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Abstract—Many popular applications use traces of user data
to tune services to their users but come with a significant risk to
user privacy. In particular, even if user traces are anonymized,
statistical matching of these traces to prior user behavior can be
used to identify the user and their behavior. Because of this threat,
there has been significant recent work exploring the theoretical
foundations of this problem in the limit of a large number of
users and/or observations, where the asymptotic nature of the
approaches allows for clean analytical results. In this paper, we
turn attention to exact performance analysis for a finite number
of users and observations. We consider the case where a user is
distributed over a discrete set of states according to a probability
distribution drawn at random, which we assume is known to the
adversary based on his/her analysis of past user behavior. The
finite-length traces are then anonymized and obfuscated at a
cost in user utility. We analyze the ability of the adversary to
correctly identify user data samples as a function of the rate
of anonymization and degree of obfuscation, and we arrive at
complicated yet readily numerically evaluated expressions. These
results allow us to investigate interesting questions left open by
the asymptotic nature of previous work.

Index Terms—Privacy Protecting Mechanism (PPM), Mobile
networks, Internet of Things (IoT), Anonymization technique,
Obfuscation technique.

I. INTRODUCTION

SMART cities, connected vehicles, smart homes, and con-
nected healthcare devices are examples of how the Internet

of Things (IoT) will be revolutionizing our lives in the decades
ahead [1]–[4]. IoT devices will be generating an astounding
amount of data every second in the near future. This data will
inherently contain significant amounts of private information
about IoT device users. Due to the importance of privacy,
there have been many works on inventing new methods
or improving existing methods to protect user privacy [5]–
[14]. Even if privacy-preserving mechanisms (PPMs) such as
anonymization of user identities and obfuscation of submitted
data are employed, significant privacy leaks can occur due to
the sheer amount of the data generated and powerful statistical
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inference techniques available to potential adversaries [15]–
[19].

Although, the implementation details might vary, we can
generally divide PPMs into two broad categories. The first is
identity perturbation or anonymization [11], [20]–[24]. In this
technique, user or device IDs are replaced with pseudonyms
in order to prevent data leakage. Thus the mapping between
the users/devices and their data is hidden to the adversary. The
second category is data perturbation or obfuscation [13], [25],
[26]. In these techniques, the data generated by IoT devices is
perturbed such that the adversary is not able to infer private
information from the noisy version of the IoT data. In this
research we study both techniques and their combination.

One of the most effective ways to break the privacy of
users is to statistically match prior user behavior with the
user traces of interest [27]–[30]. Unnikrishnan [24], [31]
provides a comprehensive analysis of asymptotically optimal
matching of time series to source distributions in the non-
Bayesian case. Here we consider a stronger adversary whom
has used observations of past user behavior to obtain an
accurate statistical model of each user’s behavior.

However, utility and privacy are conflicting goals. When
employing anonymization, changing the pseudonym of users
frequently results in achieving higher privacy but decreases
usability and functionality by concealing the temporal relation
between a user’s data samples. When we employ obfuscation
techniques, adding noise to the reported values of user data
will decrease the level of utility. As a result, understanding
how privacy is preserved while utility is maximized is an
important issue. Hence, we seek to obtain the minimize level
of anonymization and obfuscation to achieve theoretically
guaranteed privacy.

While there has been enormous interest in IoT privacy,
there is currently a noticeable gap: a unifying theory of IoT
privacy does not exist. The work in [11]–[13], [23] pursued
quantitative approaches to privacy, yet all of these works lack a
solid theoretical framework. In this paper, we obtain the exact
expression for the identification probability for the binary case,
where there are two possible states {0, 1} for each sample
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of each user’s data, and a finite number of users and data
samples, while employing both anonymization and obfuscation
techniques.

