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Abstract—We introduce MobiCeal, the first practical Plausibly
Deniable Encryption (PDE) system for mobile devices that can
defend against strong coercive multi-snapshot adversaries, who
may examine the storage medium of a user’s mobile device at
different points of time and force the user to decrypt data.
MobiCeal relies on ‘“dummy write” to obfuscate the differences
between multiple snapshots of storage medium due to existence
of hidden data. By incorporating PDE in block layer, MobiCeal
supports a broad deployment of any block-based file systems on
mobile devices. More importantly, MobiCeal is secure against
side channel attacks which pose a serious threat to existing PDE
schemes. A proof of concept implementation of MobiCeal is pro-
vided on an LG Nexus 4 Android phone using Android 4.2.2. It
is shown that the performance of MobiCeal is significantly better
than prior PDE systems against multi-snapshot adversaries.

Index Terms—Plausibly Deniable Encryption, Mobile Security,
Multi-snapshot Adversary, Side Channel Attack, Fast Switching

I. INTRODUCTION

Mobile devices play an increasingly important role in our
daily life and are prevalently used for processing sensitive
information (e.g., by professional journalists or human rights
workers). However, traditional encryption does not work in
certain situations where the device owner is captured by an
adversary and is coerced to disclose the key for decrypting
the sensitive information on the device. To defend against
such adversaries, various plausibly deniable encryption (PDE)
systems have been proposed recently [2]], [15)], [21]], [32f],
[33], [341], [27]. The existing PDE systems for mobile devices
(e.g., [211, [34], [330, (431, [27], [20]) work correctly under
the assumption that an adversary examines the storage medium
once only on a user’s device. However, they may not work
if an adversary can take multiple snapshots of the storage
medium at different points of time. In practice, such multi-
snapshot attacks have been reported and thus posed realistic
threats to users. For example, the Guardian [37] and the NBC
News [30] have reported that US border agents not only
demand travelers that they hand over their phones and their
passwords, but also make full copies of all of the data on
the phones, without any warrant or even suspicion. Another
example is that an independent journalist was reported to have
all of his computers, mobile phones and camera flash drives

searched and copied when he was crossing a border, and he
was inspected for seven times during five years [26].

The existing PDE systems on mobile devices [21]], [34],
[35], [43l], [27], [20] are not resilient against such multi-
snapshot attacks since they hide sensitive data in the ran-
domness initially filled across the entire disk. By comparing
storage snapshots at different points of time, a multi-snapshot
adversary may detect any unaccountable changes to the ran-
domness. Another drawback of these PDE systems is that users
are required to reboot their mobile devices before using PDE
functions. In emergency, users may miss the best moments
since the rebooting process is usually time consuming.

It is challenging to design a secure and practical PDE
scheme for mobile devices. All existing PDE systems that
can defend against multi-snapshot adversaries [15], [19], [32],
[33]] are not suitable for mainstream mobile devices due to the
following challenges.

1) The PDE scheme should be resistant to strong multi-
snapshot adversaries on resources-limited mobile devices,
making it unsuitable to transplant existing approaches avail-
able for desktop computers, e.g., HIVE [[15] and DataLair [19],
to mobile devices. Both HIVE and DataLair rely on a special
“write-only oblivious RAM” to obfuscate all write access to
the storage medium, such that no multi-snapshot adversary
can identify any unaccountable changes to the storage medium
at different points of time. Unfortunately, oblivious RAM is
known for its poor I/O performance which is not suitable
for the resources-limited mobile devices. HIVE/DataLair is
designed with the assumption that an adversary can obtain
snapshots after every single write operation is performed on
the disk, so it needs complicated mechanisms to defend against
such a strong adversary. We consider a more practical “on-
event” adversary who can obtain multiple snapshots after
the user is prepared (e.g., at border checkpoint). This more
realistic adversarial model enables us to design a lightweight
PDE scheme that is suitable for mobile devices.

2) The PDE scheme should be free from side channel
attacks [23] which pose a serious threat to security of existing
PDE schemes. Both HIVE [15] and DEFY [33] are subject
to side channel attacks [23]]. The major reason is that they do
not isolate hidden data from public data sufficiently, so the



information of the hidden data may be recorded in the public
data. As a result, a multi-snapshot adversary may easily learn
the existence of hidden data by analyzing the public data.

3) The PDE scheme should be fit for mainstream mobile
devices, benefiting the deniability and large-scale deploy-
ments. DEFY [33] is specifically designed for mobile devices
against multi-snapshot adversaries. However, DEFY heavily
relies on the special properties provided by flash file system
YAFFS [40]. DEFY is not immediately applicable to other
flash file systems such as JFFS, UBIFS, and F2FS due to
its strong coupling with YAFFS. In addition, a flash file
system usually requires direct access to raw NAND flash,
which is rarely supported in mainstream mobile devices since
they usually use NAND flash as block devices through flash
translation layer (FTL). Steganographic file system [32] is
originally designed for desktop computers to defend against
multi-snapshot adversaries. However, it heavily relies on the
legacy Linux kernel and specific APIs for handling hidden
files, and is thus not applicable to modern mobile devices.

4) The usability of the PDE scheme should be well treated,
so that users can easily deal with sensitive data. Some existing
designs [13]], [33] do not provide details about how to use
the system appropriately, but a wrong operation may lead to
severe information leakage. Other designs [34], [21] require
users to reboot their devices so as to switch between public
mode (i.e., a mode in which the user can process public non-
sensitive data) and hidden mode (i.e., a mode in which the
user can process hidden sensitive data). The rebooting process
is usually time-consuming and may thus lead to missing the
best timing of collecting sensitive data.

These challenges motivate us to design MobiCeal, the
first secure and practical PDE system on mainstream mo-
bile devices that can defend against coercive multi-snapshot
adversaries. MobiCeal relies on several key insights. First,
we devise a “dummy write” mechanism to defend against
multi-snapshot attacks. With dummy writes, any changes to
the hidden data become accountable for the denial of the
existence of hidden data in the presence of multi-snapshot
adversaries. Second, MobiCeal is designed to be secure against
side channel attacks [23]. The public data and the hidden data
are strictly isolated in the system, eliminating the possibility of
information leakage. Third, we decouple our design from both
upper layers (e.g., file systems) and lower layers (e.g., storage
media) to make it file system friendly and fit for mainstream
mobile devices. Last, to improve usability of MobiCeal, we
add a support for fast switching to help users switch from
public mode to hidden mode. Prior PDE systems [21]], [34]
require users to reboot their devices to switch modes, which
may take more than one minute in practice. The switching time
in MobiCeal is less than 10 seconds, which is made possible by
restarting Android framework instead of rebooting the device.

