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Abstract. In war zones and economically deprived regions, because of extreme resource
restrictions, a single provider may be the sole person in charge of providing emergency
care to a group of patients. An important question the provider faces under such circum-
stances is whether or not to perform triage and how to prioritize the patients. By choosing
to triage a particular patient, the provider can determine the health condition and thus
the urgency of the patient, but that will come at the expense of delaying the actual service
(stabilization or initial treatment) for that patient as well as all the other patients. Moti-
vated by this problem, which also arises in other service contexts, we consider a service
system where finitely many patients, all available at time zero, belong to one of the two
possible triage classes, where each class is characterized by its waiting cost and expected
service time. Patients’ class identities are initially unknown, but the service provider has
the option to spend time on triage to determine the class of a patient. Our objective is to
identify policies that balance the time spent on triage with the time spent on service by
minimizing the total expected cost. We provide a complete characterization of the optimal
dynamic policy and show that the optimal dynamic policy that specifies when to perform
triage is determined by a switching curve, and we provide a mathematical expression for
this curve. One insight that comes out of this characterization is that the server should
start with performing triage when there are sufficiently many patients and never perform
triage when there are few patients. Finally, we carry out a numerical study in which we
demonstrate how one can use our mathematical results to develop policies that can be
used in mass-casualty triage and prioritization, and we find that there are substantial
benefits to using one of these policies instead of the simpler benchmarks.
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1. Introduction
Patient triage and prioritization decisions in daily
emergencies as well as mass-casualty events primarily
aim to make the best use of limited medical resources
in an effort to save the lives of as many people as
possible and more broadly mitigate the events’ neg-
ative impact on patients’ health. These decisions are
highly important regardless of whether they are made
in response to daily emergencies or a mass-casualty
event, the number of patients seeking treatment, the
size of the event, or more generally how limited
resources are. However, typically, different factors are
at play and different considerations arise depending on
the degree to which resources are limited. This paper is
concerned with patient triage and prioritization deci-
sions under extremely resource-restricted conditions.
Specifically, we focus on settings in which demand for
skilled medical providers far surpasses the available
supply in close vicinity. In most cases, such condi-
tions are temporary and caused by incidents such as an

armed attack, bombing, or an accident, but they might
also be chronic as a result of economic deprivation in a
region.

A typical emergency response effort to a mass-
casualty event in an urban area may involve a team of
medical personnel having a range of capabilities and
responsibilities ranging frompatient triage to resuscita-
tion, transportation, and on-site treatment and surgery.
Under such conditions, because different individuals
have different skill sets and the number of providers on
the scene is relatively large, patient triage and patient
treatment can be done by separate groups of indi-
viduals in parallel. However, in the case of incidents
that occur at geographically isolated locations, bat-
tlefields, or military missions that result in multiple
life-threatening injuries, a single physician, nurse, or
paramedic might find himself/herself as the only per-
son having the skills to deliver proper treatment—at
least temporarily—to the injured (MabryandMcManus
2008, Mabry et al. 2012, Ünlü et al. 2013). Similarly,
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in economically deprived areas where in some cases
healthcare services are delivered through mobile clin-
ics, a single person or a team can be in charge of both
prioritizing and carrying out a full medical examina-
tion of the patients who show up at the clinic in the
morning (Gove et al. 1999, Razzak and Kellermann
2002, Molyneux et al. 2006, Stillman and Strong 2008,
World Health Organization 2008). In such settings, in
addition to the typical decision of which patient to pri-
oritize, there is also the question of how to balance the
time spent on triage and the time spent on treatment
or stabilization.
The patient triage and prioritization problem, partic-

ularly in the case ofmass-casualty events, is so complex
that mathematical formulations that aim to be highly
detailed and realistic representations are not likely to
lead to implementable solutions. The difficulty arises
not only from the numerous factors such decisions
would have to consider—and thus that the mathemati-
cal optimization problem would have to incorporate—
but also from the fact that the reliable estimation of
model parameters would be impossible especially con-
sidering the lack of available data. Therefore, our main
goal in this article is to develop a stylized formulation
that captures the essential features of the problemmen-
tioned above and analyze this formulation so as to pro-
vide insights that can be helpful in making decisions in
practice. In the last part of the paper, we demonstrate
how one can design practical policies using our ana-
lytical characterization of the optimal policy as well as
prior work in mass-casualty triage.

Our model can broadly be described as follows:
there are some finite number of patients all of whom
are in urgent need of attention from a single medi-
cal provider (e.g., a paramedic, nurse, or physician).
While all patients are in critical condition, some are
in more serious condition than the others and thus
need to be served more urgently. In attending to the
patients, the provider has various options available.
She does not know which patients are in more serious
condition. So, she can randomly choose a patient and
serve. Alternatively, for each patient she can choose
to spend some time on triage to determine the triage
class, and thus the urgency level, of the patient. Once
a classification is made, she can continue with the ser-
vice of the patient or move on to another patient who
may or may not have already been classified. In par-
allel with most existing mass-casualty triage protocols
such as START (Lerner et al. 2008), which put critical
patients in one of two classes, we assume that there
are two triage classes named immediate (patients with
severe and immediately life-threatening injuries) and
delayed (patients with severe but not immediately life-
threatening injuries). Our objective is to determine the
actions the provider should take depending on the
number and the composition of the patients waiting
for attention.

A key issue when formulating this problem is decid-
ing onwhat the objective function should be. For mass-
casualty events, the objective of maximizing the num-
ber of survivors is largely accepted in practice, but the
question is how exactly that objective can be appro-
priately captured in a mathematical formulation with-
out rendering it analytically intractable.We discuss our
modeling approach in detail in Section 3, but here it
suffices to state that our approach mainly rests on the
idea that the decline in a patients’ survival probabil-
ity with the passage of time without treatment can be
seen as the “waiting cost” for that patient, and thus the
minimization of the expected total waiting cost can be
interpreted as the minimization of the expected num-
ber of deaths. It is also important to note that for our
analytical results, we assume that for each patient, the
system incurs a delay cost that depends on the triage
class of the patient and increases linearly with time. In
fact, the only work available to date on survival prob-
abilities for trauma patients (Sacco et al. 2005, 2007;
Navin et al. 2009) strongly suggests that survival prob-
abilities do not decrease linearly with time. Neverthe-
less, as we demonstrate in Section 6 of the paper, our
analysis based on this assumption can be used to con-
struct policies that perform well even under realistic
conditions, where the assumption is violated.

We review the relevant literature in Section 2 and
formally describe our model in Section 3. In Section 4,
we provide a complete characterization of the opti-
mal dynamic policy, which allows making decisions
based on up-to-date system state—i.e., the number
of untriaged patients and the numbers of patients
already classified as immediate and delayed all waiting
to receive treatment. Under conditions that are most
likely to hold in practice, we show that whenever triage
identifies an immediate patient, that patient should
be served right away; otherwise, the patient should
wait until there are no more unclassified or immedi-
ate patients. This finding, which essentially deals with
the question of how to prioritize when patients are
already classified, is not surprising and consistent with
the extensive literature that establish the optimality of
the cµ-rule under a variety of settings. The more inter-
esting question, which is also the focus of this paper, is
when to perform and when to skip triage. As it turns
out, this decision depends on the number of unclassi-
fied patients and the number of patients classified as
delayed. In particular, we find that there is a switching
curve that separates the states in which triage should
be performed from the others, andwe provide a closed-
form expression for the curve. One interesting insight
that comes out of this characterization is that spend-
ing time on triage helps if there are sufficiently many
patients but not when there are relatively few. Being
overwhelmed with the volume of patients in need of
treatment, there could be a temptation to skip triage
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and quicklymove on tomore detailed examination and
treatment of the patients in the hopes of saving time.
However, our results indicate that this could be a short-
sighted decision.
In Section 5, we devise two policies that are sim-

pler alternatives to the optimal policy. The two poli-
cies are the No-Triage policy, which serves all patients
in random order without spending any time in triage,
and the Triage-Prioritize-Class-1 policy, which performs
triage on all patients but serves the triaged patient right
away if the patient is classified as class 1—i.e., imme-
diate. We identify conditions under which one is supe-
rior to the other, and use both policies as benchmark
heuristics later in our computational study.

In Section 6, we show how our analytical results can
help devise policies that are likely to perform well in
practice. To do that, we first introduce a new mathe-
matical model, which explicitly considers the possibil-
ity that the patients might die waiting for treatment,
and survival probability functions are chosen in line
with the work of Sacco et al. (2005, 2007) and Navin
et al. (2009). Then, we describe how our analytical
results can be used to construct heuristic policies for
this more realistic setting and report the results of a
numerical study in which we found that some of these
policies perform consistently well across different sce-
narios. Finally, in Section 7, we provide our concluding
remarks and point to some future research directions.
Proofs of all of the analytical results are provided in
the online supplement.

2. Discussion of the Relevant Literature
Our model and analysis are closely related to the clas-
sical job-scheduling literature where jobs in our con-
text can be seen as the patients, and servers or processors
can be seen as the medical providers (e.g., paramedics,
nurses, or physicians) who provide triage and treat-
ment services on the scene. A simplified version of
our formulation in which class identities of all jobs are
known has been studied extensively in the literature.
Specifically, when jobs incur linear waiting costs, and
the cost rate and the expected service time of class i
jobs are respectively given by ci and 1/µi , the opti-
mal policy under a variety of conditions is the well-
known cµ-rule: a job of class j has priority over a job
of class k if and only if c jµ j > ckµk . Starting with Smith
(1956), this body of work includes Cox and Smith
(1961), Klimov (1974), Harrison (1975), Pinedo (1983),
Nain (1989), Argon and Ziya (2009), and Budhiraja
et al. (2014), among others. Under convex delay costs,
the asymptotic optimality of a generalized version of
the cµ-rule, called Gcµ-rule, was established by Van
Mieghem (1995) and further studied by Mandelbaum
and Stolyar (2004). Our work mainly differs from these
articles in that we assume that the class identity of a
job is initially unknown and can only be determined

through a process called triage, which keeps the server
occupied for a certain period of time.

