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Abstract— This paper focuses on development of an active
sensing system for a bicycle to accurately detect and track rear
vehicles. A collision detection sensor on a bicycle is required to be
inexpensive, small and lightweight. A single beam laser sensor
that meets these constraints is mounted on a rotationally
controlled platform for this sensing mission. The rotational
orientation of the laser sensor needs to be actively controlled in
real-time in order to confinue to focus on a rear vehicle, as the
vehicle’s lateral and longitudinal distances change. This tracking
problem requires controlling the real-time angular position of the
laser sensor without knowing the future trajectory of the vehicle.
The challenge is addressed using a novel receding horizon
framework for active control and an interacting multiple model
framework for estimation. The features and benefits of this active
sensing system are illustrated first using simulation results. Then,
extensive experimental results are presented wusing an
instrumented bicycle to show the performance of the system in
detecting and tracking rear vehicles during both straight and
turning maneuvers.

Index Terms—Active sensing, bicycle safety, interacting
multiple model (IMM), vehicle detection, vehicle tracking.

I. INTRODUCTION

Over 49,000 bicyclist-motorist crashes were reported to
police and resulted in 726 bicyclist fatalities in the US in
2012 [1]. Likewise, a recent report from the Insurance Institute
for Highway Safety (ITHS) finds that more than 3,300 bicyclist
fatalities occurred in a five-year period from 2008 to 2012 [2].
In the ITHS study, 45% of the fatalities involved a vehicle
traveling in the same direction as a bicyclist [2]. This implies
that the most common fatal bicyclist-motorist crash is likely by
a vehicle approaching from behind the bicycle. Another report
from the League of American Bicyclists [3] also finds that the
most common bicyclist-motorist collision type is a rear end
collision (40%) which is “a hit from behind”. Additionally, a
sideswipe collision (4%) is also caused by a vehicle initially
approaching from the rear [3]. Therefore, a rear wvehicle
detection and tracking system can be valuable for the safety of
bicyclists. Such a system can be used to predict impending
collisions and provide warnings to both the bicyclist and the
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motorist behind the bicycle. Since a majority of these crashes
are due to motorist being inattentive or careless [3. 4]. the
collision warning system will focus on warning the motorist. If
a danger of collision is detected, the bicycle could provide a
visual alert, followed by a more intrusive increasingly intensive
audio signal if the visual alert is inadequete. Having a sensor
system entirely on a bicycle provides safety enhancement
without a requirement for all the vehicles on the road to be
instrumented with bicycle detection sensors.

Automotive companies have developed a number of forward
collision avoidance systems. Many of these systems utilize
LIDAR or radar sensors or a combination of these [5-9].
However, these sensors are too big and too expensive (typically
costing thousands of dollars) for a bicycle.

Aftermarket camera based collision avoidance systems such
as Mobileye [12] have also been commercially developed for
cars. However, a continuous camera based system is difficult to
power using batteries on a bicycle. Further, such a camera
based system has a hardware cost of over $850 and additionally
requires professional installation ($150) [12].

Another avenue of research has been use of aftermarket
camera systems on cars and buses to detect bicycles and
pedestrians [10, 11]. Bicyclists cannot depend on all the cars on
the road being instrumented with such bicycle detection
systems for their safety. It is likely to take decades before such
systems can achieve adequate penetration among all vehicles
on the road to make bicycling safer.

As opposed to automotive research, very little research
resources are currently spent on improving technology for
bicycle safety. To the best of this research team’s knowledge,
sensor systems for bicycles have been explored only by a few
research teams [13 - 16] and just two companies [17, 18]. The
sensor systems currently explored for bicycles are limited in
that the sensor systems are unable to provide vehicle maneuver
information to bicyclists and do not provide real-time warnings
to the involved motorists. The current sensor systems that have
been explored in literature for a bicycle are summarized in
Table 1.

In this paper, we aim to develop a general target detection
and tracking system which can track a rear vehicle that might be
right behind the bicycle, or in an adjacent lane next to a bicycle
lane, and might be traveling straight or tumning in either
direction. Fig. 1 shows four types of scenarios that are
commonly encountered with respect to rear vehicles and
bicycles. Due to high cost, size and weight constraints on a
bicycle. a low cost laser sensor and a rotating platform are