Contributions. The major contributions of this paper are two-
fold. First, we design the first secure PDE system for mobile
devices against multiple snapshot adversaries. A formal proof
shows that MobiCeal provides reliable deniability against

multi-snapshot adversaries. MobiCeal is also shown to be free
from side channel attacks, which pose a serious threat to many
other PDE systems.

Second, MobiCeal is practical to be implemented on main-
stream mobile devices. MobiCeal is built into the block layer
of Linux kernel such that any block file systems can be de-
ployed on top of it. MobiCeal relies on a lightweight “dummy
write” mechanism to defend against the multi-snapshot adver-
sary, which introduces an acceptable performance overhead,
making it suitable for resources-limited mobile devices. In
addition, MobiCeal is easy to use, and supports fast switching
from its public mode to hidden mode.

A proof-of-concept implementation of MobiCeal is provided
on an LG Nexus 4 Android phone using Android 4.2.2, and
an availability test is conducted on a Huawei Nexus 6P phone
using Android 7.1.2. Compared to the default Android full disk
encryption, MobiCeal introduces approximately 18% overhead
which is much smaller than that of typical prior PDE systems
secure against multi-snapshot adversaries.

II. BACKGROUND
A. Full Disk Encryption

A full disk encryption (FDE) system encrypts the entire
disk with a key to prevent unauthorized access to the data.
FDE is usually transparent to the upper layer as the data are
automatically encrypted or decrypted upon being written or
read. BitLocker [1] and FileVault [12] are two popular FDE
tools. FDE has been available on Android to encrypt userdata
partition since version 3.0 [4]. Android FDE is based on dm-
crypt [16], a Linux kernel module working in the block device
layer. In Android, the block devices (e.g., an eMMC card [9]]
that is presented to the kernel as a block device) can be
encrypted by dm-crypt which creates an additional layer of
“encrypted block device” over the original block device.

To enable Android FDE, a user should choose a secret
password first. Android uses a randomly generated master
key to encrypt the entire disk using dm-crypt, and the master
key is encrypted with a key derived from the password using
PBKDF2 [14]. Note that PBKDF2 also needs a salt which is
randomly generated. The encrypted master key and the salt are
stored in the encryption footer that is located in the last 16KB
of the userdata partition. When Android boots and detects that
the userdata partition is encrypted, it asks for a password.
After having obtained the password, it derives a key from the
password using PBKDF 2 with the salt read from the encryption
footer. It then decrypts the master key and passes the master
key to dm-crypt, who can then decrypt the entire disk.

B. Plausibly Deniable Encryption

Canetti et al. [17] initially explored plausibly deniable
encryption (PDE) to protect the confidentiality of messages
transmitted over networks against a coercive attacker. When
being applied to storage domain, there are two main types
of PDE techniques: hidden volumes [2]], [34], [21]], [15] and
steganographic file systems [13]], [29], [32].
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Fig. 1. LVM and thin provisioning architecture.

The hidden volume technique works as follows: There
are two encrypted volumes on the disk, a public volume and
a hidden volume. The public volume is encrypted by a decoy
key and the hidden volume is encrypted by a hidden key, both
using full disk encryption. The public volume is placed on the
entire disk and the hidden volume is usually placed from a
secret offset towards the end of the disk. Note that initially
the entire disk is filled with random data and the data written
to the public volume should be placed sequentially from the
beginning of the disk so as to avoid over-writing the hidden
volume. When a user is coerced to reveal the encryption key,
he/she can disclose the decoy key. If the attacker is unable
to confirm the existence of the encrypted hidden volume, the
existence of the hidden data can be denied. This mechanism
works when the attacker can only access the disk once, e.g.,
obtaining the disk after having seized the user. However, it is
problematic if the attacker periodically obtains snapshots of
the disk, because the attacker can detect changes in the “free”
space of the public volume by comparing snapshots taken at
different time, and suspect existence of hidden data [23]].

The other type of PDE technique is based on stegano-
graphic file systems whose idea is to hide sensitive data
among regular file data. This can be achieved by introducing
a large number of cover files [13] or hiding the data into
abandoned/dummy file blocks [29], [32]. The main concern
of the steganographic file system is to avoid over-writing the
hidden sensitive data, which requires creating a large amount
of redundancy, leading to inefficient use of disk space.

C. LVM and Thin Provisioning

Logical volume manager (LVM) [28] is a userspace toolset
that provides logical volume management capabilities on
Linux. LVM is a device mapper [11] target which becomes
a component of the Linux kernel since version 2.6. LVM
creates a layer of abstraction over physical storage, allowing
users to create logical storage volumes. LVM introduces three
concepts: physical volumes (PV), volume groups (VG), and
logical volumes (LV). The underlying physical storage, such
as a partition or the entire disk, can be initialized as a physical
volume. Physical volumes are combined into volume groups.
A volume group can be divided into logical volumes. In
Android, LVM has gained popularity for flexibly handling
internal and external storage [38], [24].

Thin provisioning [39] has become a feature in the Linux
kernel since version 3.2. Thin provisioning is different from
the conventional provisioning known as “thick provisioning”.
In thick provisioning, storage administrators usually need to
plan ahead, and install more storage capacity than required to
avoid any potential failures caused by inadequate storage. In
thin provisioning, only the logical storage space is allocated to
a volume and the physical storage capacity is not released until
it is actually required. This “on-demand” storage eliminates
the need of installing unnecessary storage media.

The volumes provided by thin provisioning are called “thin
volumes” (TV). Two logical volumes are needed when using
thin provisioning: one for data device and the other for
metadata device. The data device contains data blocks of
the thin volumes while the metadata device contains the free
space bitmap and the block mappings for the thin volumes.
Two device mapper targets are provided by the dm-thin-pool
module, thin-pool and thin. The metadata device and the data
device are mapped to a pool device by the thin-pool target,
while the thin target maps this pool device to multiple thin
volumes (See Fig. |I|) On top of a thin volume, a block-based
file system can be deployed or an encrypted block device can
be created using dm-crypt.

III. MODEL AND ASSUMPTIONS
A. Adversarial Model and Assumptions

We consider a computationally bounded adversary who can
take snapshot of the block device storage (e.g., eMMC card,
SD card, which are usually exposed as block devices using
flash translation layer) of a mobile device at different points
of time [23], [15], [32], [33l]. For example, when the device
owner enters/exits a guarded facility or crosses border, the
observer takes a snapshot of the mobile device storage and tries
to compromise deniability by analyzing the snapshots. The
adversary can have full knowledge of MobiCeal’s design, but
should not know the hidden password or the encryption key of
the hidden volume. The adversary can obtain root privilege of
the device and can access both the internal and external storage
each time when capturing it. In addition, it can coerce the
device owner to reveal the passwords/encryption keys, in order
to decrypt the device to obtain sensitive data. Furthermore, the
adversary can use any password cracking programs, perform
advanced computer forensics on the disk image, or correlate
different snapshots to compromise deniability.