Some of the recent work has considered the job-
scheduling problem within the context of mass-
casualty triage by either considering models where
jobs may renege (patients dying) while waiting or
considering time-dependent reward functions, which
correspond to time-dependent survival probabilities.
Specifically, Argon et al. (2008) consider a single-server
two-class model where patients renege from the sys-
temwith exponential rates that depend on the patient’s
triage class. They provide a partial characterization
of the optimal policy and propose heuristic methods.
Uzun Jacobson et al. (2012) consider a more general
formulation in which the “reward” obtained through
service, which can be seen as the probability that the
service will be successful, depends on patient class
(though not the time of the service). The authors pro-
vide partial characterizations of the optimal policy
when there is a single server and propose heuristic
methods that can be used even in multiple-server set-
tings. Mills et al. (2013) consider a deterministic fluid
model in which there is no reneging but the “reward”
for service (survival probability after service) changes
with time. Under some realistic conditions, the paper
provides a mathematical characterization of the opti-
mal policy and then uses it to propose a prioritization
policy that can be implemented in practice.

A number of articles in the literature (e.g., Shumsky
and Pinker 2003, Wang et al. 2010, Alizamir et al. 2012,
Dobson and Sainathan 2011, Dobson et al. 2013) inves-
tigate diagnostic systems that, similar to the triage in
our formulation, include a process that reveals some
information about the jobs based on which further
action is taken. Shumsky and Pinker (2003) consider
a two-level service system where the first level acts as
a gatekeeper, who first makes an initial diagnosis on
arriving customers and then depending on this diag-
nosis may or may not refer the customers to a special-
ist. Differing significantly from our focus in this paper,
the main objective of Shumsky and Pinker (2003) is to
design an incentive mechanism that helps overcome
the information asymmetry caused by the gatekeeper
being the sole observer of the complexity of the job that
each customer presents and the gatekeeper’s own treat-
ment ability. One similarity with our work is that, in
the model of Shumsky and Pinker (2003), just as in our
model, there are two levels of service (triage or serve
without triage). However, unlike Shumsky and Pinker
(2003), in our formulation, a single server is in charge
of both levels of service, and the first level of service
(triage) is not mandatory. Wang et al. (2010) study a
model where patients may or may not choose to call a
diagnostic service center depending on their expecta-
tion on the diagnostic accuracy and waiting time. The
authors investigate how capacity (staffing) and diag-
nostic quality decisions should be made.
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Alizamir et al. (2012) consider a model where a sin-
gle server classifies each arriving customer into one of
two classes based on the results of a series of inde-
pendent tests. If the classification is correct, the server
receives a reward; otherwise, there is a penalty. Cus-
tomers who find the server busy join a queue and
incurs a waiting cost during their stay in the system.
By performing more tests, the server increases the like-
lihood that a correct classification will be made; how-
ever, this increases the waiting time of the customers
in the queue. The objective of the paper is to dynam-
ically determine the number of tests to be carried out
based on the system state. The fundamental difference
between our model and that of Alizamir et al. (2012)
is that in our model, the diagnostic process is assumed
to be simpler as it consists of a single test and thus
the number of tests is not a decision variable. How-
ever, unlike Alizamir et al. (2012), we explicitly model
the service process that comes after classification and
capture the trade-off between the time spent on service
and time spent on diagnosis.

Dobson and Sainathan (2011) compare two models:
the base model and the prioritized model. In the pri-
oritized model, jobs are first sorted by a pool of homo-
geneous sorters and then served by another pool of
homogeneous processors while there is no sorting in
the basemodel. The authors compare the optimal wait-
ing cost of the prioritized model with that of the base
model and identify conditions under which prioritiza-
tion is beneficial. The work of Dobson and Sainathan
(2011) is close to ours in that it also aims to study the
trade-off between service capacity allocated to classifi-
cation and actual service. However, while Dobson and
Sainathan (2011) are interested in optimal static design
questions by comparing two alternative systems in a
multiple-server setting, our goal is to investigate and
characterize optimal dynamic decisions for a single-
server system. Dobson et al. (2013) study a model in
which an investigator collects information from a new
customer to decide what work needs to be done in the
second step by another server. Once the second step is
finished, the customer joins another queue to receive
service from the investigator again and then leaves the
system. The investigator needs to prioritize between
the old and new customers. As we describe in the fol-
lowing section, the models they study are also signifi-
cantly different from the one we analyze in this paper.

A stream of papers in organizational learning and
knowledge management (e.g., March 1991, Gupta et al.
2006, Posen and Levinthal 2012) study what is com-
monly referred to as “the exploration versus exploita-
tion problem,” in which, somewhat similar to our
formulation, the main question centers around the
allocation of resources to the exploration of newknowl-
edge and the exploitation of existing knowledge. How-
ever, unlike in our model, in these papers, exploration

typically does not cause delay in exploitation and the
two can proceed simultaneously. Furthermore, to the
best of our knowledge, none of these papers considers
the specific setting we consider in our paper, in which
patients are classified into two groups, and their find-
ings do not have any direct implications for our work.

Finally, ourwork is relevant to a series of papers (e.g.,
Güneş and Akşin 2004, Gurvich et al. 2009, Armony
and Gurvich 2010) that study cross-selling within the
context of call centers. As in the case of triage and
prioritization we consider in this paper, cross-selling
also requires careful balancing of time spent on cross-
selling and time spent on actual service. However,
the main decision in cross-selling involves when and
which customers should be extended offers and, unlike
in our case, does not generate information that can be
used for service prioritization.

3. The Model
Before we present our mathematical model in detail,
we first provide a short discussion on some of the
important features of the mass-casualty patient triage
problem, explain to what extent the proposed model
will successfully capture these features, and give an
overview of how the analysis of this model will be used
despite its limitations.

3.1. The Mass-Casualty Triage Problem and Our
Modeling Approach

Awidely accepted utilitarian objective in case of mass-
casualty events is to maximize the number of sur-
vivors. Obviously, passage of time without treatment
has a negative effect on the survival chances of each
patient, and thus it makes sense to talk about the “cost”
of waiting. But what exactly is this cost? To under-
stand this, it is very important that we distinguish
between the two different ways that waiting can affect
a patient’s probability of survival. First, one conse-
quence of a patient waiting for treatment could sim-
ply be that the patient might die by the time it is
that patient’s turn for treatment. Clearly, the longer the
patient waits, the higher the chance the patient will die
before treatment. However, even if the patient is alive
by that time, the probability of survival is not the same
as it would be without waiting. The overall deteriora-
tion of the patient as a result of waiting decreases the
chances of a successful operation and the eventual sur-
vival of the patient. This is the second way that waiting
affects a patient’s probability of survival.While the sur-
vival probability decreases with time either way, from
a modeling point of view, one important difference is
that if a patient dies before treatment, that patient no
longer needs service.

Thus, to fully capture the effect of waiting on the
patients, it would be reasonable to consider a model
where (i) each patient has a remaining life time (patience
time) at the end ofwhich the patient dies (abandons the
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system) if she or he is not provided the necessary treat-
ment by that time, and (ii) if the patient is alive when
this patient’s turn for treatment comes, she or he dies
with some probability that increases with the waiting
time of the patient. Assuming that each life lost (either
before or after treatment) would have a cost of one
unit, the objective would be to minimize the expected
number of deaths or equivalently the expected total
cost. While developing such a model is straightfor-
ward, its analysis is extremely difficult partially due to
the fact that even under some restrictive assumptions
such as deterministic triage and service times, which
help incorporate the passage of time in the system state
in a relatively convenient way, the resulting transition
probability structure is too dense to permit clean ana-
lytical characterizations (see the formulation in Section
6.1). In fact, as one can see from the analysis of Uzun
Jacobson et al. (2012), where the impact of waiting is
captured through abandonments alone (ignoring the
effect of the passage of time on the success of service)
and the only question is how to prioritize patients who
have already gone through triage, the optimal policy
has a complex structure, which only permits highly
limited analytical characterizations. Therefore, in this
paper, we follow an alternative approach according
to which we simplify the formulation in a way that
makes mathematical analysis possible but then investi-
gate whether the results of this study would be useful
in practice by using the more complex and realistic for-
mulation as a test bed.
Specifically, in our mathematical model, we assume

that the system incurs a fixed cost for each unit of
time a patient waits. This fixed per-unit time cost
depends on the triage class of the patient, but it does
not change with time. Furthermore, patients do not
renege from the system while waiting for their treat-
ment. In this model, waiting cost can be seen as cap-
turing the two different ways waiting impacts patient
survival as explained above. Clearly, this would be an
approximation not only because studies suggest that
survival probabilities are not linear functions of time,
but also because the problemwould be structurally dif-
ferent with and without reneging. Nevertheless, even
though ourmathematical model ignores the possibility
of reneging, this does notmean the fact that some of the
patients died while waiting would be ignored when
it comes to practical implementation of the heuristic
methods that are based on the analysis of this model.
(In other words, the methods would wisely not sug-
gest treatment of dead patients.) And the nonlinearity
of the survival probability functions might possibly be
overcome by using linear approximations. Therefore,
the analysis of this simplified model has the poten-
tial to lead to methods that perform well. With this
motivation, we next describe our model in detail and
present our analysis. Later, in Section 6.4, we provide
the results of a detailed numerical investigation, which

shows that our analysis indeed leads to heuristic meth-
ods that perform well even when the linear waiting
cost assumption is relaxed and patients may possibly
die and thus renege from the system while waiting.

3.2. Model Description
We consider a scenario in which an unexpected event
triggers the sudden appearance of a number of patients
in need of treatment. More specifically, we assume that
at time t � 0, there are N ≥ 2 patients waiting for treat-
ment. For reasons that will be clear shortly, we refer to
these patients as class 0 patients. There will be no new
patient arrivals. There is a single provider, which we
will refer to as the server for expositional convenience,
and the treatment this server provides to the patients
is referred to as the service.

The server does not have to triage the patients to
serve them. In other words, each patient can be served
as a class 0 patient. However, she can choose to per-
form triage, at the end of which the patient is put in
one of two classes, class 1 or class 2. Following the ter-
minology of the widely adopted mass-casualty triage
protocol START, class 1 patients can be seen as immedi-
ate patients and class 2 patients can be seen as delayed
patients. We let αi ≥ 0 for i � 1, 2 denote the proba-
bility that a class 0 patient is classified as class i as a
result of triage, thus α1 + α2 � 1. Once a patient is clas-
sified, the server either serves the patient immediately
or delays the service of the patient temporarily, making
note of the patient’s class information, andmoves on to
another patient. Once the service of the patient is over,
she or he leaves the system.