The work in [32]–[35] is the most related work to that
in this paper. In [32]–[35] the concept of perfect privacy is
defined and the limits of privacy are characterized. However,
these papers limit their consideration to the asymptotic case.
Here, we obtain the exact expressions for the discrete and finite
case where user data samples are independent and identically
distributed (i.i.d.) and independent of other users’ data sets.
Our companion paper [36] studies a similar problem in the
case with Gaussian observations. Our results, while exact,
are unwieldy. Similar to [36], the expression for the error
probability could be used in asymptotic analyses to approach
the problem from a different perspective from the information
theoretic approach used in [33]. In addition to its potential in
asymptotic analyses, we demonstrate here how the results can
be used to answer meaningful questions in the application. In
particular, [33] indicates that, given enough obfuscation, the
length m of the observed traces does not matter. Likewise,
given a large enough m, obfuscation is not needed. And,
conversely, if both are beneath their thresholds, a user does
not have privacy. This gives the idea that the two methods
work independently, and never need be employed in unison.
Here, our expression for the finite case allow us to investigate
whether this is true for smaller (practical) values of the number
of users n and sequence length m.

Notation: In this paper P
(
X = x

����Y = y

)
is used for the

conditional probability of X = x given Y = y. When we write

P
(
X
����Y )

, we are referring to a random variable that is defined

as a function of Y .

II. SYSTEM MODEL AND METRIC

Consider a system with n users and denote Xu(k) as a
sample of the data of user u at time k, which we desire to
protect from the adversary. In the discrete case, there is a
countable number of possible states for each sample of each
user’s data. However, here we consider the binary case, where
the data is restricted to {0, 1}. User u is distinguished by Pu

the probability that Xu(k) = 1 for any k. Per Section I, we
assume the adversary knows Pu , u = 1, 2, · · · , n, based on prior
observations of the users, and it is this statistical knowledge
that he/she will employ to identity users by the characteristics
of their data traces. Finally, Pu , u = 1, 2, · · · , n, are drawn
independently from a distribution fP .

As shown in Figure 1, we employ both anonymization
and obfuscation techniques to protect the users’ identities. In
Figure 1, Zu(k) is the reported sample of the data of user u
at time k, where Zu(k) has a Bernoulli distribution with the
obfuscated probability of being in state 1 denoted as P̃u . Yu(k)
is the data of user u at time k after applying both obfuscation
and anonymization; Yu(k) has a Bernoulli distribution with the
estimated probability of being in state 1 denoted as P̂u .

Obfuscation: The obfuscation is characterized by random
variables, Ru , u = 1, 2, . . . , n, which are drawn independently

Fig. 1: The sequence Zu(k), k = 1, 2, . . . ,m, is the obfuscated
version of Xu(k), k = 1, 2, . . . ,m, and the sequence Yu(k),
k = 1, 2, . . . ,m, is observed by the adversary after Xu(k), k =
1, 2, . . . ,m, is obfuscated and anonymized.

from a distribution fR. The value of Ru is the probability that a
sample of the data of user u is intentionally reported with error.
Hence, the effect of the obfuscation is to alter the probability
Pu , u = 1, 2, . . . , n of each user in a way that is unknown to
the adversary, since the obfuscation is independent of all past
activity of the user. For the binary case, where there are two
states (state 0 and state 1) for a user’s data pattern, we can
write

Zu(k) =
{

Xu(k), with probability of 1 − Ru .

1 − Xu(k), with probability of Ru .

Anonymization: Anonymization is modeled by a random
permutation Π such that for user u, the pseudonym of Π(u)
is assigned. The users’ identities are permuted after each m
samples, i.e., the observation sequences which the adversary
uses to perform statistically matching are of length m. We can
write

Yu(k) = ZΠ−1(u) and Zu(k) = YΠ(u).

The adversary attempts to identify the users based on the
observations. Per above, we assume a powerful adversary who
has complete statistical knowledge of the users’ behavior,
which means that he/she knows Pu and their distribution
fP , for u = 1, 2, . . . , n. The adversary does not know the
instantiation of Ru , u = 1, 2, . . . , n, or the permutation Π for
each time period of length m.