Similar to all the prior PDE systems for mobile devices [21]],
[33]], [43], our design also relies on the following assump-
tions: The adversary is assumed to be not able to capture
the device owner when he/she is working with the hidden
volume. Otherwise, the sensitive hidden data will be trivially
disclosed. We also assume that the adversary will not continue
coercing the device owner once being convinced that the
passwords or encryption keys have been revealed. The user
should refrain from revealing the hidden passwords/hidden
keys as disclosing hidden sensitive data will create life threat
to him/her. Furthermore, MobiCeal needs to be merged with
Android code stream, so that its availability itself is not a



red flag [211], [34], [35], [43], [20]. The mobile OS, kernel,
bootloader, firmware, and the baseband OS are malware-free,
and the user does not use any malicious apps that collect
information of the hidden volume or the hidden password.

B. Notations

We assume that there exists a sequence of independent
volumes {V;},i € [1,max] on a hard disk, where max
denotes the maximal number of volumes. To store information
into public or hidden volumes, each user needs to choose a set
of passwords {P;} which in turn serves as encryption keys.
Each volume V; has a unique password P;, and each volume
has at most n; € N blocks of data, where N denotes the
number of blocks. Note that we allow users to choose a secret
number of volumes ! € maz. A volume encryption scheme
consists of the following Setup, Read and Write operations
on the disk.

o Setup. It takes (A, t,P,B,[n1,---,n]) as input and
outputs a sequence of volumes {Vi, -+, Vi, - Vinaz}-
Note that A denotes the security parameter, ¢ denotes the
number of available blocks, and B denotes the block size.

o Read. It takes (b,4,P) as input, returns data d in block
b of volume V; if i < [. Note that V; is the output of
Setup(\, P).

o Write. It takes (b, d, 4, P) as input, stores data d in block
b of volume V; if ¢ < [. Note that V; is the output of
Setup(\, P).

C. Security Model

Informally, a coercive multi-snapshot adversary 4 attempts
to obtain any stored data from a hard disk that employs a
hybrid [H volume system. We then formally define a multi-
snapshot security game between a Probabilistic Polynomial-
Time (PPT) adversary A and a simulator S as follows.

o Setup. Upon receiving a required volume number [ €
mazx from A, S first chooses a set of passwords {P;} €
{0,1}M where i € [1,---,1]. Second, S initializes a
set of public volume {V,,} that associates with a set of
passwords {P,} (w € [1,--- k], k < mazx —I). Third,
S generates two independent hybrid volume encryption
schemes Xy and »; with respect to two sets of passwords
with size [ and [ —1 respectively. Eventually, S sends two
sets of passwords {P,,} and {P1,---P;_1}, and an initial
snapshot Dy of the disk to A. S also tosses a random
coin b which will be used later in the game. Note that
the initial snapshot Dy is taking on two sets of volumes
W, Vb V1, W

« Training. A chooses two access patterns (Op ;, O1 ;) and
a value d;, and sends them to S. Note that the value d;
specifies whether A would like a snapshot of the disk
after execution 7. S “executes” one of access patterns
based on bit b, and sends a snapshot D; of the disk to A
if d; = 1; Otherwise, proceed to next execution.

“Hybrid” means that a disk may consist of public and hidden volumes.

b=1
b=20

Ezxecutes, (01,)

A — D’L — { E.’L'GCUteEU(Oovi)

Note that O;, denotes the access pattern j € [0,1]
of execution i € [1,poly(N)]. We allow A to obtain
snapshots with on-event frequenc and we specify the
restrictions of access patterns (e.g., Op = [00,1, "+ , 0i,n])
as follows.

— If access op; is a Read/Write in volume V;,j €
[0,{ — 1], then access o7, in pattern (J; must be
equal to og ;;

— If access og, contains a Read/Write in volume
Vj,j € [0,1], then at least one public volume V,,
is randomly refreshed after each execution i;

— If access op,; indeed contains a Read/Write in
volume V), then operations can be plausibly applied
to one of public volumes {Vy,- -V, }.

o Guess. A outputs bit b'. If b’ = b, then S outputs 1;
Otherwise, S outputs 0.

We define the advantage of A in the above game as

Adv.a()\) = |Pr[S — 1] — 1/2].

Definition III.1. We say a hybrid volume encryption scheme
Y has multi-snapshot security if for any PPT A, Adv 4(\) is
a negligible function of the security parameter A.

IV. MOBICEAL DESIGN
A. Design Overview

The existing hidden volume-based PDE systems for mobile
devices [21]], [34], [350, [43l], [20]], [27]] cannot defend against
a multi-snapshot adversary. This is because, they hide sensitive
data among randomness being filled initially across the disk.
However, by comparing snapshots being captured at different
points of time, the multi-snapshot adversary can easily detect
changes over randomness which were not supposed to happen,
and may suspect existence of hidden data. A fundamental
limitation of the hidden volume-based approach is that, the
randomness is filled one time initially (i.e., static), which
is definitely not able to defend against the multi-snapshot
adversary, who is “dynamic”.

To defend against such a dynamic attacker, the intuition
is to also make the defense dynamic. A few existing PDE
schemes followed this idea by incorporating ORAM [135]],
[19]], in which each single write is turned to be oblivious to
the adversary. All those attempts, however, are problematic,
due to the following reasons. First, ORAM is prohibitively
expensive in terms of both computation and I/O [15], making
it unsuitable for mobile devices that are equipped with limited
resources. Second, we found all those ORAM-based PDEs
rely on an assumption that protecting every access pattern is

2Adversary is allowed to have plausible hidden access pattern choice
with on-event frequency snapshots in our proposed multi-snapshot security
model for hybrid volume encryption schemes. Please refer to [15] for detailed
description of these settings.



necessary for mitigating a multi-snapshot adversary. ORAM
was originally designed to hide access pattern over data being
outsourced to an untrusted third party (e.g., a cloud provider).
In this setting, the cloud provider is able to constantly monitor
access of the data (i.e., highly dynamic) due to its full control
over the data during the lifetime. In a mobile device setting
however, the adversary does not have a full control over the
victim’s mobile device during its lifetime, and is thus not
able to constantly monitor each access (i.e., less dynamic).
Therefore, we believe that hiding every access is unnecessary
for mobile devices and the ORAM-based approach is overkill
for the less dynamic attacker in the mobile device setting.
Another PDE system for mobile devices, DEFY [33], was
designed for a less dynamic attacker, but it strongly relies on
the system properties provided by a specific flash file system,
and is shown to be vulnerable to deniability compromise [27]].