Let fi(t) denote the expected cost incurred if a class i
patient spends t time units in the system, i � 0, 1, 2. For
our mathematical analysis, we assume that d fi(t)/dt �
ri ≥ 0 for t ≥ 0 and i � 0, 1, 2, which means that for each
unit of time a class i patient spends waiting, in triage,
or in service, the system incurs an expected cost of ri .
We relax this linear cost assumption later in our numer-
ical study. Let τi denote the expected service time for
a class i patient, and ci denote the total expected cost a
class i patient will incur while receiving service. Note
that we do not assume that ci � riτi so that we allow
the service time and the waiting cost rate for a random
class i patient to possibly depend on each other. Triage
times are assumed to be independent of the service
times and patients’ class identities. This is a reasonable
assumption for systems where, as in the case of mass-
casualty triage and prioritization, there is a predeter-
mined procedure to be used for classification of the
patients. We use u to denote the expected time it takes
to triage one patient. The objective is to minimize the
total expected cost of all of the patients. Throughout
the paper, we assume that the following two conditions
hold:
Assumption 1. (i) 0 ≤ τ̃ � τ0 − α1τ1 − α2τ2 < u; (ii) c̃ �
c0 − α1c1 − α2c2 < r0u.
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To understand what exactly these conditions imply,
consider a single class 0 patient in need of service.
The first inequality of Assumption 1(i) implies that
knowing a patient’s triage class helps reduce the
patient’s expected service time, but the second inequal-
ity implies that it takes longer for the server to first
triage the patient and serve afterward than to serve
the patient right away without triage. In other words,
if the class information were readily available, that
would help reduce the expected time it would take to
serve the patient, but if triage is needed to obtain the
class information, the total expected time spent for the
patient would be longer. Assumption 1(ii) implies that
it is also more costly for the server to first triage the
patient and serve afterward than to serve the patient
right away without triage. This means that, for a single
patient in isolation (i.e., when N � 1), triage has no ben-
efit. This is a realistic assumption in settings like mass-
casualty triage and prioritization, where triage merely
serves as a sortingmechanism and does not involve any
specialized preprocessing that would somehow reduce
the total triage plus service time or waiting cost for
any individual patient. (In our analysis, Assumption 1
helps in coming up with a clear characterization of the
optimal choice between performing triage and serving
a class 0 patient without triage. Neither of the two con-
ditions of Assumption 1 by itself without the other is
sufficient to determine the optimal action. However, if
neither of them holds, we can show that the optimal
decision is to always triage class 0 patients.)
We also assume, without loss of generality, that

r1/τ1 ≥ r2/τ2. Thus, the well-known cµ-rule implies
that if all patients are already classified as class 1 or
class 2, the optimal decision is to prioritize class 1
patients. Note that prioritization of a single class over
the other (the immediate patients over the delayed
patients) is also consistent with the widely adopted
mass-casualty triage protocol START. It is important to
note that the assumption r1/τ1 ≥ r2/τ2 together with
Assumption 1 also imply that r1/τ1 ≥ r0/τ0. Therefore,
in our analysis, it will be sufficient to consider two
cases: r0/τ0 ≥ r2/τ2 and r0/τ0 < r2/τ2.

Our problem can be formulated as a Markov deci-
sion process where the decision epochs are time zero
and triage and service completion times. (We assume
that service is non-preemptive.) The state of the system
can then be denoted by the triplet (i , k1 , k2), where i
represents the number of class 0 patients, and k1 and k2
denote the number of patients that have been classified
as class 1 and class 2 but not yet served, respectively.
Since we have N patients in total, the state space can be
described as S � {(i , k1 , k2): i , k1 , k2 ≥ 0, i + k1 + k2 ≤ N}.
Using a sample-path argument, it is straightforward

to show that keeping the server idle is suboptimal. This
allows us to ignore idling as an admissible action. Then,
in a given state s � (i , k1 , k2), the available actions for the

server are as follows: SU, serve a class 0 patient without
triage (only available if i ≥ 1); Tr, triage a class 0 patient
(only available if i ≥ 1); SC1, serve a class 1 patient (only
available if k1 ≥ 1); and SC2, serve a class 2 patient (only
available if k2 ≥ 1). In general, it is possible that there
is more than one optimal action for any given state. If
that is the case, we choose the action that is listed ear-
lier in the action set {SC1, SU, Tr, SC2}. For instance,
SC1 has precedence over all of the other actions. While
this assumption is not crucial, it allows us to ensure that
there is auniqueoptimalpolicy,which in turn simplifies
the presentation of the results.

We define a∗(s) for s ∈ S to be the optimal
action in state s. We also let Vπ(i , k1 , k2) denote the
total expected cost under policy π, and V(i , k1 , k2) �
minπ{Vπ(i , k1 , k2)} be the total expected cost under an
optimal policy starting from state (i , k1 , k2)with no ser-
vice or triage in progress. We can write the optimality
equations as follows:

V(i , k1 , k2)
� min{α1V(i − 1, k1 + 1, k2)+ α2V(i − 1, k1 , k2 + 1)

+ (ir0 + k1r1 + k2r2)u ,V(i − 1, k1 , k2)+ c0

+ [(i − 1)r0 + k1r1 + k2r2]τ0 ,V(i , k1 − 1, k2)+ c1

+ [ir0 + (k1 − 1)r1 + k2r2]τ1 ,V(i , k1 , k2 − 1)+ c2

+ [ir0 + k1r1 + (k2 − 1)r2]τ2},
∀ (i , k1 , k2) ∈ S\(0, 0, 0),

V(0, 0, 0)� 0, and V(s)�∞, ∀ s < S. (1)

Finally, it is natural to assume that the initial state is
(N, 0, 0) so that we start with N class 0 patients (and
no service or triage in progress), and consequently the
objective is to determine the policy π that minimizes
Vπ(N, 0, 0). However, as it should be clear in our anal-
ysis, this assumption does not change our analysis in
any way, and the results would go through regardless
of the initial state.

4. Complete Characterization of the
Optimal Policy

If there was no option to triage and the decision
only involved prioritizing among the three classes
of patients, we already know from the cµ-rule that
patients would be prioritized according to their ri/τi
valueswith higher values of ri/τi indicating higher pri-
orities. For our problem, as we explain in the follow-
ing, this index ordering is still highly relevant but, not
surprisingly, insufficient to fully describe the optimal
policy.

To provide a complete characterization of the opti-
mal policy, it will be sufficient to consider two sep-
arate cases: (i) r0/τ0 ≥ r2/τ2; (ii) r0/τ0 < r2/τ2. Per
the cµ-rule, the ratio ri/τi can be seen as a mea-
sure of the relative urgency or importance of class i
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patients. class 0 patients are those patients for whom
we do not have a clear idea about their urgency. The
goal with triage is to gain some information on these
patients so that they can be identified as immediate
(class 1) or delayed (class 2). Thus, it would be natural to
assume the urgency measure of a class 2 patient to be
smaller than the urgency measure of a random patient
we do not know anything about—i.e., an untriaged
class 0 patient. Therefore, at least for our main motiva-
tional purposes, the more practically relevant setting is
case (i). We start our analysis with that case. However,
we do provide a description for the other case later in
this section for completeness.

Theorem 1. Suppose that r0/τ0 ≥ r2/τ2 and consider state
(i , k1 , k2) ∈S :
(i) If k1 ≥ 1, then a∗(i , k1 , k2) � SC1—i.e., as soon as the

server identifies a class 1 patient, that patient should be
served next.
(ii) If i+k1 ≥ 1, then a∗(i , k1 , k2),SC2—i.e., it is optimal

to serve a class 2 patient only when there are no class 0 or
class 1 patients.
(iii) There exists a linear function L( · ) such that for any

state (i , 0, k2) ∈S , where i ≥ 1 and k2 ≥ 0, if k2 ≥ L(i), then
a∗(i , 0, k2)� SU—i.e., the optimal action is to serve without
triage; otherwise, a∗(i , 0, k2)� Tr—i.e., the optimal action is
to perform triage. Furthermore,

L(i)� r0(ũ − u)
r2(u − τ̃)

i − r0ũ − c̃
r2(u − τ̃)

, (2)

where ũ � α1(r1τ0 − r0τ1)/r0 and c̃ and τ̃ are as defined in
Assumption 1.

Parts (i) and (ii) of Theorem 1 clearly delineate the
regions where serving patients classified as class 1 and
class 2 are optimal. Specifically, SC1 has precedence
over all other actions no matter the current state. This
means that as soon as a triage results in identification of
a class 1 patient, the next action is to serve that patient.
On the other hand, SC2 is at the bottom of the priority
list, meaning that the service of class 2 patients starts
at the end when there are no more class 1 or class 0
patients waiting.
Part (iii) of Theorem 1 describes the optimal action

when there are no class 1 patients (i.e., k1 � 0) but there
is at least one class 0 patient (i.e., i ≥ 1). Recall that in
such a state, the server can choose to either triage or
directly serve a class 0 patient. (We know from part
(ii) of the theorem that serving a class 2 patient, if
there is one, is suboptimal.) It turns out that whether
or not doing triage is optimal depends on the system
state. More specifically, there is a line that separates
the states in which doing triage is optimal from the
states in which serving without triage is optimal. In
Theorem 1(iii), we not only prove this structural prop-
erty of the optimal policy, but also provide a closed-
form expression for this line. See Figure 1 for a visual

Figure 1. Visual Description of the Optimal Policy When
k1 � 0 and N � 18, α1 � 0.2, u � 0.5, r0 � 8.4, r1 � 10, r2 � 2,
τ0 � 2.4, τ1 � 2, τ2 � 4, c0 � 17.6, c1 � 20, c2 � 8
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demonstration of the optimal policy structure for a spe-
cific example.