The goal of the adversary is to correctly identify the users
(i.e., figure out the instantiation of the permutation Π) based on
his/her observation of YΠ(u)(k), k = 1, 2, . . . ,m, u = 1, 2, . . . , n.
We illustrate this in Figure 2, where the adversary tries to sta-
tistically match each Pu , u = 1, 2, . . . , n, to their corresponding
observation sequences YΠ(u), u = 1, 2, . . . , n in order to identify
them.

Fig. 2: The goal of the adversary: match each Pu of
user u for u = 1, 2, . . . , n to each observed sequences
YΠ(u)(1),YΠ(u)(2), . . . ,YΠ(u)(m) for u = 1, 2, . . . , n.

Our metric is the adversary’s probability of being correct,
which is the probability that the adversary identifies the data
of user u successfully.
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Here we assume the distribution fP and the distribution fR
to be uniform [32]. Note that the problem is still Bayesian
because the adversary knows Pu and their distribution fP , for
u = 1, 2, · · · , n.

III. ANALYTICAL AND NUMERICAL RESULTS

A. Privacy with Anonymization
In this section, we consider the case where only anonymiza-

tion is employed to provide user privacy. The identification
problem can be formulated as a hypothesis testing problem,
with the optimal test a straightforward adaptation of the work
in [37]. This paper provides an optimal hypothesis test in
the case where the adversary has training sequences from the
same group of users. Here, the optimal test can be obtained by
replacing the empirical number of ones in [37] with the true
(ensemble) values of Pu, u = 1, 2, · · · , n. Thus, the optimal test
is given by:

Theorem 1. The optimal hypothesis test in the case with
binary observations and n users is given by: 1) Order (either
descending or ascending) the data sequences by the number
of ones they contain, and order {Pu, u = 1, 2, · · · , n}; 2) match
each data sequence to the Pu (and hence, the user) at the same
position in these orders.

Let As , s = 0, 1, . . . , d n2 e − 1 be the event that: 1) exactly s
of the users have Pu ≤ P1 but sum of observation sequence∑m

k=1 YΠ(u)(k) ≥
∑m

k=1 YΠ(u)(k) (we term this as "user moves
from left to right"), and 2) exactly s users have Pu ≥ P1 but
sum of observation sequence

∑m
k=1 YΠ(u)(k) ≤

∑m
k=1 YΠ(u)(k),

(we term this as "user moves from right to left") for u =
1, 2, . . . , n. Given that A0, A1, · · · , Ad n2 e−1 are disjoint, the
probability Ps that the adversary detects user 1 correctly is
given by

Ps = P ©­«
d n2 e−1⋃
s=1

As
ª®¬ =

d n2 e−1∑
s=0

P(As).

We denote P̂u =
m∑
k=1

YΠ(u)(k), u = 1, 2, · · · , n, as the

estimation of Pu based on the observed sequence. Thus, in
order to obtain P(As |P1, P̂1), we first consider the probability
that a user moves from left to right, which we denote as
PL→R(P1 = p1, P̂1 = p̂1), and the probability that a user moves
from right to left, which we denote as PR→L(P1 = p1, P̂1 =
p̂1). So we have,

PL→R

(
P1 = p1, P̂1 = p̂1

)
=

= EPu

[
P

({
User u moves to right

}����{User u starts on left
})

· P
({

User u starts on left
}����Pu, P1 = p1, P̂1 = p̂1

) ]
= EPu

[ m∑
l= dp̂1 ·me

(
m
l

)
Pl
u (1 − Pu)m−1 I{Pu ≤p1 }

]
=

∫ p1

0

m∑
l= dp̂1 ·me

(
m
l

)
plu (1 − pu)m−1 dpu .

Likewise,

PR→L

(
P1 = p1, P̂1 = p̂1

)
=

= EPu

[
P

({
User u moves to left

}����{User u starts on right
})

· P
({

User u starts on right
}����Pu, P1 = p1, P̂1 = p̂1

) ]
= EPu

[ bp̂1 ·mc∑
l=0

(
m
l

)
Pl
u (1 − Pu)m−1 I{Pu ≥p1 }

]
=

∫ 1

p1

bp̂1 ·mc∑
l=0

(
m
l

)
plu (1 − pu)m−1 dpu .