TABLEI
CURRENT SENSOR SYSTEMS EXPLORED FOR A BICYCLE

Sensor Specific Description
Type Sensor
Sonar MaxBotix = Low cost and low power consumption
[13],[18] MBI1202 - Limited sensing range (less than 10m)
= Does not provide target vehicle maneuver
(passing versus right behind)
Radar [17] Garmun = Long sensing range (up to 140m)
Varia * Dose not provide target vehicle maneuver
(passing versus right behind)
Magneto Honeywell = Good performance for close proximuty and
meter HMC1052L  for most environmental conditions
[14], [15] + Limited sensing range (2m)
= Does not provide target vehicle maneuver
(passing versus right behind)
Optical Sony * Very detailed information
(camera) Handicam = Linuts in weather and lighting conditions
[16] DCR-SX40 + Computationally expensive
I ~N,
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Fig. 1. Four types of scenarios of rear approaching vehicle. (a) Approaching
right behind, (b) Changing lane to the right, (c) Passing by and (d) Changing
lane to the left.

proposed as shown in Fig. 2. The laser sensor has a long range
(35 meters), small size, weight and low cost ($89, single unit
retail) [19]. However, the sensor has only a single laser beam
and low sampling frequency (50Hz). This poses the following
challenges: First, since the target (vehicle) size is much larger
than the spread of the laser beam (~8 milli-radians), the
measurement of the laser sensor will not provide adequate
spatial information of the target such as lateral and longitudinal
position and orientation. For example, unless the measurement
is obtained exactly from a corner of the wvehicle, either
longitudinal or lateral distance between the vehicle and sensor
is uncertain. Second, many researchers estimate the target
kinematics such as position, orientation and velocity based on
measurements from a full scan set (or multiple scans) of an area
of interest on the vehicle using expensive LIDARs [5].
However, a complete scan over the full area of interest takes too
much time using the proposed laser sensor system due to its low
sampling frequency. Due to the above reasons, active sensing
which uses an intelligent algorithm for determining real-time
laser sensor orientation is necessary to track the target
effectively. Here it should be noted that as the rear vehicle’s
lateral and longitudinal positions change, a varying laser sensor
orientation is required in real-time to track the vehicle, as
shown in Fig. 3.

- & .
Fig. 2. Laser sensor system on bicycle. (a) Rear-facing sensor. (b) Zoomed in.

M-‘

Fig. 3. Necessity of changing sensor orientation for tracking.

This paper is organized as follows. In the next section, a
clustering based detection algorithm for identifying a target as
an on-road vehicle and its experimental performance are
presented. Then in Section III, a 1-D vehicle motion tracking
system is provided and its experimental performance is
discussed. In Section IV, a receding horizon optimization
technique for active control and an Interacting Multiple Model
(IMM) framework for estimation used for 2-D vehicle motion
tracking is discussed and its performance studied in simulations
and experiments. Conclusions are presented in Section V.

II. DETECTION OF A REAR APPROACHING VEHICLE

Detection of a target as a rear approaching vehicle is
non-frivial since not only the target vehicle but also the ground
and any other objects in the area of interest can be detected by
the laser sensor and can initiate tracking. A clustering-based
target detection algorithm which also computes the initial
conditions of the target’s position and velocity is proposed. The
flowchart of the proposed algorithm procedure is shown in Fig.
4. The Density Based Spatial Clustering of Application with
Noise (DBSCAN) [20] is utilized in this algorithm and
customized for the bicycle application. The DBSCAN requires
two parameters: a minimum radius Eps and a minimum number
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Fig 4. Flowchart of the proposed target detection algorithm with computing the
initial conditions of target position and velocity.

of points within the radius minPts. Using these parameters, the
DBSCAN can identify clusters by examining the local density
of data in spatial data sets. The laser sensor system initially
keeps scanning over a pre-determined range and stores
measurements to an array. Once a number of stored
measurement data exceeds minPts, the DBSCAN examines the
data to decide whether it constitutes a cluster or not. By setting
proper Eps and minPts, measurements from small objects or
outliers cannot contribute to the cluster. This procedure is
iterated until a cluster is discovered and then a certain number
of iterations unfil other points do not contribute to the cluster.
After the isolated cluster is found, the cluster is examined by its
lateral size. If the size is within thresholds, the cluster is
confirmed as a target vehicle. Otherwise, stored data are deleted
and this procedure is repeated.

Fig. 5 (a) shows the raw experimental data for a rear passing
vehicle. The laser sensor system is fixed on a tripod and
initially scans open-loop with a 30 degrees fixed range. A
vehicle approaches in a straight motion and passes by the
sensor system. The measurements are represented on a 2-D
map (longitudinal versus lateral distance) using range and
orientation of the sensor measurements. Fig. 5 (b) shows the
result using the proposed clustering method. The outliers (small
number of data in isolation) and ground detection points (sparse
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Fig. 5. Results of real laser scans using 30 degrees fixed range. (a) Raw data.
(b) Result using the clustering method (colors present each scans). The Eps and
minPts are used as 0.5 m and 4 respectively.

data) are eliminated.