Theorem 1 provides interesting insights into the
decision of when to do triage and when to skip it. Sup-
pose that initially at time zero there are some N class 0
patients and no class 1 or class 2 patients, as that would
be the case in the immediate aftermath of a mass-
casualty event just before the start of patient triage and
treatment. This means that at time zero, in Figure 1,
the system starts on the x axis at i � N . If N is large,
meaning that there are too many patients waiting to be
served and we have no information regarding which
ones are more important, one might be tempted to skip
triage since performing triage will further lengthen the
waiting times, which are already likely to be too long.
With too many patients to serve, spending time on
triage might seem like an unwise use of time. In con-
trast, when N is small, triage might not seem all that
harmful since waiting times are not going to be too
long even with triage. As we explain in the following,
however, this reasoning is flawed.

Theorem 1 states that—as one can also easily ver-
ify referring to Figure 1—when the number of class 0
patients is sufficiently large (initially more than or
equal to four for the example whose solution is
depicted in the figure), it is optimal to start with triage
and continue to do so as long as the number of class 0
patients and the number of class 2 patients keep the
state space under the line. (Note that if a class 1 patient
is identified, that patient is served right away.) Once
the threshold line is passed, the optimal policy starts
serving patients without triage until there are no more
class 0 patients waiting. class 2 patients, who would
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have been identified as such earlier, are served at the
end. If the number of class 0 patients is small (ini-
tially less than four in the example), then the optimal
policy is simply to serve all of the patients without
triage. Thus, contrary to the argument above, precisely
because there are too many patients, one cannot afford
to skip triage. Even if triage is skipped, service will take
quite a long time anyway. Therefore, it makes sense to
spend some time at the beginning (specifically as long
as the system state is to the right of the threshold line)
to perform triage in an effort to at least prevent the
waiting times for immediate patients from getting too
long. On the other hand, when there are few patients,
service of all patients, regardless of how urgent their
conditions are, will not take too much time. Therefore,
the value of class information that will be obtained
through triage does not justify the additional waiting
that all patients will have to endure.
It is also interesting to note that the optimal policy

appears to prefer performing triage when the expected
fraction of class 1 patients is sufficiently high. To
see that, first note that i + k2 is the total number of
unserved patients in the system when the system state
is (i , 0, k2) and the expected fraction of class 1 patients
is α1i/(i + k2). When i is large in comparison with k2,
this fraction is large and is close to α1, and triage is the
preferred option. However, when the fraction is small,
then the optimal policy chooses to skip triage.
We now consider the opposite case, where r0/τ0 <

r2/τ2. As we discussed above, this case is of some-
what less practical interest since we view triage as
a procedure that merely helps in obtaining informa-
tion on the patients and sorting them out with respect
to their relative urgency. Nevertheless, analysis under
this condition might still be of interest if what we call
triage is interpreted as some sort of preprocessing that
results in such a change in the urgency measure of the
patients.

Theorem 2. Suppose that r0/τ0 < r2/τ2. Then, there exists
an optimal policy under which (i) no patient goes through
triage; (ii) patients are served in accordance with the cµ-
rule—i.e., a patient with a higher value of ri/τi , i � 0, 1, 2
gets a higher priority.

Theorem 2 essentially says that under the condition
we stated above, triage has no benefit and the priori-
tization policy should simply follow the cµ-rule. One
implication of this result is that if at time zero there are
N patients, none of which are triaged, then it is optimal
to not perform triage on any one of the patients and
serve them all without triage.

5. Simpler Alternatives to the
Optimal Policy

In the previous section, we provided a complete char-
acterization of the optimal policy. While the optimal

policy is relatively simple, it is possible to devise even
simpler policies, which may not be optimal but would
perform well under certain conditions. Such policies
may be preferred over the optimal policies because of
their ease of implementation in practice. In this section,
we will investigate some of these simpler alternatives,
some of which will also serve as benchmark policies in
our computational study.

For ease of exposition, we assume in this section that
at timezero, allN patients in the systemare fromclass 0.
From Theorem 2, we already know that the policy of
not triaging any patient is in fact the optimal policy
when r0/τ0 < r2/τ2. Therefore, we focus on the case
where r0/τ0 ≥ r2/τ2.

An obvious candidate for a simple policy is to not
triage any of the patients and serve them in ran-
dom order. Another possibility is to triage all of the
patients regardless of the system state. In this case,
however, one needs to specify when and how exactly
triage information will be used. One can first com-
plete triage of all of the patients and then move on to
the service of the patients. In accordance with the cµ-
rule, class 1 patients would have priority over class 2
patients. Alternatively, if triage identifies a patient from
a particular class, the server serves that patient before
moving onto the triage of the rest of the patients.
Patients from the other class are served once the triage
of all of the patients is complete. In this case, intuitively
it would make sense to give priority to class 1 patients,
but in fact there are examples that show that it is not
always better than prioritizing class 2 patients. There-
fore, it would be reasonable to consider the policy that
prioritizes class 2 as well. (Note that it is easy to show
that there is no benefit to be gained from the triage of
the last unclassified patient regardless of which class
has priority and whether or not the service is delayed
until all triage is complete. Therefore, in what follows
“triage of all patients” means “triage of all patients
except the very last untriaged patient.”)

The following proposition helps eliminate some of
the potential policies described above for further con-
sideration as they can be shown to be inferior to the
others.

Proposition 1. (i) If all patients have to go through triage,
it is strictly better for the server to serve class 1 patients
as soon as they are identified than to complete triage of all
patients first and then move on to the service of all of the
classified patients.

(ii) It is strictly better for the server to skip triage and
serve patients in random order than to triage all of the
patients, serve class 2 patients as soon as they are identified,
and serve class 1 patients at the end.

Proposition 1(i) simply says that delaying the start
of service until every single patient is classified does
not work well. This is because, once a patient that has a
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high priority is identified, there is no point in delaying
the service of that patient. We know for sure that no
other patient will get a higher priority. Part (ii) of the
proposition says that skipping triage altogether and
serving patients in a random order always works bet-
ter than triaging patients while serving class 2 patients
as soon as they are identified. Interestingly, there are
examples that show that it might be better to priori-
tize class 2 patients over class 1 patients, but that can
only happen if skipping triage altogether and serving
patients in random order is superior to any prioritiza-
tion policy with triage. Thus, we can focus our atten-
tion to the following two simple policies:
No-Triage Policy (NT): Patients are served in random

order. No patient goes through triage.
Triage-Prioritize-Class-1 Policy (TP1): Each patient,

with the exception of the last one, goes through triage
in random order. If a patient is classified as class 1, she
or he is served right away; otherwise, the patient is
put aside to be served later. When the triage of N − 1
patients is completed, the remaining untriaged patient
is served followed by all class 2 patients.
We denote the total expected cost under policies NT

and TP1 by VNT and VTP1, respectively. Because of the
relatively simple structure of the two policies, we can
come up with closed-form expressions for VNT and
VTP1. We refer the reader to the online supplement for
the expressions as well as their derivations. The follow-
ing proposition identifies the conditions under which
one policy is superior to the other.
Proposition 2. Suppose that r0/τ0 ≥ r2/τ2 and the initial
system state is (N, 0, 0). Then, VTP1 ≤ VNT if and only if
u ≤ β where

β � max
{
(N/2)α2(r0τ2 − r2τ0)+ c̃ − r0 τ̃

(N/2)(α2r2 + r0)+ α1r1
+ τ̃, 0

}
. (3)

Proposition 2 confirms the intuition that when the
expected triage time is sufficiently short—i.e., the ser-
vice provider does not need to spend a long time to
obtain information and classify class 0 patients—the
benefit obtained through triage could offset the addi-
tional cost incurred as a result of triage, and TP1 out-
performs NT. More specifically, the proposition gives a
precise description of what we mean by the triage time
being sufficiently short.

One important question is whether there are certain
conditions under which either TP1 or NT is in fact opti-
mal. When r0/τ0 < r2/τ2, we know that NT is optimal,
but how about when r0/τ0 ≥ r2/τ2? It would be natural
to expect that when the expected triage time is suffi-
ciently short (it might help to think of the limiting case
where it is zero), it would be optimal for all patients to
go through triage, and conversely when the expected
triage time is sufficiently long, it would be optimal for
none of the patients to go through triage. Indeed, we
can prove that is the case. The following proposition

formalizes this result and clearly describes what would
qualify as sufficiently short and what would qualify as
sufficiently long. Let

u1 � min
{

ũ , ũ − r0ũ − c̃
Nr0

}
,

u2 � min
{

r0ũ + c̃
2r0

,
r0ũ + c̃ + (N − 2)r2 τ̃

2r0 + (N − 2)r2

}
.

Proposition 3. Suppose that r0/τ0 ≥ r2/τ2 and the initial
system state is (N, 0, 0). Then,

(i) policy NT is optimal if and only if u ≥ u1;
(ii) policy TP1 is optimal if and only if u ≤ u2;
(iii) furthermore, u1 is nondecreasing and u2 is nonin-

creasing in N .

When the expected triage time is as long as described
in Proposition 3(i), the information that one would get
through triage is simply not worth it. Hence, the opti-
mal policy is to serve all of the patients directlywithout
triage. When the expected triage time is as short as
described in Proposition 3(ii), one can “afford” to triage
all of the patients; however, in line with Theorem 1, if
a class 1 patient is identified as a result of triage, that
patient should be served first before moving on to the
triage of the remaining patients. When the expected
triage time is between u1 and u2, then neither NT nor
TP1 is optimal. The optimal policy is state dependent
as characterized by Theorem 1. Note that Proposition 3
can be seen as a strengthened version of Proposition 2
since the former provides necessary and sufficient con-
ditions for TP1 andNT to be optimal, whereas the latter
delineates the region where one performs better than
the other. While neither of the results implies the other,
the two are in agreement (as expected) on the relation-
ship between the expected triage time and the perfor-
mances of the two policies.

Part (iii) of Proposition 3 provides an interesting
insight into the effect of N , the initial number of
patients, on the optimal policy. We can see that as N
increases, the parameter region in which NT is optimal
and the parameter region in which TP1 is optimal both
shrink (or at least they do not get larger). This suggests
that simple policies like NT and TP1 are more likely to
be good choices when there are relatively few patients
initially in the system.