To achieve deniability against a less dynamic attacker with-
out relying on the expensive ORAM [15], [19] or specific
system properties [33], we propose a dummy-write approach.
Specifically, each time when writing public non-sensitive data,
the system will perform a few additional artificial writes of
randomness. In this way, although the adversary can obtain
multiple snapshots, uncountable changes (i.e., caused by s-
toring the hidden data) observed by the adversary through
comparing snapshots can be denied as being caused by the
dummy writes. Note that the hidden sensitive data should
be encrypted using a secret key, such that without having
access to the secret key, the encrypted hidden data should be
indistinguishable from the randomness created by the dummy
writes. A few questions still need to be answered.

1) How many dummy writes should be performed for each
public write?

For a good obfuscation, the number of dummy writes being
performed each time should vary. In our design, the number
of dummy writes follows exponential distribution. We choose
exponential distribution, since it can ensure that the number
of dummy writes varies in a wide range and, meanwhile, the
probability of generating a large number of dummy writes
each time can be controlled as small to avoid inefficient I/O
performance and disk utilization.

2) How to generate the data for each dummy write?

The dummy data are used to deny the existence of encrypted
hidden sensitive data. Therefore, without having access to
the decryption key, the adversary should not be able to
differentiate the encrypted hidden data from the dummy data.
To achieve this, the dummy data can be created using the
same encryption algorithm (as the hidden data) with random
input and random keys, and the corresponding key should be
discarded after each encryption.

3) How can the system prevent the public data from over-
writing the hidden data?

As the public mode has no knowledge on the existence of
the hidden data, it may easily cause overwrites to them. We
need a technique to ensure that newly written public data
will not over-write the existing hidden sensitive data. The
hidden-volume technique (Sec. addresses the over-write

issue by placing the hidden volume to the end of the disk.
However, such a technique is only suitable for file systems
that perform writes sequentially on the storage media (e.g.,
FAT32) and over-writes are still possible when the disk is
heavily used. Steganographic file systems (Sec. address
this issue by utilizing the global bitmap in the file system to
separate the hidden data from the public data. This, however,
requires extensive modifications of the large code base of the
file system being used, which contradicts our “file system
friendly” design principle.

To resolve the over-write issue, we borrow the “global
bitmap” idea of the steganographic file system, but move
it to the block layer. The global bitmap will keep track of
blocks being used by all the public, dummy, and hidden data.
Therefore, when hidden data are written, the corresponding
blocks in the bitmap will be marked as “allocated”, and will
not be used by public/dummy data. This will not lead to
deniability compromise, since the bitmap information for the
hidden data can be denied as for the dummy data.

4) What other attacks the design is still vulnerable to?

The current design is fine if the system always writes a
small amount of hidden data occasionally. However, if the
system writes a large hidden file, the adversary may observe
from the snapshot that the public data are followed by a large
amount of randomnes and may suspect existence of hidden
sensitive information, compromising deniability. To avoid this
deniability compromise, all the data (including public, dummy,
and hidden data) should be written to random locations across
the disk. Following the aforementioned ideas, we design a
basic MobiCeal scheme which can defend against a multi-
snapshot adversary (Sec. IV-B). We also extend the basic
MobiCeal to support multiple levels of deniability (Sec. IV-
C). In addition, we describe additional design considerations
of MobiCeal (Sec. IV-D).

B. A Basic MobiCeal Scheme

We first introduce three types of virtual volumes:

(a) Public volume. A public volume is used for daily oper-
ations which provides storage encryption without deniability.
The user can enter the decoy password during booting in order
to use the public volume. The public volume is encrypted
using a decoy key via FDE (Sec. [[I-A). The decoy key can be
computed using the decoy password. When the user is coerced,
he/she can simply disclose the decoy password, protecting the
hidden sensitive data.

(b) Hidden volume. A hidden volume is used when the
user needs to store sensitive data, whose existence needs to
be denied when the user is coerced. The hidden volume is
encrypted using a hidden key via FDE. The hidden key can
be computed using the hidden password. The user can enter
the hidden password during booting to use the hidden volume.
(¢) Dummy volume. A dummy volume only stores data created
by dummy writes. The purpose of the dummy volume is

3Writes performed by a file system (e.g., FAT and Ext4) usually exhibit a
certain level of spatial locality.



to obfuscate the existence of the hidden volume. Without
having access to the hidden key, the adversary is not able to
differentiate whether a volume (which is not a public volume)
is a hidden volume or a dummy volume. In this way, the user
can deny the existence of the hidden volume by interpreting
it as a dummy volume.

To ensure that a multi-snapshot adversary cannot distinguish
the hidden volume from the dummy volume, we introduce
the dummy write mechanism and the random allocation s-
trategy. Note that the system keeps the metadata (e.g., the
global bitmap, the mappings of each virtual volume and the
corresponding blocks) in a known location and the adversary
can have access to them. This will not compromise deniability,
since the metadata for the hidden volume can be interpreted
as that for the dummy volume.

Dummy Write. We use a dummy write mechanism to ob-
fuscate writes to the hidden volume. When a data block is
allocated to the public volume to store data (i.e., a public
write is issued), a dummy write will be performed with a
certain probability. To prevent the adversary from learning the
pattern of dummy writes, the dummy write will be performed
if and only if the following condition satisfies:

rand < stored_rand mod x.

Here, z is a positive integer constant (e.g., we can fix = as
50 when initializing the system). stored_rand is a random
number which is periodically updated (e.g., daily). To obtain
a new value of stored_rand, we can utilize pseudorandom
number generator, or a more secure way is to extract it from
the random noise present in mobile device hardware [41].
rand is an integer chosen uniformly at random from 1 to
2 -z upon each dummy write, to ensure that the probability of
performing dummy write will be always under 50%.

When a dummy write is performed, m free blocks will be
allocated and the corresponding blocks should be marked as
“allocated” in the global bitmap. These blocks will be filled
with random noise, which should be indistinguishable from
the encrypted data (Sec. [[V-A). m is determined as follows:

m=|m'|,m' = ~(In(1 ~ f))/A

Here, f is a random number in the range of (0,1) and A is
the rate parameter, making m’ follow exponential distribution.
The mean value of m’ is 1/, e.g., if we choose A as 1, each
dummy write will be allocated one free block on average. The
exponential distribution is advantageous since it can ensure
that the value of m can have a large variance which is good
for deniability.

Block Allocation Strategy in Block Layer. A common block
allocation strategy in the block layer is sequential allocation,
by which when data blocks are allocated to virtual volumes,
they will be allocated sequentially from the disk (e.g., thin
provisioning [21]). A concrete example for the sequential
allocation is shown in the following:

Do, || Doy [ Dy || Do, | Dy || Doy [ Doy [| Doy || Dy [ Doy

Here, D,, means the data block allocated to the public volume
(identified by v;) and D,, means the data block allocated to
the hidden volume (identified by vs). From the aforementioned
block layout, an adversary can observe that seven data blocks
are allocated between D,,, . To deny the existence of the hidden
data, the user will claim that the seven data blocks have
been allocated to dummy volumes. However, since the number
of dummy writes associated with each public write will be
limited, the adversary may observe that the number of dummy
blocks being claimed by the user exceeds this limit (this is
highly possible if a large file has been written to the hidden
volume), and suspects the existence of hidden volume.