After the cluster is confirmed as a target, initial conditions of
the target kinematics are computed for better tracking
performance. An initial relative velocity is calculated using
stored data on the center of the vehicle. For instance, most
recent data are used when the sensor system detects a target
with clockwise direction scan. To the next step, the scan
direction is reversed to find initial relative position (right front
corner position) of the vehicle. If the reversed scan direction is
counter-clockwise (CCW), the sensor system scans over the
target until the sensor misses the target. Then, the last
measurement before the sensor misses the target is used as
initial relative position of the target. If the reversed scan
direction is clockwise (CW), the sensor system scans until the
sensor obtains first measurement from the target and the
measurement is used as the initial relative position of the target.
Finally, the target detection is completed, and target motion
tracking and estimation start using the calculated initial
conditions.

III. TRACKING OF ONE-DIMENSIONAL VEHICLE MOTION

To begin with, we assume that the vehicle has only 1-D
motion. The vehicle could be in the same lane as the bicycle, or



Fig 6. Ilustration of 2-D coordinates relative to the bicycle and associated
variables.

in the adjacent lane to the left, if the bicycle is driving in a
bicycle lane or a shoulder as shown in Fig. 1 (a) and (c). A
complete scan over the full area of interest takes too much time
for even 1-D vehicle motion tracking using the proposed laser
sensor system due to its low sampling frequency. Thus, an
efficient control algorithm is needed to control and focus the
orientation of the laser sensor in real-time. In this paper, we
approximate the geometric shape of the vehicle by a rectangular
shape and all variables are defined based on a 2-D coordinate
frame attached to the bicycle as illustrated in Fig. 6, where ¢
and d are the sensor orientation and range measurement, and x
and y are relative longitudinal and lateral distances.

A. Receding Horizon Control for 1-D Motion Tracking

We first consider the case where the vehicle behind the
bicycle is traveling straight without turns. In this case, once the
target vehicle is detected, the system focuses on estimation of
longitudinal distance between the vehicle and the bicycle.
Thus, the sensor system needs to aim at the front of the vehicle
continuously to estimate the longitudinal distance. We address
this problem using the Model Predictive Control (MPC)
approach so as to control the laser sensor to track a reference
point on the front of the target vehicle using limited rotational
angle changes. The sensor system dynamics are

P = il 1
where 1, is sensor orientation control input at time £. It is too
difficult to predict the motion of the target vehicle accurately
over multiple time steps due to unknown desired acceleration
actions. Therefore, we focus on one step prediction of the
motion of the target vehicle to examine sensor orientation
control. During 1-D motion, the lateral distance between a point
at the front of a target vehicle and bicycle is not changing.
Therefore, we can calculate the reference point for sensor
tracking using a point at the front of the target vehicle and
predicted longitudinal vehicle motion during each time sample.
The following optimization problem can be considered:
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where 7., can be obtained by calculating the center location of

the cluster obtained at the time of the target vehicle detection, X

is state vector for the target motion, fi(-) is the target motion

max

model which corresponds to x, and U is a finite set of feasible
control inputs. The control input for the sensor orientation can
be obtained by solving the above optimization problem.
Practically, the sensor orientation will be less than 90 degrees
and larger than -90 degrees in order to scan the area of interest.
First, the optimal solution of the optimization problem without
control input constraints is found where the derivative is zero.
Then, the control input which is closest in value is selected
from within the finite set of feasible control inputs.

Preliminary results were presented earlier by us for just the
1-D case in a conference publication [21].

B. 1-D Vehicle Motion Estimation

A Kalman filter is used to estimate the longitudinal vehicle
motion. The state vector to be estimated is
X=[K v, af 3)
where x, v,, and a, are relative longitudinal distance, velocity
and acceleration. The longitudinal vehicle motion dynamics
can be defined as

1T T2
X.,=101 T |X +w 4)
00 1

where T is the sampling interval and w is process noise. Since
the range and sensor orientation measurements from the laser
sensor system have relatively small noise, we compute an
equivalent measurement in Cartesian coordinates from the true
laser sensor measurement in polar coordinates:

z, =d, cos @, (5)
This sensor measurement is examined by comparing recent
longitudinal distance estimates of the target vehicle. If the
measurement is verified to come from the target vehicle, the
states are estimated using the Kalman filter with the
measurement. Otherwise, the states are estimated by only time
updates. After the estimation, the time update using (4) without
considering process mnoise is conducted to predict the
longitudinal vehicle motion X.,. The predicted longitudinal
distance will be used in (2) to obtain the control input.