6. Nonlinear Waiting Costs with Reneging
Patients: A Numerical Study on
Mass-Casualty Triage

Our analysis so far in this paper has been based on
two crucial assumptions that may be questionable in
the context of patient triage particularly in the case
of mass-casualty events. The first assumption is that
the “waiting cost” that the system incurs for each
patient is a linear function of the patient’s waiting time.
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In mass-casualty patient triage, the waiting cost of a
patient can be seen as the decline in the probability that
the patient will survive the service (operation) she or
he will have to go through, assuming that the patient
is still alive by the time of the service. With this inter-
pretation, the linear waiting cost assumption may not
adequately capture the reality. The second assumption
is that no patient dies (or reneges) while waiting for
her or his turn for the service, which might not be true
as well. The objective of this section is to investigate
whether we can use our analysis (more specifically,
our optimal policy characterization) to develop policies
that can be used undermore realistic conditions, where
waiting costs (changes in survival probabilities) are not
linear in time and patients might die while waiting.
In the following, we first introduce the mathematical

framework we will use to investigate the performances
of the policies we will be proposing. This more realis-
tic (at least in certain respects) framework still needs to
abide by certain assumptions so that the “optimal” pol-
icy can be computed and therefore the performances
of our policies properly assessed. Then, we describe
howwe can use our analytical results, more specifically
Theorem 1, to develop heuristic methods and devise
three new policies. It is important to note that these
policies are not custom designed for the mathematical
framework we will be introducing and can be easily
implemented as long as some key model parameters
are properly estimated. We then describe the specific
mass-casualty scenario we consider in the numerical
study and present our findings regarding how these
policies perform in comparisonwith the optimal policy
and some of the benchmark policies.

6.1. Description of the Model with Nonlinear
Waiting Costs and Reneging

Let Xi denote the lifetime (time until reneging) with-
out treatment for a random class i patient and assume
that for i � 1, 2, Xi is an independent random vari-
able with Gi(t) ≡ P{Xi ≤ t}. If a patient’s lifetime ends
before the patient is taken into service, then the patient
reneges, she or he no longer needs service, and the sys-
tem incurs a cost of one unit. Let αi(t) for i � 1, 2 denote
the probability of labeling a random class 0 patient
as class i if the patient goes through triage at time t.
Note that this probability is time dependent (unlike the
model in Section 3) because the remaining lifetime dis-
tributions for class 1 and class 2 patients are different.
By letting αi � αi(0) for i � 1, 2 denote the probability
that a random class 0 patient who goes through triage
at time zero would be classified as class i, we have for
any t ≥ 0,

αi(t)� P{Z � i | X0 > t} � P{Z � i , X0 > t}
P{X0 > t}

�
P{X0 > t | Z � i}P{Z � i}∑2
i�1 P{X0 > t | Z � i}P{Z � i}

, i � 1, 2,

where Z denotes the class identity of a random class 0
patient after the patient is triaged. Then,

α1(t)�
P{X1 > t | Z � 1}P{Z � 1}∑2
i�1 P{Xi > t | Z � i}P{Z � i}

�
α1Ḡ1(t)

α1Ḡ1(t)+ α2Ḡ2(t)
, α2(t)� 1− α1(t), (4)

where Ḡi(t) ≡ 1−Gi(t). Let pi(t ,∆t) denote the proba-
bility that a class i patient survives for another ∆t time
units given that the patient has survived the first t time
units. Then,

pi(t ,∆t)� P{Xi > t +∆t | Xi > t}

�
P{Xi > t +∆t}

P{Xi > t} �
Ḡi(t +∆t)

Ḡi(t)
, i � 1, 2.

p0(t ,∆t)� α1(t)p1(t ,∆t)+ α2(t)p2(t ,∆t)

�
α1Ḡ1(t +∆t)+ α2Ḡ2(t +∆t)

α1Ḡ1(t)+ α2Ḡ2(t)
.

We assume that service times and triage times are
deterministic, do not depend on the class of the patient,
and are denoted by τ and u, respectively. Note that
deterministic triage and service times allow us to com-
pute the optimal policy and make comparisons with
the performances of our policies.

Recall that in our model described in Section 3, we
used fi(t) to denote the expected cost the system will
incur for a class i patient who spends t time units wait-
ing. Here, we assume that each death patient incurs a
cost of 1 and thus fi(t) corresponds to the probability
that a class i patient who has survived by time t and
is taken into service at time t will not have a successful
service and eventually die due to the injuries caused by
the mass-casualty event. Let b(k; n , p) denote the prob-
ability of getting exactly k successes in n Bernoulli trials
each of which yields success with probability p—i.e.,

b(k; n , p)�
(
n
k

)
pk(1− p)n−k . (5)

When i ≥ 1, k1 ≥ 1 and k2 ≥ 1, all four possible actions
(triage, serve class 0, serve class 1, serve class 2) are
available and the optimality equation for this case can
be written as

V(i , k1 , k2 , t)

� min
{ i−1∑

i′�0
b(i′; i − 1, p0(t , u))

k1∑
k′1�0

b(k′1; k1 , p1(t , u))

·
k2∑

k′2�0
b(k′2; k2 , p2(t , u))(α1(t)V(i′, k′1 + 1, k′2 , t + u)

+ α2(t)V(i′, k′1 , k′2 + 1, t + u)
+ (i + k1 + k2 − i′− k′1 − k′2 − 1)),
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·
i−1∑
i′�0

b(i′; i − 1, p0(t , τ))
k1∑

k′1�0
b(k′1; k1 , p1(t , τ))

·
k2∑

k′2�0
b(k′2; k2 , p2(t , τ))(V(i′, k′1 , k′2 , t + τ)

+ (i + k1 + k2 − i′− k′1 − k′2 − 1+ f0(t))),

·
i∑

i′�0
b(i′; i , p0(t , τ))

k1−1∑
k′1�0

b(k′1; k1 − 1, p1(t , τ))

·
k2∑

k′2�0
b(k′2; k2 , p2(t , τ))(V(i′, k′1 , k′2 , t + τ)

+ (i + k1 + k2 − i′− k′1 − k′2 − 1+ f1(t))),

·
i∑

i′�0
b(i′; i , p0(t , τ))

k1∑
k′1�0

b(k′1; k1 , p1(t , τ))

·
k2−1∑
k′2�0

b(k′2; k2 − 1, p2(t , τ))(V(i′, k′1 , k′2 , t + τ)

+ (i + k1 + k2 − i′− k′1 − k′2 − 1+ f2(t)))
}
, (6)

where the four terms inside of the minimum from the
first to the last, respectively, corresponds to the actions
triage, serve class 0, serve class 1, and serve class 2. For all
other states, where at least one of i, k1, or k2 is zero, the
optimality equations can similarly be written.

6.2. Heuristic Policies
We propose three different policies, all based on our
analytical results provided in Section 4. For all three
policies, we first fit least-squares lines to the death
probability functions fi(t) (which correspond to the
cost functions in Section 3) for the immediate and de-
layed patients. When fitting the least-squares lines, we
assume that the cost function is defined over the inter-
val [t0 , t0+maxi�0,1,2 N(τi+u)],where t0 is the timewhen
the response effort starts and t0 +maxi�0,1,2 N(τi+u)
is the maximum expected time by which all of the
patients in the system are served and i�0,1,2 respec-
tively corresponds to unclassified, immediate, and
delayed patients. All three policies rely on the idea of
using these least-squares lines as approximations for
the actual cost functions and making use of the analyt-
ical characterizations of the optimal policy under the
assumptionof linear delay costs (Theorems1 and2).
(i) Dynamic Threshold Policy (DTP): For any given

state, this policy prescribes taking the action that is
optimal under the assumption that waiting costs for
the immediate and delayed patients are given by the
least-squares lines that are fit to the “actual” wait-
ing cost functions—i.e., death probability functions.
Specifically, this policy takes actions in accordance
with Theorems 1 and 2, where all of the parameters
and the threshold function L( · ) are computed using
the slopes of the fitted lines in place of the linear cost

parameters r1 and r2. We call this policy “dynamic
threshold policy” because, unlike the other two poli-
cies described below, the threshold on the number of
unclassified patients, which determines whether or not
triage should be performed, changes with the number
of patients classified as delayed.

(ii) Static Threshold Policy 1 (STP-1): Similar to DTP,
this policy also bases its actions on Theorems 1 and 2
assuming linear costs with slopes given by the slopes
of the least-squares lines. However, the only exception
is that this policy uses a static threshold value on the
number of unclassified patients to determine whether
or not triage should be carried out. Specifically, L1, the
threshold for the policy STP-1, is given by

L1 �
r0ũ − c̃ + Nr2(u − τ̃)
r0(ũ − u)+ r2(u − τ̃)

. (7)

Note that L1 is not a function of k2, which means that it
does not change with the number of patients classified
as delayed.

(iii) Static Threshold Policy 2 (STP-2): As in the case of
DTP and STP-1, this policy also bases its actions on
Theorems 1 and 2 assuming linear costs with slopes
given by the slopes of the least-squares lines. The
exception is again in the way the threshold value is cal-
culated. Specifically, for STP-2, the threshold L2 has the
expression

L2 �
r0ũ − c̃

r0(ũ − u) . (8)

Figure 2 provides a visual demonstration of how
these three policies differ from each other. In the fig-
ure, L, which is the threshold line for DTP, directly
comes from (2) and depends on the number of unclas-
sified (class 0) and delayed (class 2) patients. The
main motivation behind developing policies STP-1 and
STP-2 as alternatives to DTP is to investigate whether

Figure 2. Visual Description of the Three Heuristic Policies
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simpler policies, which have vertical threshold lines
and thereby make decisions based on the number of
untriaged patients alone, can also perform well. The
threshold line for STP-1, L1, is defined as the vertical
line that passes through the intersection of L and the
right edge of the state space described by the line i +
k2 � N , and the threshold line for STP-2, L2, is the ver-
tical line that passes through the x-intercept of L. This
is how we obtain the expressions for L1 and L2 given
by (7) and (8). From Figure 2, we can see that STP-1
triages fewer patients than DTP and STP-2 triages more
patients than DTP.