To avoid this deniability compromise, we use random al-
location in the block layer. Specifically, each write from the
upper layer (performed by the public or the hidden/dummy
volume), should be allocated with an unused block at a random
location. In this manner, the adversary will not be able to
observe such a layout that a block, which has been allocated
to the public volume, is followed by a large number of blocks
being allocated to the hidden volume.

A potential deniability compromise remaining is that the
adversary can calculate the total number of blocks for the
public volume, and estimate the maximal number of blocks
for the dummy volume. If the total number of blocks being
allocated for non-public data exceeds this maximal number,
the adversary may suspect existence of hidden data. This
would happen if the user stores a very large file in the
hidden volume and does not store enough data in the public
volume. To mitigate this issue, we recommend that the user
should store a file with approximately equal size in the public
volume after storing a large file in the hidden volume. In
practice, the sensitive data (e.g., secret documents, photos,
short audio/video files) are usually small in size.

User Steps. If the user needs data encryption without denia-
bility, he/she needs to enable device encryption with one pass-
word (e.g., through settings GUI). Note that before initializing
the device encryption, the user should backup the data on the
device since the initialization erases existing data. The system
then creates a public volume (encrypted with a key derived
from the password) and a dummy volume, and reboots when
complete. The user can enter the password during pre-boot
authentication to decrypt the device.

If the user requires the deniability feature, he/she needs
to initialize the device with a decoy password and a hidden
password. The system then creates a public volume and a
hidden volume, encrypted with keys derived from the decoy
password and the hidden password, respectively. For daily
use, the user enters the decoy password during pre-boot
authentication to activate the public volume. Note that we
assume the user enables the screen lock when they are using
the public volume, and the screen lock password is different
from the hidden password. When the user wants to activate
the hidden volume, he/she enters the hidden password in the
screen lock (Sec. IV-D). The system closes the public volume,
decrypts the hidden volume and enables the hidden volume.
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Fig. 2. System architecture of the extended MobiCeal scheme.

The user then can collect and store sensitive data. After that,
the user should immediately reboot to use the public volume
(Sec. IV-D). When the user is coerced by the adversary, he/she
can supply the decoy password and claim that the other volume
is a dummy volume. The adversary can examine the device but
cannot distinguish a hidden volume from a dummy volume.
If the user does not reveal the hidden password, the adversary
will find no evidence of the hidden data.

C. An Extended MobiCeal Scheme Supporting Multi-level
Deniability

To support multi-level deniability, the system creates n
virtual volumes (by utilizing thin provisioning as introduced in
Sec. initially, among which, there are n’ hidden volumes
(n’ < n). Note that n’ should be kept secret. After n virtual
volumes (labeled as Vi, Vs, ..., V,,) are created, MobiCeal
simply uses the first virtual volume V; as the public volume.
The user can provide different hidden passwords to protect
different hidden volumes and the number of hidden volumes
is controlled by the number of hidden passwords.

For example, if virtual volume Vj, (2 < k < n) is used as the
hidden volume, £ can be derived using the hidden password:

k = (H(pwd||salt) mod (n — 1)) + 2.

Here, H is a PBKDF 2 [14] iterated hash function, n is the total
number of virtual volumes, pwd is the hidden password and
salt is a random salt value for PBKDF2. The salt value will
be stored in the encryption footer. If different hidden volumes
result in the same &, another random salt will be chosen. All
the remaining virtual volumes are dummy volumes. Figure
shows the system architecture of MobiCeal.

When generating dummy writes, the system will assign
them to a random virtual volume. The dummy write is assigned
to V; and j is generated as follows:

j = (stored_rand mod (n — 1)) + 2.

Storage Layout. The entire disk is divided into 3 parts, con-
taining the metadata, data and encryption footer, respectively.
The storage layout is shown in Figure [3] Specifically, the
metadata part stores the information of virtual volumes, e.g,
the global bitmap, the sizes and mappings of virtual volumes.
The data part stores the data blocks for the virtual volumes

while the encryption footer is a default part of Android. Note
that in Android, the encrypted decoy key and the salt are stored
in the encryption footer which is located in the last 16KB of
the userdata partition.

D. Additional Design Considerations

Defending against Side Channel Attack. Existing PDE
systems that defend against multi-snapshot adversaries like
HIVE [15] and DEFY [33] suffer from the side channel
attack [23]]. Due to the shared OS, the information of the
hidden files may be recorded in the public volume [23], leading
to compromise of the deniability. However, our design can
defend against this side channel attack, since we isolate the
hidden volume from the public volume. Although the hidden
password is entered in the public mode, the Android screen
lock does not record the entered password and we assume the
mobile OS, the boot-loader, as well as the firmware and the
baseband OS are all malware-free (Sec. ). As a result, the
security of the hidden password is ensured.

We consider four possible leakage paths for the side channel
attack: 1) the public volume, 2) logs at /devlog, 3) /cache and
4) RAM. The information of the hidden volume or hidden files
may be recorded in the public volume, /deviog, or /cache,
if the hidden volume is in the system together with others.
To prevent the leakage, after the hidden password is veri-
fied, the system unmounts these three partitions immediately,
and mounts two tmpfs RAM disks to /deviog and /cache,
respectively. Then the system decrypts the hidden volume and
mounts it as the userdata partition. In this way, the information
leakage is prevented.

Additionally, if the RAM is not cleared after the hidden
mode is off, the deniability may be compromised. To prevent
this threat, we only support fast switching from the public
mode to the hidden mode. When the user wants to switch from
the hidden mode to the public mode, he/she has to reboot the
phone. In this way, the information of the hidden volume or
hidden files in the RAM will be cleared. Note that the one-
way fast switching is reasonable, since the mobile device is
assumed to be usually in the public mode. When the user
wants to switch to the hidden mode, he/she needs to enter the
hidden password and the system will begin switching.

Switching without Rebooting. The existing PDE systems for
mobile devices [21]], [34], [43]] all require rebooting to switch
modes. However, if time is limited which does not allow a slow
mode switching, the user may miss a best moment to capture
sensitive information (e.g., an opportunistic sensitive photo).
We propose a fast switching mechanism without rebooting the
entire device. Our main concern is how to switch fast from
the public mode to the hidden mode, without compromising
deniability. We find it unnecessary to reboot the entire device.
Instead, we can simply restart the Android framework. In
this way, the switching time can be significantly reduced. We
choose the default screen lock app of Android as the entrance
of the hidden mode, because it is widely used and allows the
user to enter the password conveniently.
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The screen lock app runs as usual if the user does not enter
the hidden password. When the user wants to switch to the
hidden mode, he/she needs to enter the hidden password. After
that, the system will unmount the public volume, decrypt and
mount the hidden volume, switching to the hidden mode. Note
that it is necessary to unmount the public volume. Otherwise,
the traces of the hidden volume and hidden files may be
leaked to the public volume which may lead to compromise of
deniability. Since the public volume is mounted to “/data” and
Android framework requires “/data” to run [7l], we unmount
the public volume by shutting down the Android framework.

