation functions present power-law in the inertial range, consis-
tently with the results of Moisy and Jimenez [23], no such power-law behaviour is observed
in box-counting and box-counting-based correlation dimension computations. Thus, the
interpretation of the correlation-function-based exponents D(x) = 3 — y as a ‘dimension’
must be considered with care. Consistent with the definition of a dimension, for thresholds
near the mean value, space-fillingness is observed with the exponent saturating at 3. For
higher (or lower) thresholds, this correlation dimension reduces to lower values.

We also observe some surprising trends, such as a lower correlation-function-based
dimension for strong dissipation events compared to strong enstrophy events. It is likely
that this is caused by the elongated nature of vortices causing coherence in space over longer
distances on average as compared to regions of high dissipation. We also show that sets
defined by joint conditions on strain and enstrophy, and on Q and R, also display power-
law scaling in the correlation functions, providing further characterisation of the complex
spatial structure of the intersections of these sets.

The inertial range power-law behaviour of correlation functions associated with quanti-
ties in the viscous range (dissipation, enstrophy, Q and R) of a wide range of thresholds pro-
vides further evidence of geometric self-similarity of flow properties in the inertial range.

Opverall, this work shows an alternate route to study the multifractal behaviour of turbu-
lence, in which geometrical information is probed explicitly by using correlation functions
of indicator functions. It is not yet immediately clear how to naturally connect the results of
the present work with the traditional multi-fractal formalism, which is based on the scal-
ing of statistical high-order moments of the box-averaged flow quantities over regions of
different sizes. Specifically, it is not clear how to associate the threshold x to the parameters
« or h used in the multifractal formalism.

Further follow-up work should develop such correspondences, as well as examine the
scaling for different (higher) Reynolds numbers. Also, extensions to non-isotropic shear
flows, in which the correlation functions may decay differently in different directions,
would be of interest.
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Appendices

Appendix 1. analysis environment on SciServer, and notebooks

The data used in this paper is obtained from the Johns Hopkins Turbulence Database
(JHTDB). Most prior uses of JHTDB focused on the analysis of spatially localised regions,
for which local operations such as interpolation or finite-difference-based differentiations
could be done on the database system itself and deliver small amounts of data to users.
In the present work, we desired instead to use FFTs for the analysis in order to enable us
spectral accuracy for derivative evaluations, as well as efficient evaluation of the 3D correla-
tion functions. However, FFTs require access to the entire 1024 fields, for which the usual
access modes of JHTDB are not well suited. Instead, the analysis presented in this paper
was performed on the Sciserver cloud environment, hosted by the Institute for Data Inten-
sive Science at Johns Hopkins University (http://www.sciserver.org). The goal of Sciserver
is to provide a local environment for data-driven science. Some screen shots can be seen
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Figure A1. Code snippets used in the Sciserver environment: (a) Volume-rendering script with YT library;
(b) Two-point correlation function.

in Figure Al. Sciserver provides a 10 Gigabit ethernet connection to the JHTDB [32,38],
which is a valuable asset to the present work since it allows to easily download entire snap-
shots from the database. Sciserver was initially developed to be used in conjunction with the
Sloan Digital Sky Survey, in the form of Skyserver, as a nearline analysis tool to the Astron-
omy database. It has since then expanded to other areas of scientific research including
turbulence, genomics and oceanography.

We utilised the Compute module of Sciserver, which provides a Jupyter notebook
environment running over Docker containers that provide user package customisabil-
ity through Anaconda and Pip package managers. Sciserver also provides a set of pre-
configured docker containers for Python, Matlab and other languages.

The notebook runs on a docker container with access to 24 CPU cores and 256 Gigabytes
of random access memory (RAM). The docker container runs on top of a virtual machine
(VM), which is shared among many containers.

Most of the analysis was done running Python code on the Jupyter notebooks, which
allow us to integrate data analysis and documentation. Some of the most compute-intensive
figures were produced on Python running on batch mode instead of inside the notebook,
more specifically Figures (10) and (16)c, which correspond to the fractal dimension for the
iso-sets for, respectively, joint enstrophy and strain-rate, and joint Q and R. These calcu-
lations required the evaluation of forward and inverse 3D FFTs for each of the 120 x 120
geometric sets, i.e. a significant computational effort. To perform the 3D FFTs efficiently, a
data-cube must fit in the RAM of a single compute node.

The present analysis mode shows that, under appropriate circumstances, using Python
on Jupyter notebooks within Sciserver is a viable option to perform global analysis of large
DNS data-sets that have been stored in a database such as JHTDB.
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Figure B1. (a) Contour plot of a planar cut through an indicator function marking a 5-level Menger Sponge
set; (b) Two-point radial correlation function for the Menger Sponge set; (c) Box-counting plot. The dotted
line is the slope corresponding to the analytically known fractal dimension of the Menger Sponge (D, =
D, =log (20)/log (3)).

Appendix 2. tests of correlation and box-counting on known fractal sets in 3D:
Menger Sponge

In order to validate our techniques and present a known reference for the scaling tools
utilised in this work, we present here the results of the correlation-function and box-
counting-based analysis for a known self-similar fractal (the Menger Sponge).

The Menger Sponge is generated through an iterative process, in which the central one-
third-sized sub-cube on each of the six sides and the core of the mother cube are deleted.
This process is repeated iteratively for each remaining sub-cube. In our tests, we use a level
5 Menger sponge, i.e. the fifth iteration of removal as shown in Figure B1(a). The set indi-
cator function is computed over the same N° = 1024° used for the data-set of this work,
in which the removed regions are set to 0, and the rest is set to 1 (on elements of scale
1024/3° ~ 4).

Over this indicator function, we compute the two-point correlation function just as
in Section 2, which results in Figure B1(b). The power-law behaviour is affected at large
and small scales due to the cubic symmetry of the set being analysed via spherical bins
of distances. Still, there is clearly a power-law in a central decade in Figure B1(b) with
a slope consistent with a correlation-function-based dimension of 3 — y = log20/log 3,
the Haussdorft dimension of the Menger sponge. Analogously, we computed the box-
counting graph for the same indicator function. Since the box-counting method is con-
sistent with the artificial fractal set’s construction, one obtains a clearer power-law, as seen
in Figure B1(c). Again, the slope is consistent with the Haussdorft dimension. These tests
verify our method of computing the correlation function and box-counting-based scaling
exponents.
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Figure C2. Two-point correlation function for excursion sets of enstrophy for thresholds t = {1, 3, 5, 7}.

Appendix 3. tests of correlation for random K41 field

In order to elucidate the connection of threshold dependence of the two-point correlation
functions with the multifractality of the turbulent field, we perform the same analysis for a
non-intermittent field with the same spectrum as the original field.

The resulting field can be visualised in Figure C1, which can be seen to have near to
no structure besides small-scale clumping. This field has, accordingly, suppressed high-
intensity events. The direct consequence is that the two-point correlation function produces
a space-filling y,, = 0 result, as seen in Figure C2 regardless of the threshold used, in this
case for excursion sets on enstrophy. The same result can be found for iso-sets and also for
other observables.

The random field is obtained by randomising the phases of the original velocity field,
removing the divergence-full part of the resulting field and then correcting the spectrum to
be the same as the original velocity field. This produces a divergence-free non-intermittent
field, which is expected to also be statistically isotropic and homogeneous, which is con-
firmed by the results obtained.