C. Simulation Results of 1-D Vehicle Motion

We first implemented the detection algorithm and the 1-D
motion tracking algorithm into Matlab so that our algorithm
could be verified under various simulated vehicle velocities and
accelerations. The simulation environment is constructed using
the dimensions of a bicycle and a vehicle based on a 28" wheel
bicycle and a midsize sedan. Then, the motion of the bicycle
and the vehicle can be expressed by using a linear motion
model [22]. It is worth mentioning that the simulation takes into
account the incidence angle of a laser beam to objects. The 70
degrees maximum which is obtained from experiments is used
as a threshold for maximum incidence angle. Random
measurement noise ~N(0,22[cmy]) is added to this simulation.

A typical situation is simulated in which the bicycle is riding
straight and the vehicle is going on the adjacent lane next to the
bicycle lane as described in Fig 1 (c). The bicycle is moving
with a constant speed of 4.5m/s. The detection is conducted
when the target vehicle is within 25m from the sensor. Two
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Fig 7. Simulation results using fixed range scans.

parameters Eps and minPts of DBSCAN set as 0.5m and 4. The
finite set of control inputs is {-1, 0, 1} in degrees, and @, and
O are -5 and 90 in degrees respectively.

Fig. 7 shows the simulation results using an open-loop fixed
scan range (30 degrees). The location of the sensor is marked
with a red triangle on the plot. It is clear that the measurements
are not available most of the time and estimate updates are
slow. Due to the sparse measurement data, the tracking
performance is poor. The results of the laser sensor motion
control using the receding horizon control method are shown in
Fig. 8. The tracking performance is significantly better and the
estimates are updated very fast by obtaining measurements
almost continuously.

D. Experimental Results of 1-D Vehicle Motion

We conduct experiments involving 1-D vehicle motion in
which a vehicle is passing by a bicycle without turns. In order
to verify the proposed control and estimation method, a tripod
is used to station the laser sensor system on a rotating platform
and the lateral distance between the sensor system and the
passing vehicle is approximately 2m. An Arduino Mega
microcontroller is utilized to implement the proposed detection
algorithm and the 1-D vehicle motion tracking methods. The
results are well-matched with simulation results and show that
the sensor system can track the vehicle position very well as
shown in Fig. 9.

IV. TRACKING OF TWO-DIMENSIONAL VEHICLE MOTION

In this section, we aim to develop and demonstrate a more
general target tracking system which can track both a rear
approaching vehicle that might be right behind the bicycle, or a
rear vehicle in an adjacent lane next to a bicycle lane, and might
be either traveling straight or turning in either direction. Fig. 1
shows four types of scenarios that are commonly encountered
with respect to rear vehicles and bicycles. We expand the idea
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of 1-D motion tracking to 2-D motion tracking to track the right
front comer of a target vehicle. Like 1-D motion tracking, a
desired orientation for the laser sensor system is determined at
every sampling time instead of waiting for the end of an
open-loop scan range. From this data, despite using a single
beam laser sensor with low sampling frequency, not only
acquisition of both lateral and longitudinal information but also
more robust tracking rather than using small area scanning can
be accomplished. We develop a receding horizon controller
with an interacting multiple model estimation framework.

Preliminary results of 2-D case were presented earlier by us
in a conference publication [23].

A. Receding Horizon Control for 2-D Motion Tracking
For 2-D vehicle motion tracking, we aim to track the right



front corner of a target vehicle by measuring alternately
distances to the front and side of the vehicle at points close to
the right front corner, since tracking this corner provides both
lateral and longitudinal distance information. Therefore, the
reference point for orientation control needs to be changed
depending on the corresponding selection of which information
(longitudinal or lateral) is needed. The following optimization
problem is therefore constructed for orientation control:

r - 2
Ln‘ Vin 6
arg min/|——=
Uy

Y _tan(g, +u, )| .
« |if longitudinal distance is desired

R

Up = R 2
. Vin
arg min|——*——tanl¢@, +u, ) .
guk _‘Qk_'_l +6x (¢k k (6)
‘if lateral distance is desired
subject to  X;,; = Jie (X3, Vin = Jox (X,
Xpn >0

u, e, @, <@ +u, <
where fi(+) is the target motion model which corresponds to v,
and J, and J, are certain distance margins which are used to
construct reference points on the target vehicle. The margins
need to be small enough for fast measurement updates and to be
large enough for robustness to deal with vehicle maneuver
changes. Once the vehicle is passing next to the bicycle (i.e., X
< 0), the sensor system focuses on measuring the lateral
distance since it is not possible and not useful to obtain the
longitudinal distance.