Key Derivation. Different keys can be derived using PBKDF'2
with different passwords, and different master keys can be
derived by decrypting the same random data stored in the
encryption footer using these different keys. Further, each
virtual volume can be encrypted using a different master key

via dm-crypt (Sec. [[I-A).

Reclaiming Space Occupied by Dummy Writes. The data
created by dummy writes will accumulate and may fill the
entire disk space over time. This issue can be mitigated by
periodically performing garbage collection, reclaiming part of
the space occupied by dummy writes. Note that the garbage
collection cannot reclaim all the space occupied by dummy
data. Otherwise, the adversary can easily identify where the
hidden data are by comparing snapshots. This is because the
space occupied by the hidden data remains unchanged. As
a result, when performing garbage collection, the system re-
claims a random percentage of the space occupied by dummy
writes. To make the garbage collection more efficient, the
percentage should be large with a high probability. A side
effect of this approach is, when performing garbage collection,
the system may not be able to distinguish dummy data and the
hidden data. This issue can be solved by performing garbage
collection in the hidden modefll

V. MOBICEAL IMPLEMENTATION

We implement a prototype of MobiCeal on an LG Nexus 4
phone using the 4.2.2 (Jelly Bean) Android source code and
the 3.4 Linux kernel. Note that we only implement/evaluate
the extended MobiCeal scheme supporting multiple levels of
deniability, since the basic MobiCeal scheme is a special case

4There is no need to frequently perform garbage collection as long as the
user does not frequently store large amount of public and hidden data. In
addition, the user can choose to perform garbage collection when the mobile
device is idle, e.g., during night time, to avoid disturbing regular use.

of MobiCeal with multi-level deniability support. To allow
creating multiple virtual volumes, we rely on thin provisioning
(Sec. lI-C)), but modify it for PDE considerations. We also
test MobiCeal on a Huawei Nexus 6P with Android 7.1.2
and Linux kernel 3.10. The transplant can be done with
a little work on SEAndroid [36]. The source code of the
implementation has been release(ﬂ There are three parts of
implementation, including changes to 1) the Linux kernel, 2)
Android volume daemon, and 3) Android screen lock. The
implementation requires approximately one thousand lines of
C and Java code. We also compile LVM and thin provisioning
tools for Android and put them in the boot image.

A. Changes to the Linux Kernel

Tweaking Thin Provisioning. To implement the random
allocation and the dummy write, we modify the thin pro-
visioning target in the device mapper. We add the dummy
write mechanism to thin provisioning and change the original
sequential allocation strategy of thin provisioning to random
allocation. The reasons why we choose thin provisioning are
as follows: First, when the thin volumes are initialized, they
do not really occupy disk space until the actual data are
written to the thin volumes. This makes it cost effective to
hide a thin volume that contains sensitive data among dummy
thin volumes. Second, thin provisioning does not allocate data
blocks for a thin volume until the data are written to it. This
feature helps us to realize a dummy write mechanism to hide
sensitive data written to a thin volume. Third, thin provisioning
has an inborn ability to prevent overlap among thin volumes
by using a free space bitmap to track allocated blocks. Fourth,
it is feasible to create an encrypted block device on a thin
volume and an arbitrary file system can be deployed.

Dummy Write Implementation. To implement the dummy
write, we use jiffies as the random seed to determine the
probability of the dummy write, which is a global variable
in the Linux kernel. Jiffies holds the number of ticks that have
occurred since the system booted. We store this variable in
the thin pool structure. It is updated when data are written
to the thin volume and the time interval is longer than one
hour since the last update. The variable is random because its
update is triggered by a write operation to the thin volume and
the time of the write operation is random. The variable rand
is a random number between 0 and 100 and it is generated by

Shttps://github.com/changbing 1/MobiCeal



the function get_random_bytes(). To conduct a dummy write,
a free block is found using random allocation and then filled
with random noise. In the bitmap, the corresponding bit of this
block is set to “allocated”, so that it will not be reallocated.

Random Allocation Implementation. To implement the ran-
dom allocation, we first obtain the number of free blocks
(denoted by z), and then we generate a random number ¢
between 1 and x. The ¢th free block is the result. A transaction
problem happens when an allocated block is allocated again
before it is committed to the bitmap. To resolve the transaction
problem, the block numbers allocated within a transaction are
recorded. When a new block is allocated, MobiCeal judges
whether this new block has been allocated in this transaction,
so an allocated block will not be allocated again.

B. Changes to the Android Volume Daemon

In order to set up and use the public volume, the hidden
volume, and the dummy volumes, we modify Android volume
daemon (Vold) [6]. We implement the initialization process
and the boot process. We also implement a function for
switching to the hidden volume.

The Initialization Process. Users can active MobiCeal
using vdc, a command-line utility, as follows:
“vdc cryptfs pde wipe {pub_pwd) (num_vol)
(hid_pwds)”. MobiCeal uses LVM to initialize the public,
hidden and dummy volumes. Note that MobiCeal generates a
random key as the decoy key that is used as the encryption
key of the public volume. The decoy key is encrypted by
the decoy password and the resulting cipher-text is stored in
the encryption footer. The hidden key can be derived from
decrypting the aforementioned cipher-text using the hidden
password, without wasting additional space for storing the
encrypted hidden key.

The Boot Process. MobiCeal attempts to mount the userdata
volume when the device is booted up. If the system fails to find
a valid Ext4 file system, it asks the user to enter a password.
When the user enters a password, the system enables the
thin volumes and then decrypt the decoy key (stored in the
encryption footer) using the password. After that, the system
creates an encrypted block device on the public volume using
the decrypted key. If a valid Ext4 file system can be mounted,
the password is correct and the system continues to boot.
Otherwise, the system asks the user to enter another password.

Switching to the Hidden Volume. In order to verify the
password and switch to the hidden mode, we implement a
switching function in Vold [7]. This function accepts a string
parameter (password) and switches to the hidden mode if
the password is the hidden password. Otherwise the function
returns “-1”. The switching function first reads the salt and
the encrypted decoy key from the encryption footer. Then a
number k is derived using the password and the salt. A key is
also derived by decrypting the decoy key using the password.
After that, the function reads the encrypted password at the
beginning of V. To verify the password, the system encrypts

the password using the derived key. If the result is the same as
the previous encrypted password, the password is correct and
the system begins to switch to the hidden mode. Otherwise
the password is wrong and the function simply returns “-1”.