6.3. Description of a Mass-Casualty Scenario
We consider a battlefield mass-casualty scenario in
which as a result of an unexpected attack or bombing,
a single paramedic is suddenly presented with a num-
ber of military-age casualties all in urgent need of some
basic on-site treatment for survival until resources are
available for transporting them to nearby treatment
facilities for higher-level care. While there are differ-
ent triage systems that are used in responding to these
types of events, most put patients into one of four
classes typically named as expectant, immediate, delayed,
andminimal. Expectant patients are those who have no
chance of survival, andminimal patients are thosewho
do not have any serious life-threatening injuries. Thus,
treatment priority is given to immediate and delayed
patients, and the success of the response effort is ulti-
mately determined by theway the patients in these two
groups are triaged, prioritized, and treated.
While data are typically available for emergency

responses to daily events, data in the case of mass-
casualty events, particularly in case of triage and treat-
ment in battlefields, are severely limited. To the best
of our knowledge, there is no work that investigates
how long it takes to triage and treat casualties in such
environments. This poses a challenge to testing our
policies through a numerical study. To overcome this
challenge, at least to the extent possible, we consulted
with David A. Masneri, who is an assistant professor
of emergency medicine at Wake Forest University, has
12 years of army experience as a physician and spe-
cial operations medic, and has augmented several spe-
cial mission units as an emergencymedicine physician.
Prof. Masneri provided us with his best educated esti-
mates for the expected triage time and expected time
for stabilization, stressing that he was not aware of
any studies on these times and that his responses were
based on his experience and opinion only. (Stabiliza-
tion here corresponds to service in our mathematical
model.) It is also important to note that the estimates
are based on the assumption that there is no longer fire
exchange while triage and stabilization are performed.
As a result of this consultation, we set the triage time
in our study to 30 seconds and varied the stabilization
time for the patients from four to eight minutes.

There are also scarcely any data that would allow
highly reliable estimation of the death probability func-
tions f1(t) and f2(t). The only available work to date
that has attempted to make such estimation—partially
relying on medical expert opinion—is that of Sacco
et al. (2005, 2007) and Navin et al. (2009). In particular,
Navin et al. (2009) provides on-site survival probabil-
ity estimates for military-age victims with penetrating
injuries (a type of trauma that is highly common in
armed combat). We use these estimates, which are in
fact provided at a more granular level than we need,
to construct the death probability functions f1(t) and
f2(t)we use in our study. For details on how we obtain
these functions, see Section 7 of the online supplement.
The estimates we obtain for f1(t) and f2(t) are plotted
in Figure 3. Note that we can see from these plots that
depending on the interval [t0 , t0 +maxi�0, 1, 2 N(τi + u)],
over which the least-square lines are fit for the heuristic
policies we described in Section 6.2, the slopes of the
fitted lines can be quite different. In particular, the ratio
of the approximated cµ values for class 1 and class 2
patients, (h1/τ1)/(h2/τ2), where hi is the slope of the
fitted line for fi(t), gets smaller as t0, the time at which
the response effort starts, increases. We will investi-
gate how such a change in t0, which essentially implies
decreasing urgency of class 1 with respect to class 2,
impacts the performances of our heuristic policies in
Section 6.4.
To model the lifetimes, following Uzun Jacobson

et al. (2012) and Hougaard (2012), we use Weibull
distribution—i.e., we let Gi(t) � 1 − e−(t/βi )θi , where θi
and βi are shape and scale parameters, respectively,
for class i patients (i � 1, 2). As in Uzun Jacobson
et al. (2012), we use the time when fi(t) reaches some

Figure 3. Probability of Death Over Time for Penetrating
Wound in a Battlefield
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threshold η as the mean lifetime (starting from time
zero) for class i patients and varied η from 0.90 to
0.99. In this paper, we only present the results for
η � 0.90 (corresponding to mean life times of 60.96 and
423.61 minutes for classes 1 and 2, respectively) and
η � 0.95 (corresponding to mean life times of 92.95 and
434.62 minutes for classes 1 and 2, respectively) since
the results do not depend significantly on this choice.
Following Uzun Jacobson et al. (2012), we let θ1 � θ2
� 1.5, and the scale parameters are computed using
βi � mi/Γ(1+1/θi), i � 1, 2, where mi denotes the mean
lifetime for class i patients and Γ( · ) is the incomplete
gamma function.
Two parameters that are difficult to predict in

advance are N , the total number of casualties, and α1,
the probability of a random casualty to be classified as
immediate. In our study, we considered a range of val-
ues for both N and α1 with N taking values from the
set {5, 10, 15, 20, 25} and α1 taking values from the set
{0.1, 0.3, 0.5, 0.7, 0.9}. Soon after the event that triggers
the mass-casualty situation takes place and response
effort starts, the total number of casualties can be deter-
mined with a considerable degree of accuracy; how-
ever, α1 may remain difficult to estimate. To investigate
how our policies would perform in the case of such
uncertainty, we also carried out a numerical studywith
a focus on the sensitivity of the performance of our
policies to the reliability of the estimates for α1.

6.4. Results of the Numerical Study
In this section, we compare the performances of the
three heuristic policies we proposed in Section 6.2 and
the two best benchmark policies analyzed in Section 5

Table 1. Percentage Increase in Mortality Rate by Using Heuristic Policies Over the
Optimal Policy When N � 5

η � 0.90 (%) η � 0.95 (%)

Heuristics NT TP1 STP-1 STP-2 DTP NT TP1 STP-1 STP-2 DTP

τ � 4
α1 � 0.10 2.61 1.73 1.73 1.73 1.73 1.96 1.39 1.39 1.39 1.39
α1 � 0.30 3.94 1.79 1.79 1.79 1.79 3.21 1.20 1.20 1.20 1.20
α1 � 0.50 2.51 2.30 2.30 2.30 2.30 2.06 1.51 1.51 1.51 1.51
α1 � 0.70 0.66 2.68 2.68 2.68 2.68 0.54 1.87 1.87 1.87 1.87
α1 � 0.90 0.00 3.61 3.78 3.78 3.78 0.00 2.87 3.06 3.06 3.06

τ � 6
α1 � 0.10 3.35 2.22 2.22 2.22 2.22 2.85 1.63 1.63 1.63 1.63
α1 � 0.30 5.32 2.87 2.87 2.87 2.87 4.75 1.96 1.96 1.96 1.96
α1 � 0.50 3.65 3.35 3.35 3.35 3.35 3.25 2.30 2.30 2.30 2.30
α1 � 0.70 1.38 3.32 3.32 3.32 3.32 1.22 2.40 2.40 2.40 2.40
α1 � 0.90 0.00 3.19 0.00 0.00 0.00 0.00 2.64 0.00 0.00 0.00

τ � 8
α1 � 0.10 3.13 2.87 2.87 2.87 2.87 3.17 2.05 2.05 2.05 2.05
α1 � 0.30 5.26 3.89 3.89 3.89 3.89 5.34 2.74 2.74 2.74 2.74
α1 � 0.50 3.80 4.37 4.37 4.37 4.37 3.74 3.09 3.09 3.09 3.09
α1 � 0.70 1.60 3.93 3.93 3.93 3.93 1.55 2.92 2.92 2.92 2.92
α1 � 0.90 0.00 2.96 2.09 2.09 2.09 0.00 2.49 1.71 1.71 1.71

(NT and TP1) with the performance of the optimal pol-
icy for (6). The performance measure of interest is the
mortality rate, which is defined as the percentage of
the total number of casualties who do not survive. For
N � 5, 10, 15, 20, 25, Tables 1, 2, 3, 4, and 5, respectively,
report the expected percentage increase that would be
observed in the mortality rate by using one of the poli-
cies stated above instead of the optimal policy.

We can see that two of the policies we propose, DTP
and STP-1, perform well in all of the scenarios with the
percentage increase in the mortality rate (when com-
pared with the optimal policy) mostly staying below
6%. There are only three scenarios in which the per-
centage difference exceeds 6% under DTP.More impor-
tantly, both DTP and STP-1, but particularly DTP, per-
form similarly or better than the benchmark heuristics
NT and TP1. More specifically, they perform at least as
good as or better than TP1 in all of the scenarios, and
DTP performs similarly or better than NT in all of the
scenarios except when N , the number of patients, is
small. Out of the 150 different scenarios considered,NT
outperforms DTP in only 12 scenarios, and these are
all scenarios where there are few patients—i.e., N � 5.
Note however that having few patients does not guar-
antee a good performance by NT. It appears that for
NT to perform better than the other policies, not only
the number of patients needs to be small but also α1,
the overall percentage of class 1 patients, needs to be
high. On the other hand, when N is large (i.e., N � 25),
one noteworthy but unsurprising observation is that
the performances of our heuristic policies are similar to
that of NTwith identical performances observed when
the mean service time τ is large. This is because when
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Table 2. Percentage Increase in Mortality Rate by Using Heuristic Policies Over the
Optimal Policy When N � 10

η � 0.90 (%) η � 0.95 (%)

Heuristics NT TP1 STP-1 STP-2 DTP NT TP1 STP-1 STP-2 DTP

τ � 4
α1 � 0.10 4.91 9.44 2.18 9.44 3.63 3.76 9.45 1.32 9.45 2.33
α1 � 0.30 9.25 9.16 4.83 9.16 7.16 7.48 8.05 3.28 8.05 5.16
α1 � 0.50 7.35 8.68 4.04 8.68 4.93 6.06 7.47 2.66 7.47 3.36
α1 � 0.70 4.42 6.46 3.02 6.46 1.80 3.93 5.85 2.20 5.85 1.03
α1 � 0.90 2.79 4.17 2.79 2.79 2.79 3.07 4.28 3.07 3.07 3.07

τ � 6
α1 � 0.10 2.70 9.93 1.52 9.93 1.78 2.96 9.14 1.50 9.14 1.93
α1 � 0.30 7.22 11.42 4.54 11.42 5.73 7.13 10.06 4.09 10.06 5.46
α1 � 0.50 6.89 10.74 4.96 10.74 5.10 6.52 9.65 4.18 9.65 4.55
α1 � 0.70 4.61 7.52 4.10 7.52 2.64 4.31 6.93 3.39 6.93 2.14
α1 � 0.90 2.15 3.41 0.15 0.15 0.15 2.30 3.46 0.15 0.15 0.15