It is ideal to obtain the longitudinal distance and lateral
distance alternately to deal with vehicle maneuver changes. As
soon as obtained information is verified (determination of
whether the reflected beam is from the front or side of the
vehicle), the reference point needs to be switched to seek the
other information. However, it is difficult to determine the
location (front or side) of the reflection using only one
measurement. Also, every reflection from side or front of the
vehicle is not always detectable. For instance, when the target
vehicle is far from the sensor, the sensor cannot obtain
reflections from the side due to the geometry, i.e., the incidence
angle is too large to reflect enough intensity of the beam to the
sensor. Similarly, when the target vehicle is very close to the
sensor with significant lateral distance (passing vehicle), the
sensor cannot obtain reflections from the front. In order to
account for these different situations. a finite state machine is
utilized with two states: a Front state and a Side state as shown
in Fig. 10. The state transitions occur based on the examination
of current and previous range measurements d; and d,,. For
notational simplicity, we define hif; as an indicator on whether
the measurement is from the target vehicle or not at time & in
Fig. 10.

max

. 1. if measurment is ffom the target vehicle
hit, = . (7
0. otherwise
As discussed before, the initial state starts from the Front. In

case of not having any measurements from the target vehicle at
both current and previous time, we assume that the state
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Fig. 10. State diagram for determination of reflection location on a vehicle.

remains the same. When the measurement can be obtained at
only one of either current or previous samples, a transition from
the current state to the other state occurs. If the sensor system
acquires two measurements in a row, the decision differs based
on the value of the current state. A transition from Front to Side
occurs when the subtraction between the projections of the
range measurement to longitudinal axis x;* at previous and
current time is negative, ie., xp-; — xp' < 0. Otherwise, the
state machine remains at the curent state, Fronf. When the
current state is Side, it remains same if the slope from two
measurements corresponds with the orientation of the vehicle.
Otherwise, a transition from Side to Front occurs. Practically,
the measurements contain noise and the orientation of the car is
hard to estimate accurately using the single beam laser sensor
system. Instead of using the strict rule above, we use upper
bound for the orientation of the vehicle. The revised condition
for the transition from Side to Front is the following:
m Jm
tan—{)’:'—l _.}:; J - gub‘k )
X1~ X

where y;7" is the projection of the range measurement to lateral
axis at time 4. The upper bound threshold 8,,, that accounts for
passing and left turning car maneuvers is obtained using the
estimate of the vehicle orientation and an error margin.

Oupi = ék +6, )

B. 2-D Vehicle Motion Estimation

The 2-D motion of a vehicle is very difficult to be described
by only one model since it has basically two distinct
maneuvers: straight motion and turning motion. Hence, we
present the motion of the vehicle using two models (straight
motion and turning motion models) rather than using just one
model. There are practical algorithms to estimate target
kinematics using this multiple model approach such as
generalized pseudo-Bayesian approaches and an interacting
multiple model estimation algorithm [24]. In this paper, the
Interacting Multiple Model (IMM) algorithm is utilized
because the IMM algorithm is considered to be the best
compromise between complexity and performance [24].

The IMM system operates multiple filters using the different
models in parallel, and computes state estimates using suitable



mixing of the estimates and covariance from the two models.
The IMM consists of three steps: mixing, mode-matched
filtering and combination steps. In the mixing step. the

estimates x7,,  and covariance p/,,  from each of the filters

(j=1.....r) at the previous iteration are mixed to provide the
inputs to each filter.  is the number of models utilized. The
algorithm of the mixing step is the following:

Pyl
Z;Pqﬂ;,k—l |
where 1, is called mixing probabilities and p; is mode transition

probabilities which containing the probability of transitioning
from mode i toj. Then initial inputs are
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F &Lk—l = ;: Hij 1k {R:-uk—l + (11)

[X, ;—llk—l -X I?jllk—l ]
[X;—llk—l _Xl?jllk—l]r}ﬁ Jj=L...r

Each of the filters with the inputs are executed in the mode
matched filtering step. Also, the likelihood and mode
probability update are computed as

A, =N(z,—Z].S]). j=L...r
AJ'Jr z; P u‘«uf,k-1

Z; Aj',k Z.Ll P i‘j«uf,k—l 1

where s/ is the measurement covariance from each filter.