To switch to the hidden mode, the system first shuts down
the Android framework to unmount “/data” partition. Then a
new encrypted block device will be created on V using the
hidden key. The encrypted block device will be mounted to
“/data” and the Android framework will be restarted. After the
Android framework is restarted, the hidden mode is activated,
and users can store sensitive data in the hidden volume.

C. Changes to the Android Screen Lock

We modify the default Android screen lock app as an en-
trance of the hidden mode. We add a process to verify whether
the password is the hidden password. That is, the system
checks whether the password is the screen lock password as
usual. If not, the system calls “IMountService” to pass
the password to Vold which checks whether the password is
the hidden password. If so, the system switches to the hidden
mode. Otherwise the password is wrong, the system asks the
user to enter another password.

VI. ANALYSIS AND EVALUATION
A. Security Analysis

Lemma VIL.1. A hidden volume can be efficiently simulatable.

Proof. We build a simulator S, who is not allowed to reveal
the hidden passwords {P; } or any knowledge of the access pat-
terns beyond its length, aims to simulate identical operations
on public volumes if an operation (e.g., Write) occurs on hid-
den volumes. Note that in the MobiCeal system, if a data block
is assigned to store data on public volumes, then a random
noise will be written into a “dummy” volume with probability
p (see below), we denote it as “dummy” Write. Specifically,
the random noise on “dummy” volumes can be interpreted as
either random strings or public key encryptions (e.g., IND-
CPA secure) indistinguishable from random. Therefore, the
freshly random strings Write on “dummy” volumes will be
indistinguishable from an actual Write on hidden volumes. [J

Remark. Note that adversary cannot estimate the amount of
“dummy” Write, since p is a random and untraceable value.
Therefore, the adversary cannot distinguish an actual Write on
hidden volume from a “dummy” Write on dummy volume by
statistical analysis.

Theorem VI.2. The extended MobiCeal scheme achieves
multi-snapshot security, if the hidden volumes are simulat-
able volumes.

Proof. According to the definition of multi-snapshot security
(see Definition , the access patterns (Op, O1) chosen by
A will differ only on either a Read to volumes on disk
or a Write to specific volumes V;,j > [. It is easy to see
that a Read to V;,7 # j is indistinguishable from a Read
to V;, while a “dummy” Write to a volume V;,j > [ is
indistinguishable from an actual Write on hidden volume in
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the sense of Lemma Therefore, A cannot win the game
with non-negligible advantage. O

According to Theorem [VI.2] the extended MobiCeal scheme
achieves multi-snapshot security, and the basic MobiCeal
scheme is a special case of the extended MobiCeal scheme
when the numbers of public and hidden volume are both one.

Metadata Security Issues.

The adversary can access the metadata for all virtual vol-
umes, which keep track of blocks being assigned to each
virtual volume. However, the modifications on the metadata
caused by the hidden volume can be denied since the dummy
writes can cause the same effects. Note that the adversary
cannot decrypt the virtual volumes except the public volume,
because the dummy volumes contain only random data and the
encryption keys of the hidden volumes are protected by the
hidden passwords. As a result, the adversary cannot identify
whether any data blocks in a virtual volume are storing hidden
data or dummy data.

B. Performance Evaluation

Throughput Performance. The main differences between
MobiCeal and the default Android are that MobiCeal uses thin
volumes and that the kernel is modified. We test how these
two differences impact the performance on an LG nexus 4
phone. We measure the performance in the following settings:
1) Android: the default Android FDE, 2) A-T-P (Android-
Thin-Public): the public volume of modified Android with
thin volumes and the default kernel, 3) A-T-H (Android-Thin-
Hidden): the hidden volume of modified Android with thin
volumes and the default kernel, 4) MC-P (MobiCeal-Public):
the public volume of MobiCeal, and 5) MC-H (MobiCeal-
Hidden): the hidden volume of MobiCeal.

In our experiments, we use a popular Linux command tool,
“dd” 3], to measure the sequential throughput. We measure
the write speed using the following command, “time dd
if=/dev/zero of=test.dbf bs=400M count=1 conv=fdata-sync”.
Note that “conv=fdatasync” is necessary because it ensures the
data is written to the disk instead of a RAM buffer. To measure
the read speed, we use “time dd if=test.dbf of=/dev/null
bs=400M”. Each time this command is executed, another
command, “echo 3 > /proc/sys/vm/drop_caches”, should be
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TABLE I
OVERHEAD COMPARISON. THE VALUES OF DEFY ARE FROM THE FIGURE
6 IN [33]. TEST ENVIRONMENT: DEFY: UBUNTU 13.04, SINGLE
PROCESSOR, 4GB RAM, SIMULATED FLASH DEVICE; HIVE: ARCH
LINUX x86-64, 17-930, 9GB RAM, SAMSUNG 840 EVO SSD;
MOBICEAL: ANDROID 4.2.2, SNAPDRAGON APQ 8064, 2GB RAM,
NEXUS 4 INTERNAL STORAGE.

Ext4 (MB/s) | Encrypted (MB/s) | Overhead

DEFY 800 50 93.75%
HIVE 216.04 0.97 99.55%
MobiCeal 19.5 15.2 22.05%

executed to empty the cache. Otherwise, the data in the cache
may lead to wrong results.

We conduct each test 10 times and use “dd-Write” and “dd-
Read” in Figure [ to show the average results and standard
deviations. About the write speed, the use of thin volumes
has little influence on the performance as MobiCeal reduces
the performance by about 18%. The reason of the decrement
is that we modify the kernel to implement the dummy write
and the random allocation. About the read speed, the use of
thin volumes reduces the performance by about 18% while the
modified kernel has little influence on the performance. Thin
provisioning adds a layer between file system and disk, so the
additional operations reduce the read performance.

We also use Bonnie++ [22]], a benchmark suite conduct-
ing tests on hard drives and file systems, to evaluate the
performance. We repeat each experiment 10 times and show
the results in Figure ] Note that the files created in the
Bonnie++ benchmarks must be set to twice the size of the
system RAM (2GB in our case) so as to reliably measure the
performance. The “B-Write” and “B-Read” items in Figure []
show the results of the average throughput from Bonnie++.
The results are similar to the results in the “dd” test. In
addition, Bonnie++ also shows the CPU overhead which
indicates the power consumption difference. It shows that the
CPU overhead results are similar in all operation cases.