τ � 8
α1 � 0.10 0.93 11.18 1.13 11.18 0.17 1.78 9.40 1.37 9.40 0.95
α1 � 0.30 4.45 13.54 3.59 13.54 3.26 6.28 12.34 4.53 12.34 4.97
α1 � 0.50 5.24 12.21 4.86 12.21 3.81 6.41 11.60 5.16 11.60 4.83
α1 � 0.70 4.01 8.19 4.49 8.19 2.41 4.42 7.88 4.25 7.88 2.67
α1 � 0.90 1.89 3.28 1.80 2.52 0.17 2.01 3.24 1.67 2.46 0.14

there aremany patients and it takes a long time to serve
each patient, serving all of the patients is expected to
continue for such a long time that the slopes of the
linear approximations of the two survival probability
functions end up being very close to each other, which
in turn significantly reduces the potential benefits of
triage and prioritization.
If we take a closer look at the comparison between

the performances of DTP and STP-1, we can make a
number of interesting observations. First, when the

Table 3. Percentage Increase in Mortality Rate by Using Heuristic Policies Over the
Optimal Policy When N � 15

η � 0.90 (%) η � 0.95 (%)

Heuristics NT TP1 STP-1 STP-2 DTP NT TP1 STP-1 STP-2 DTP

τ � 4
α1 � 0.10 1.72 16.29 1.27 16.29 1.01 1.59 16.25 1.08 16.25 0.79
α1 � 0.30 7.83 15.48 5.79 15.48 6.61 6.84 15.03 4.82 15.03 5.46
α1 � 0.50 7.64 12.91 5.97 12.91 6.13 6.61 12.58 4.88 12.58 4.91
α1 � 0.70 4.77 8.29 4.22 8.29 3.06 4.15 8.15 3.47 8.15 2.25
α1 � 0.90 1.86 3.56 1.86 1.86 1.86 2.06 3.91 2.06 2.06 2.06

τ � 6
α1 � 0.10 0.55 16.60 1.27 16.60 0.02 1.07 15.00 1.42 15.00 0.48
α1 � 0.30 5.35 17.75 4.96 17.75 4.49 6.96 17.69 6.11 17.69 5.98
α1 � 0.50 6.76 14.74 6.39 14.74 5.66 7.62 15.07 6.85 15.07 6.40
α1 � 0.70 4.86 9.19 5.13 9.19 3.60 4.99 9.32 4.97 9.32 3.60
α1 � 0.90 1.65 3.17 1.65 1.65 1.65 1.67 3.26 1.67 1.67 1.67

τ � 8
α1 � 0.10 0.46 17.47 1.70 17.47 0.00 0.54 14.68 1.37 14.68 0.05
α1 � 0.30 2.43 18.76 3.43 18.76 1.72 5.95 19.24 6.17 19.24 5.16
α1 � 0.50 4.67 15.61 5.65 15.61 3.78 7.59 16.72 7.74 16.72 6.60
α1 � 0.70 4.09 9.70 5.16 9.70 3.07 5.31 10.23 5.78 10.23 4.19
α1 � 0.90 1.58 3.21 0.99 2.05 0.45 1.70 3.26 1.06 2.08 0.48

number of patients is small (N � 5), in almost all of the
scenarios, all three policies we propose reduce to TP1,
the policy of performing triage on all of the patients.
When the number of patients is larger, however, the
policies are no longer identical. In fact, the performance
of TP1 gets significantly worse than DTP and STP-1
with the percentage difference with respect to the opti-
mal policy being as high as 23% in some scenarios.
When it comes to the comparison of DTP and STP-1,
DTP appears to have a better performance overall, but
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Table 4. Percentage Increase in Mortality Rate by Using Heuristic Policies Over the
Optimal Policy When N � 20

η � 0.90 (%) η � 0.95 (%)

Heuristics NT TP1 STP-1 STP-2 DTP NT TP1 STP-1 STP-2 DTP

τ � 4
α1 � 0.10 0.52 20.82 1.06 20.82 0.05 0.68 20.30 1.07 20.30 0.15
α1 � 0.30 6.01 17.95 5.25 17.95 5.19 6.08 18.50 5.27 18.50 5.15
α1 � 0.50 7.07 14.05 6.25 14.05 6.00 6.78 14.67 5.93 14.67 5.57
α1 � 0.70 4.57 8.48 4.34 8.48 3.33 4.22 8.77 3.93 8.77 2.83
α1 � 0.90 1.40 3.05 1.40 1.40 1.40 1.53 3.43 1.53 1.53 1.53

τ � 6
α1 � 0.10 0.37 19.92 1.25 19.92 0.00 0.40 17.78 1.01 17.78 0.00
α1 � 0.30 2.98 18.60 3.54 18.60 2.39 5.22 19.16 5.35 19.16 4.55
α1 � 0.50 5.56 15.04 5.89 15.04 4.78 7.46 16.36 7.39 16.36 6.58
α1 � 0.70 4.54 9.23 5.02 9.23 3.62 5.18 9.88 5.41 9.88 4.16
α1 � 0.90 1.40 2.90 1.40 1.40 1.40 1.40 3.00 1.40 1.40 1.40

τ � 8
α1 � 0.10 0.33 18.94 0.79 16.32 0.00 0.35 16.78 0.58 14.18 0.00
α1 � 0.30 1.07 19.26 2.23 19.26 0.58 4.05 19.51 4.61 19.51 3.51
α1 � 0.50 3.25 15.31 4.46 15.31 2.62 7.17 17.34 7.61 17.34 6.47
α1 � 0.70 3.63 9.58 4.62 9.58 2.89 5.48 10.64 5.93 10.64 4.66
α1 � 0.90 1.38 3.00 1.38 1.38 1.38 1.56 3.11 1.56 1.56 1.56

STP-1 still outperforms DTP in certain cases. Although
there are some exceptions, generally, we observe the
superior performance of STP-1 when the number of
patients and the mean service times are small.
Overall, these numerical results suggest that when

there are few patients in need of treatment, skipping
triage altogether might be reasonable if the patients are
more likely to be immediate than delayed. In all of the
other cases (i.e., when the number of patients is not
small or patients are not more likely to be immediate),

Table 5. Percentage Increase in Mortality Rate by Using Heuristic Policies Over the
Optimal Policy When N � 25

η � 0.90 (%) η � 0.95 (%)

Heuristics NT TP1 STP-1 STP-2 DTP NT TP1 STP-1 STP-2 DTP

τ � 4
α1 � 0.10 0.35 23.10 1.03 23.10 0.00 0.39 22.20 0.92 22.20 0.00
α1 � 0.30 3.94 17.71 3.79 17.71 3.33 4.50 18.59 4.27 18.59 3.81
α1 � 0.50 5.88 13.49 5.49 13.49 5.07 6.07 14.54 5.64 14.54 5.15
α1 � 0.90 1.14 2.68 1.14 1.14 1.14 4.00 8.59 3.90 8.19 2.91
α1 � 0.70 4.12 8.06 4.05 7.71 3.15 1.22 3.02 1.22 1.22 1.22

τ � 6
α1 � 0.10 0.29 20.60 0.65 18.20 0.00 0.31 18.88 0.50 16.44 0.00
α1 � 0.30 1.44 17.92 2.05 17.92 0.99 3.34 18.12 3.57 18.12 2.84
α1 � 0.50 4.01 13.89 4.50 13.89 3.41 6.41 15.58 6.51 15.58 5.74
α1 � 0.70 3.93 8.65 4.26 8.29 3.21 4.89 9.55 5.00 9.15 4.09
α1 � 0.90 1.21 2.63 1.21 1.21 1.21 1.22 2.74 1.22 1.22 1.22

τ � 8
α1 � 0.10 0.26 18.62 0.26 0.26 0.26 0.27 17.17 0.27 0.27 0.27
α1 � 0.30 0.92 19.07 0.92 0.92 0.92 2.55 18.17 2.55 2.55 2.55
α1 � 0.50 1.99 14.11 1.99 1.99 1.99 5.97 16.11 5.97 5.97 5.97
α1 � 0.70 2.93 8.89 2.93 2.93 2.93 5.12 10.16 5.12 5.12 5.12
α1 � 0.90 1.19 2.75 1.19 1.19 1.19 1.43 2.90 1.43 1.43 1.43

we see significant benefits in performing triage. How-
ever, putting all of the patients through triage also
does not work well. In fact, in the majority of the sce-
narios, it is much more preferable to skip triage alto-
gether than to perform triage on all of the patients.
Therefore, whether or not triage should be done on
a patient should be determined carefully. Two of the
policies we propose, which make this decision dynam-
ically depending on the number of remaining patients,
appear to work quite well. Of these two policies, DTP,
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the policy thatmakes decisions based on both the num-
ber of unclassified patients and the number of patients
classifiedasdelayed, appears toworkbetter overall. Pol-
icy STP-1, which is only described by a single threshold
on the number of unclassified patients, also performs
quitewell. This goodperformance of STP-1 is important
to highlight since simpler policies would have higher
chances of being adopted in practice.
The numerical results reported so far were obtained

under the assumption that the patients start being
served or triaged right after the incident that caused
the injuries (i.e., t0 � 0). It is, however, possible that
there could be some delays in starting the response
effort due to various practical obstacles. This is impor-
tant for comparison purposes because such a delay
would imply that patients would have already “pro-
gressed” in their death probability curves, and the rel-
evant portion of these curves, which are plotted in Fig-
ure 3, would not start at time zero but at some t0 > 0.
We next investigate how our results would change if
t0 were not zero. Specifically, we consider two cases:
t0 � 10 minutes and t0 � 30 minutes, and we set N � 10.
The results are provided in Table 6. We can observe
from the table that our policies DTP and STP-1 con-
tinue to perform better than the simpler benchmark
policies even when the response effort is delayed. It
is worth noting, however, that the performance differ-
ence when compared with No-Triage policy is some-
what smaller. This is most likely a result of the fact
when the starting time of the response effort is shifted,
the slopes of the linear lines fitted to the death proba-
bility curves are closer to each other, which decreases
the importance of classifying the patients. In fact, we

Table 6. Percentage Increase in Mortality Rate by Using Heuristic Policies Over the
Optimal Policy When N � 10 and η � 0.90 and When the Response Operation Starts at t0

t0 � 10 (%) t0 � 30 (%)