(12)

My = j=L...r

Lastly, the estimates from each filter are combined and
finalized in the combination step. The procedure is the
following;:
KX = ZXF;)“U;,&
=
Py = Zﬂj,k {B{;k +[XI':|k_Xk +) (13)
Jj=
[X ék -X Kk ]T}
More details for the theory behind the IMM can be found in
[24]. Future vehicle motion can be predicted and computed in
the IMM framework. After the estimates are obtained, the
mixing step is conducted to calculate the mixed initial
conditions for the next iteration using (10) and (11). Then,
predictions for each mode are computed using its models as
Xl =" X0, j=Llor (14)
The predictions of vehicle motion in (6) can be obtained from
Xeow =X Klnttys (15)
j=1
The Constant Velocity model with Polar velocity (CVP) and
the nearly Coordinated Turn model with Polar velocity (CTP)
[25] are used in the IMM framework. The state vector is
X=[x yv e co]:r (16)
where v is the polar velocity and @ is the angular velocity in the
sensor body frame. The discrete-time state space equation for

the CVP model [25] is given by

[ x+vT cos(8) |
y+vT sin(f)
X, = v +W,, (17)
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L 0 Ak
where ., 1s zero mean with covariance as
. O-Ex 0 2 2100
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The discrete-time state space equation for the CTP model [25]
and its process noise covariance matrix are given by
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Since the state space models above are nonlinear, linearized
models are used for the Extended Kalman filter combined with
the IMM (IMM-EKF).

As discussed earlier, the measurement often contains only
partial information about the corner position. Therefore, a
validation step for the measurement is needed to utilize only
information which corresponds to the corner position of the
vehicle. When the measurement is obtained from the front of
the vehicle, the projection of the measurement to longitudinal
axis provides correct longitudinal distance. However, the
projection to lateral axis does not provide correct lateral
distance. In order to keep the correct lateral distance, prediction
and modified projection are compared and the minimum value
is taken as the correct lateral distance. Then the measurement
set can be represented as

+ Wik

(19)

d, cos ¢,
BT |:m.|.n ﬁk+].|k=dk Siﬂ(ﬁf’k U )]:| (21)
When the measurement is obtained from the side of the vehicle,
the projections of the measurement provide correct lateral
distance but not longitudinal distance. Similarly, the
measurement set can be expressed in this case as
m(ihllk .d, cosd,)

T |: dysing, :| @2)
This approach is based on the assumption that the true value is
the minimum between the projection and prediction of the
measurement. It is possible that this assumption gives rise to a
wrong result. For example, when the target vehicle is changing
lane to the left and the measurement is obtained only from the
front of the vehicle, the assumption is no longer valid and
provides wrong vehicle maneuver. In order to overcome this

problem, virtual measurements x,, and y,, are introduced as



if the state is Front

Xoirk = j}k+1|k /tang, ,
{ if the stae is Side 23)

Voirk = JQ‘r:+w; taﬂ(ﬁf’t 'H‘xl
When measurements cannot be obtained, we know that there is
no target vehicle along the line of the sensor orientation.
Meanwhile, the target vehicle is located near the line of the
sensor orientation since the sensor scans near the corner
position. Using this information, measurement validation can
be conducted based on the determination of the reflection
location using the finite state machine as shown in Fig. 10. If
the reflection location is Front, the measurement set can be
determined as

. 24
Y ( )

|:‘u1ax(xvir,k B ;;Hllk ):|
z, =

Similarly, if the reflection location is Side, the measurement set
can be defined as

z. = i.Hl]k
' |:max(yvir._k =j}k+]_|];):| (25)

Then, a measurement model and its noise covariance matrix are

10000
%e=lo 100 of T (26)
R_O'f 0 27

This method prevents estimates from getting stuck at wrong
predictions, allows utilizing a simple linear measurement
model and enhances the estimation performance by capturing
the vehicle maneuver more quickly.

C. Simulation Results of 2-D Vehicle Motion

In this section, results from simulations using the proposed
active sensing algorithm are presented. The simulation
environment is built using Matlab as described in Section III C.

The four scenarios as shown in Fig. 1 are simulated using the
proposed active sensing algorithm. The initial velocity of the
bicycle and the target vehicle set as 4m/s and 11.2m/s
respectively. The detection is conducted when the target
vehicle is within 30m from the sensor. A pre-determined scan
range for the detection is from -6 to 15 in degrees. Two
parameters Eps and minPts of DBSCAN set as 0.5m and 3. In
the tracking stage, the finite set of control inputs is {1, 1.5,
+2} in degrees based on the reference points at the front or side
of the target vehicle. We use J, and &, as +0.1m. The @, and @p..
are -5 and 90 in degrees respectively. For estimation using
IMM, the process and measurement noise parameters are a,,= 0,
Oy, =3, 04, =7, 0,=200,0,=0.8, 0,=5 and g, =15. Also, we use
following mode transition matrix:

099 0.01
[0.01 0.99}

Fig. 11 and 12 show the simulation results using the
proposed active sensing algorithm. Each simulation results
from (a). (b). (c) and (d) in Fig. 11 and 12 correspond with the
scenarios of (a). (b), (c¢) and (d) in Fig. 1. The location of the
sensor is marked with a red triangle on the plots. We can see
that the sensor system tracks and obtains measurements near

the true position of the corner of the target vehicle. Also, results
show that the IMM-EKF provides good estimation

(28)

performance for all the four scenarios. The root mean squre
error (RMSE) of position estimates is shown in Table IIL
Despite the fact that there are both initial position uncertainty
and unknown accelerations, the estimation error is small.

D. Experimental Results of 2-D Vehicle Motion

Experiments are conducted in order to verify the
performance of the proposed active sensing algorithm in
situations corresponding to all the four scenarios of Fig. 1, of

i) a vehicle approaching right behind a bicycle,

ii) a rear vehicle with a lateral offset initially going straight

and then changing lanes to the right,

iii) a rear vehicle with a lateral offset passing by a bicycle,

and

iv) a vehicle right behind a bicycle which then changes lanes

to the left from behind the bicycle.

In the experiments for scenario i), the vehicle stops quickly
before a collision occurs as shown in Fig. 14 (a). The proposed
algorithm is implemented on the sensor system shown in Fig. 2.
A Teensy 3.2 microcontroller is utilized as the processor for
implementation of the proposed algorithm. The same
parameters and optimization constraints are used as in the
simulation. Fig. 13 and 14 show the experimental results. From
the experimental data, it can be seen that the proposed active
sensing algorithm provides good tracking performance in all
four scenarios. It is very difficult to obtain true trajectories of
the vehicle, so we recorded experimental videos and evaluated
the tracking performance by comparisons with the video. Also,
we can evaluate the performance of experimental results by
comparing with the simulation results. The time evolutions of
the sensor orientation and vehicle position estimates are almost
identical between the simulation and experimental results for
corresponding vehicle maneuvers. As the vehicle is
approaching right behind the bicycle, the sensor orientation is
controlled to zero degree to track the target vehicle in both
simulation and experimental results, as shown in Fig. 11 (a),
(b). and Fig. 13 (a), (b). Similarly, the sensor orientation is
eventually controlled to 90 degrees to track the passing vehicles
in both simulation and experimental results, as shown in Fig. 11
(c). (d), and Fig. 13 (c). (d). There are some differences in
estimated mode probabilities between the simulation and
experimental results because it is difficult in practice for the
vehicle and bicycle to travel perfectly straight. Also, the tilting
and yawing of the bicycle affect its estimation. However, the
results of the estimated mode probabilities show very similar
trends at the significant vehicle maneuver changes. The
experimental results verify that the sensor system using the
proposed active sensing algorithm successfully tracks the target
vehicle for all four vehicle scenarios.

In simulations done by this research team, collision from rear

TABLE I
RMSE oF POSITION ESTIMATION

. Longitudinal Lateral distance
Vehicle maneuver distance error [m] error [m]
Approaching right behind 0.018542 0.000001
Changing lane to the left 0.045486 0.076450
Passing by 0.036887 0.049382
Changing lane to the right 0.047562 0.111205
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Fig. 11. Simulation results of sensor orientation, true trajectories, measurements and estimates on 2-D map, and estimated mode probabilities for target vehicle
maneuver corresponding to (a) Approaching right behind, (b) Changing lane to the right, (c) Passing by, and (d) Changing lane to the left.
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Fig. 12. Simulation results of relative velocity estimates for target vehicle maneuver corresponding to (a) Approaching right behind, (b) Changing lane to the right,

(c) Passing by, and (d) Changing lane to the left.

vehicles can be prevented safely. even after allowing for a 1
second reaction time of the driver (the driver starts braking 1
second after the alert is sounded) and requiring a 3m safety
distance margin (the vehicle stops 3m before the bicycle). The
alert is provided to both the driver and bicyclist when the time
to collision between the vehicle and bicycle is less than 1.85
seconds. As long as the maximum allowable relative velocity is
11.9 m/s and the range of the laser sensor is 25m. the rear
collision can be prevented. This maximum relative velocity
might be adequate for an urban road, but higher relative
velocities could be encountered on a rural road. Unfortunately,
the only way to allow for higher relative velocities is to
incorporate sensors with larger range measurement.

Once a vehicle has been detected, the developed vehicle
tracking system was found to work successfully for continuous
tracking of the vehicle’s lateral and longitudinal positions.