Overhead Comparison. Table || shows the overhead com-
parison between MobiCeal, DEFY [33]] and HIVE [15], three
solutions which can defend against multi-snapshot adversaries.
We obtained the results of DEFY by interpreting the Figure
6 in [33]] since the original data are unavailable in the
paper. We derived the overheads according to the experi-
mental results. Because the test environments are different,
we cannot compare the results directly. DEFY was evaluated
with I0Zone [31] on an Ubuntu 13.04 with 4GB of memory
and a single processor. The tested device was a 64MB flash
device with 2KB pages, which was emulated with the nand-
sim MTD device simulator [42]]. HIVE was evaluated with
Bonnie++ [22] on an Arch Linux x86-64 with an Intel i7-
930 CPU and 9GB RAM. The tested device was an off-the-
shelf Samsung 840 EVO SSD. MobiCeal was evaluated with
Bonnie++ on Google Nexus 4 with Qualcomm Snapdragon
S4 Pro APQ8064 CPU and 2GB RAM. The tested device was
the internal storage of Nexus 4.

The different test environments cause the different results.
However, we can make comparison among the overheads. The
overheads of DEFY and HIVE are both higher than 90%,



TABLE 11

INITIALIZATION TIME,

BOOTING TIME, AND SWITCHING TIME.

Initialization booting time | switching time | switching time
(decoy pwd) | (enter hid-mod) | (exit hid-mod)
Android FDE | 18min23s+1s | 0.2940.02s N/A N/A
MobiPluto 37min2s+2s 1.3640.02s 68+4s 64+5s
MobiCeal 2minl6s+3s 1.68+0.04s 9.2740.28s 63165

but the overhead of MobiCeal is only about 22%. The high
overhead of DEFY is caused by the additional computation
requirements necessary to support the cryptographic opera-
tions. The encryption of MobiCeal relies on the dm-crypt
kernel module which is more efficient. HIVE is based on
Oblivious RAM and its high overhead is caused by the high
computation cost of ORAM. MobiCeal relies on the modified
thin provisioning to provide deniability, so the overhead is
much lower. Note that HIVE can defend against a stronger
adversary who can constantly monitor the device, but the
significant performance overhead makes it impossible to be
deployed on practical devices.

Timing Measurements. We also test the initialization time,
the booting time, and the switching time, which affect the
users’ experience. The initialization time is the time used to
finish the initialization process (Sec. [V-B). To measure the
initialization time, we use a timer to record the time interval
between the moment when MobiCeal is activated by the vdc
command, and the moment when the screen shows up the
password entering interface. We analyze the booting time and
the switching time by reading the logs of Android system. The
booting time is the time interval between the moment when
the decoy password is entered in the interface, and the moment
when the public volume is decrypted. The switching time is
the time interval between the moment when a password is
entered in the screen lock and the moment when the system
switches to the hidden mode.

We conduct each test 10 times and the means and standard
deviations of the results are shown in Table [[Il The initializa-
tion of MobiCeal takes about 2 minutes, which is much shorter
than MobiPluto [21]. The booting time is about 1.7 seconds
and the switching time is less than 10 seconds. Previous solu-
tions (Mobiflage [34], MobiHydra [43] and MobiPluto [21])
all need reboot to switch modes, which is time-consuming
(more than 1 minute). Our solution does not need to reboot
the phone and this is helpful in emergency.

VII. RELATED WORK

The concept of deniable encryption has been applied to
network communications [17], disk storage and cloud stor-
age [25]. In disk storage, the existing PDE designs can be
classified into two categories: one against single snapshot
adversaries and the other against multi-snapshot adversaries.

A. Designs against Single Snapshot Adversaries

The first file encryption scheme with PDE support is pro-
posed by Anderson et al. [[13]. Two solutions are presented:
Hiding blocks within cover files and hiding blocks within
random data. However, due to the high storage and I/O
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overheads, both solutions are not suitable for resource-limited
mobile devices. StegFS [29] uses the second approach in [13]]
and works on Ext2 file system. However, their design relies
on Ext2 file system and may not work on other file systems.
In addition, the disk usage rate is very low due to the collision
avoidance mechanism. TrueCrypt [2], FreeOTFE [3]], EDS [10]
and Fuyoal [8]] are well-known desktop PDE tools that can
defend against a single snapshot adversary.

Mobiflage [34], [35] presents the first PDE scheme for
mobile devices, with two versions: One for FAT32 file system
in external storage [34], and the other for Ext4 file system
in internal storage [35]. MobiHydra [43] introduces multi-
level deniability and supports sensitive data storing without
rebooting. MobiPluto [21] introduces a file system friendly
PDE design by combining hidden volume technique and thin
provisioning. DEFTL[27] considers the nature of NAND flash
and incorporates deniability to flash translation layer.

All the aforementioned PDE systems unfortunately cannot
mitigate a multi-snapshot adversary, since they all rely on a
static defense strategy, e.g., denying existence of hidden data
using randomness being filled initially.

B. Designs against Multi-Snapshot Adversaries

Pang et al. [32] propose a steganographic file system design
where blocks used by hidden files are marked as occupied in
the bitmap. It uses “abandoned blocks” and “dummy blocks”
to hide sensitive data. Although Pang et al.’s design has the
concept of “dummy blocks”, their design and our MobiCeal
are different in the following aspects: 1) Their design is for
desktop systems, and does not provide technical details on
how the dummy data are written in order to defend against the
multi-snapshot adversary. MobiCeal, on the contrary, designs
a clear “dummy write” mechanism specifically for mobile
devices, which is clearly shown to be secure against the multi-
snapshot adversary. 2) Their design is based on legacy Linux
kernel and requires special APIs for handling hidden files
which may not be applicable to mobile devices. MobiCeal
is incorporated into the block layer, and does not rely on any
specific file system APIs.

Blass et al. present HIVE [[15] to defend against a multi-
snapshot adversary. HIVE relies on the expensive write-only
ORAM, which suffers from a high system overhead and is thus
not suitable for mobile devices. Chakraborti et al. [18]], [19]
improve HIVE, but their design still relies on ORAM, which
cannot fit the resources limited mobile devices. Comparatively,
MobiCeal eliminates the use of ORAM, and is lightweight
enough to be used in mobile devices. Peters et al. introduce
DEFY [33l], a deniable encrypted file system for mobile
devices based on YAFFS [40]. DEFY strongly relies on the
special properties provided by YAFFS file system, which limits



its applications on the existing mobile devices since YAFFS
is rarely deployed. On the contrary, MobiCeal is incorporated
into the block layer, which ensures its broad applications.

VIII. CONCLUSION

In this paper, we propose MobiCeal, a practical PDE so-
lution for mobile devices. MobiCeal is the first block-layer
PDE scheme that is resistant to multi-snapshot adversaries on
mobile devices. MobiCeal is practical since it is file system
friendly and supports fast switching. We have implemented
a prototype of MobiCeal on an LG Nexus 4 phone using
Android 4.2.2 and tested it on a Huawei Nexus 6P phone
using Android 7.1.2 as well. The performance overhead of
MobiCeal is significantly lower than other PDE systems that
can defend against the multi-snapshot adversary, which justi-
fies that MobiCeal suits the application of mobile devices.
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