Heuristics NT TP1 STP-1 STP-2 DTP NT TP1 STP-1 STP-2 DTP

τ � 4
α1 � 0.10 3.52 10.03 1.44 10.03 2.52 2.72 11.48 1.33 11.48 2.06
α1 � 0.30 7.17 9.71 4.09 9.71 5.76 6.44 11.91 4.81 11.91 5.82
α1 � 0.50 6.22 9.45 4.28 9.45 4.63 5.61 10.98 5.18 10.98 4.99
α1 � 0.70 3.94 7.06 3.55 7.06 2.23 3.42 7.81 4.20 7.13 2.81
α1 � 0.90 1.80 3.55 1.80 1.80 1.80 0.96 3.27 0.96 0.96 0.96

τ � 6
α1 � 0.10 1.92 11.06 1.14 11.06 1.14 1.78 13.06 1.36 13.06 1.19
α1 � 0.30 6.22 12.91 4.60 12.91 5.16 5.96 15.36 5.47 15.36 5.42
α1 � 0.50 6.07 11.74 5.30 11.74 4.87 5.79 13.42 6.24 13.42 5.27
α1 � 0.70 4.15 8.12 4.60 8.12 2.85 3.80 8.94 5.05 8.94 3.29
α1 � 0.90 1.65 3.34 1.65 1.65 1.65 1.18 3.41 1.18 1.18 1.18

τ � 8
α1 � 0.10 0.78 12.83 1.21 12.83 0.10 0.67 14.61 1.05 14.61 0.11
α1 � 0.30 4.06 15.41 4.07 15.41 3.18 4.05 17.82 4.98 17.82 3.56
α1 � 0.50 4.76 13.38 5.35 13.38 3.77 4.73 15.10 6.35 15.10 4.27
α1 � 0.70 3.63 8.81 4.96 8.81 2.56 3.45 9.66 5.34 9.66 2.99
α1 � 0.90 1.55 3.37 1.41 2.32 0.41 1.22 3.52 1.22 1.22 1.22

observed that when t0 is set to even a larger value that
is greater than 60 minutes, the policies we propose,
DTP, STP-1, and STP-2, all reduce to the No-Triage pol-
icy. In this case, the differences between the two classes
are so small that it is not worth spending time to triage
and prioritize patients. But perhaps more importantly,
in practice, if the response effort starts that late, even
“the best” policy could result in little benefit, as the
probabilities of eventual death for all of the patients
would have increased substantially.

Next we investigate the sensitivity of our results to
the predicted value of α1, the probability of a random
casualty to be of the immediate class. It is reasonable to
expect this probability to change from incident to inci-
dent, and it can be difficult to estimate. Therefore, it is
important to investigate how badly our policies would
perform if the policies were determined assuming a
particular value of α1 when in fact it is equal to some-
thing else. For this study, we repeated the scenarios we
studied above. In these scenarios, the predicted value
for α1 was αp

1 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. To investigate the
sensitivity, we assumed that the true value of α1 was
not actually equal to the predicted value αp

1 but was a
random variable uniformly distributed in the interval
(αp

1 − ε, α
p
1 + ε), where ε � min(αp

1 , 1− α
p
1) × 30%.

Table 7 reports the results for the percentage dif-
ference between the mortality rate under the optimal
policy and that under each policy we investigate when
N � 10. The 95% confidence intervals given in the table
are based on 100 replications. We can observe that DTP
and STP-1 collectively continue to perform well and
better than the two benchmark policies. The mean per-
centage difference (with respect to the performance of
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Table 7. Percentage Increase in Mortality Rate by Using Heuristic Policies Over the Optimal
Policy When N � 10 and η � 0.90, 95% Confidence Interval Based on 100 Replications

η � 0.90

Heuristics NT TP1 STP-1 STP-2 DTP

τ � 4
αp

1 � 0.10 4.45± 0.17 9.89± 0.07 1.93± 0.10 9.89± 0.07 3.22± 0.15
αp

1 � 0.30 8.57± 0.02 9.45± 0.01 4.66± 0.01 9.45± 0.01 6.81± 0.02
αp

1 � 0.50 6.91± 0.11 8.97± 0.06 4.15± 0.04 8.97± 0.06 4.93± 0.12
αp

1 � 0.70 4.01± 0.04 6.80± 0.04 3.12± 0.01 6.80± 0.04 1.91± 0.04
αp

1 � 0.90 2.21± 0.00 4.35± 0.00 2.21± 0.00 2.21± 0.00 2.21± 0.00
τ � 6
αp

1 � 0.10 2.47± 0.11 10.21± 0.02 1.37± 0.06 10.21± 0.02 1.51± 0.11
αp

1 � 0.30 6.79± 0.06 11.49± 0.03 4.40± 0.06 11.49± 0.03 5.45± 0.05
αp

1 � 0.50 6.61± 0.06 10.87± 0.09 5.00± 0.01 10.87± 0.09 5.07± 0.07
αp

1 � 0.70 4.39± 0.04 7.73± 0.06 4.24± 0.02 7.73± 0.06 2.73± 0.04
αp

1 � 0.90 1.84± 0.00 3.60± 0.01 0.19± 0.00 0.19± 0.00 0.19± 0.00
τ � 8
αp

1 � 0.10 0.97± 0.03 11.47± 0.01 1.19± 0.01 11.47± 0.01 0.14± 0.03
αp

1 � 0.30 4.23± 0.08 13.49± 0.03 3.55± 0.08 13.49± 0.03 3.13± 0.07
αp

1 � 0.50 5.03± 0.01 12.21± 0.12 4.84± 0.03 12.21± 0.12 3.76± 0.02
αp

1 � 0.70 3.87± 0.03 8.30± 0.07 4.57± 0.02 8.30± 0.07 2.48± 0.03
αp

1 � 0.90 1.72± 0.00 3.43± 0.01 1.90± 0.00 2.64± 0.01 0.23± 0.00

the optimal policy) under both policies is less than 6%
in all of the scenarios except for one.

7. Conclusion
In emergency medicine, patient triage has largely been
accepted as essential for a successful response effort.
Especially in the chaotic scene that typically follows
mass-casualty events, patient triage and prioritization
helps in identifying those who would most benefit
from emergency care and allocating resources accord-
ingly. When the resources are extremely limited, how-
ever, to the extent that there is a single medic providing
care on the scene, the wisdom of sticking with triage is
questionable. Triage would certainly still help identify
who should ideally be prioritized, but it is not clear
whether delaying the actual treatment of the patients is
worth that. This has been the central question of inves-
tigation in this paper, and our results strongly indicate
that performing triage no matter what the conditions
are could indeed make things worse.
Our findings suggest that when there are relatively

few patients on the scene and patients are more likely
to be immediate than delayed, it might be better to
skip triage. Given that No-Triage policy performs rel-
atively close to the optimal policy and better than the
simple dynamic policies we propose, and that it is in
general difficult to determine the “optimal” dynamic
policy in practice, skipping triage may be advisable.
Here, it is important to make it clear that the relatively
quick triage at the very basic level with the sole goal of
leaving minor and expectant patients out of considera-
tion should continue but that the more lengthy process

of further classifying patients as immediate or delayed
could be skipped.

When the number of patients is not small, our results
suggest that neither skipping triage completely nor
performing triage on all of the patients works well.
However, there are significant benefits to performing
triage or skipping it depending on the system state
(number of patients that are untriaged and triaged as
low priority), and some of the relatively simple state-
dependent policies we propose can help capture some
of these benefits. These proposed policies are tested
within amathematical framework, which permits com-
putation of the optimal policy and thereby a proper
assessment of the performances of these policies. How-
ever, it is important to note that the policies are not
customdesigned for this specific framework and can be
easily implemented in practice once the model param-
eters are properly estimated. Even though there are not
much publicly available data on emergency response
to mass-casualty events, the estimation should still be
largely straightforward as most of the parameters such
as mean service and triage times require data that
are relatively easy to collect. The only exception to
this is the survival probability functions, which are
not only unknown but also difficult to estimate. Very
few papers have dealt with the estimation of these
functions (and remaining lifetime distributions) even
though they are crucial not only in developing better
quantitative methods for patient triage and prioritiza-
tion but also for having better qualitative insights into
the effects of delays on patient survival in the aftermath
of mass-casualty events. Thus, estimation of survival
probability functions along with remaining lifetime
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probability distributions is a highly important avenue
for future research.
One cause for concern when it comes to using the

state-dependent policies we propose in practice could
be whether it would be reasonable to expect that a
paramedic on the scene would take the time to deter-
mine the policy to use. It could indeed be an unreason-
able expectation depending on the nature of the event.
However, the policy does not need to be determined
on the scene after the event occurs. Such analysis can
be done beforehand, and simpler guidelines based on
our heuristic methods and mathematical analysis can
be identified. During training, medics can be provided
with these guidelines, which tell them what to do
depending on the scene conditions such as the number
of casualties they will need to take care of.

Finally, it is important to note that the main features
of the decision problem we analyzed in this paper are
relevant tomany service systems in practice in addition
to mass-casualty triage and prioritization. Some exam-
ples are search and rescue operations (Grissom et al.
2006, Genswein et al. 2008); internal maintenance and
repair operations (Taghipour et al. 2011); prioritization
of sales leads in marketing, particularly in business-to-
business settings (Lichtenthal et al. 1989, Wilson 2003,
D’Haen and den Poel 2013), where time is invested to
assess the likelihood of existing leads to be success-
fully converted to actual sales; and intelligence (par-
ticularly human intelligence) collection management
(Department of the Army 2006; Kaplan 2010, 2012; Ni
et al. 2013), where agents make some initial investi-
gation of existing ambiguous cues, which might pos-
sibly be pointing to potential terrorist activities, and
prioritize them prior to more in-depth investigation. In
fact, the decision problem at its core, that of balanc-
ing the time spent on acquiring more information with
the time spent on acting on the available information,
is not even unique to services. In our daily lives, we
constantly prioritize our tasks by assessing the relative
value of prioritizing one task over the other given the
available information. In short, our mathematical anal-
ysis in this paper is more broadly relevant outside of
the context ofmass-casualty triage, and our results pro-
vide broader insights into making prioritization deci-
sions in a large class of practical settings.
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