However, one situation in which the tracked vehicle can be lost
is during significant yaw and tilt motion of the bicycle. Normal
tilt and yaw during riding on a straight road was not a concern,
except that it could reduce the working range of the laser sensor
from 35m to 20m.

V. CONCLUSIONS

Cost, size and power constraints highly limit the type of
sensor that can be used on a bicycle for tracking distances to
other vehicles on the road. This paper proposed a single beam
laser sensor mounted on a rotationally controlled platform for
detection and tracking of rear vehicles, in order to provide
collision warnings to both the motorist and bicyclist. Since the
laser sensor could only measure one reflection at a time, the
rotational orientation of the laser sensor needed to be controlled
in real-time in order to detect and continue to focus on the



c M ts and on 2-D > 1
=] r 1 . r
g L +  Measurement o5 Mode 1
ET Estimate &8s —— Mode 2
£ E af . 8, —
s Eﬂ =0 o | Y Ll TSI 4 % & 0
g we
g .20 L N N i d 5~ N - N N N n E ol i N s
0 2 4 6 8 35 30 25 20 15 -10 5 0 0 2 4 [ 8
Time [sec] (a) X[m] Time [sec]
c Measurements and Estimates on 2-D
40 G‘ 1
S r 1 [
8l R — — £ =
§ — 6t +  Measurement k-3 Mode 1
5 H E'“ Estimate % g ——— Mode 2 |
=5 - ' o
4 Ellne o P " Efs
SE of w > 40
@ °
E L o
g a0 | | 2t i I : : ; ; | 2 ol
0 2 4 6 ] 10 =35 =30 -25 =20 <15 =10 5 ] 0 2 4 [ 8 10
Time [sec] (b) X[m] Time [sec]
5 100 M and Esti on 2-D >
= b =
g — 8 ®  Measurement 2 -1 Mode 1
| § 50 ¢ - 8] Estimate 53 ———Mode2
58 E 4} 'y £ Sos
52 o >4 2 Wikia, Wby 2ot g ,_..n.-‘i E =
@ or =
g e
g 50! s " N N i 2k . s . s 2 E ol . . n .
0 2 4 L] 8 10 -35 -30 -25 -20 15 10 -5 ] o 2 4 L] 8 10
Time [sec] ( ) X[m] Time [sec]
S 00 o M and E on 2D 21
r sl r . I
g _ 6| * Measurement - Mode 1
| ¥ ] Y Estimate 2= —— Mode 2
L J " 2
52 S, s 1 '
s= 0 of ¥ %Wﬁy > oo
@ wg
c 2. % o
S w0l | [ £ ol
0 2 4 6 8 10 12 14 =35 30 -25 -20 -15 =10 -5 0 0 2 4 6 8 10 12 14
Time [sec] X[m] Time [sec]

(d)

Fig. 13. Experimental results of sensor orientation, measurements and estimates on 2-D map, and estimated mode probabilities for target vehicle maneuver
corresponding to (a) Approaching right behind, (b) Changing lane to the right, (c) Passing by, and (d) Changing lane to the left.
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Fig. 14. Experimental results of relative velocity estimates for target vehicle maneuver corresponding (a) Approaching night behind, (b) Changing lane to the right,

(c) Passing by, and (d) Changing lane to the left.

tracked vehicle, as the wvehicle’s lateral and longitudinal
distances keep changing. This tracking problem requires
controlling the real-time angular position of the laser sensor to
stay focused on the vehicle, even without knowledge of the
vehicle’s future trajectory. The challenge is addressed by an
active sensing algorithm which uses a novel receding horizon
framework for active orientation control and an interacting
multiple model framework for vehicle state estimation. The
receding horizon controller determines the optimal control
input to the sensor based on predicted future vehicle motion
under control input constraints. The vehicle motion is predicted
in the interacting multiple model framework. The interacting
multiple model allows for different types of vehicle maneuvers.
Simulation results were presented to show the performance of
the developed tracking control system. Extensive experimental
results were also presented from an instrumented bicycle to

show the performance of the system in detection and tracking
of rear vehicles during both straight and turning maneuvers.

The sensor system developed in this paper can be combined
with video technology to help trace the car involved in a
hit-and-run crash. For example, it is possible to equip the
bicycle with one laser sensor system for measurement of
distances and one camera for simple low frame rate video
recording. This combination could provide both good collision
avoidance performance and video recording of hit-and-run cars.

A future six-month field operational test (FOT) is planned to
be conducted involving 10 bicycle commuters with significant
daily urban commutes. Such a field operational test will more
extensively test scenarios that might be rare and might not yet
have been anticipated by the authors.
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