Because a user’s movement left-to-right or right-to-left is
independent of other users when conditioned on P1 and P̂1, we
obtain P

(
As |P1, P̂1

)
by employing a multinomial distribution

with three categories. We denote N1 as the number of users
that move from left to right, N2 as the number of users that
move from right to left, and N3 as the number of remaining
users. Then,

P
(
As |P1, P̂1

)
= P (N1 = s, N2 = s, N3 = n − 2s − 1)

=
(n − 1)!

k!k!(n − 2k − 1)! PI (P1, P̂1)sPI I (P1, P̂1)sPI I I (P1, P̂1)n−2s−1,

where PI = PL→R, PI I = PR→L , and PI I I = 1−PL→R−PR→L .
Thus, the probability that the adversary successfully identi-

fies user 1 is given by:

Ps =EP1, P̂1

[ d n2 e−1∑
s=0

P
(
As |P1, P̂1

) ]
=

∫ 1

0

m∑
h=0

d n2 e−1∑
s=0

P
(
As |P1, P̂1

)
fP1 P̂1
(p1, h)dp1. (1)

where, noting p1 is uniformly distributed on [0, 1],

fP1 P̂1
(p1, h) = fP̂1 |P1

(h|p1) · fP1 (p1)

=

(
m
h

)
ph1 (1 − p1)m−h .

To get some insight into the effect of anonymization on
privacy, we show the probability of correct (Ps) in Figure 3,
and compare the theoretical results in (1) with simulation re-
sults. As expected, the theoretical results match the simulation
results. We can also notice that if we decrease the number m
of observations per user, or increase the number n of users,
the probability of correct decreases. This shows more users
and a higher level of anonymization achieve more privacy, as
expected.

B. Privacy with Anonymization and Obfuscation

In this section, we employ both obfuscation and anonymiza-
tion techniques to achieve privacy, and consider how these two
techniques combine with each other to affect user privacy.

Recall that the obfuscation is characterized by a random
variable Ru , u = 1, 2, · · · , n, which given the probability that
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Fig. 3: Comparison of simulation and theoretical results for
correct probability (Ps) in identifying a given user when there
are 2 users, 5 users, and 8 users in the case that only the
anonymization technique is employed.

any data sample of user u is changed to a different data sample
by obfuscation. We assume Ru is distributed uniformly over
[0, a], where a is noise level.

Let us define P̃u as the probability of Xu(k) = 1 after
obfuscation; then we have

P̃u = Pu + Ru(1 − 2Pu)

Similar to the previous part, the probability that the adver-
sary correctly identifies the data trace of user 1 is given by:

Ps = P ©­«
d n2 e−1⋃
s=1

As
ª®¬ =

d n2 e−1∑
s=0

P(As).

To obtain P(As |P1, R1, P̂1), consider the probability
a user moves from left to right, which we denote
as PL→R

(
P1 = p1, R1 = r1, P̂1 = p̂1

)
and the probability a

user moves from right to left, which we denote as
PR→L

(
P1 = p1, R1 = r1, P̂1 = p̂1

)
. Now,

PL→R

(
P1 = p1, R1 = r1, P̂1 = p̂1

)
=

EPu,Ru

[
P

({
User u moves to right

}����{User u starts on left
})

· P
({

User u starts on left
}����Pu, Ru, P1, R1, P̂1

) ]
= EPu,Ru

[ m∑
l= dp̂1 ·me

(
m
l

)
P̃l
u

(
1 − P̃u

)m−1 I{Pu ≤p1 }

]
=

∫ p1

0

∫ a

0

m∑
l= dp̂1 ·me

(
m
l

)
p̃lu (1 − p̃u)m−1 ·

(
1
a

)
drudpu .

Fig. 4: Comparison of simulation and theoretical results of
the correct probability (Ps) in identifying a given user when
there are 2 users, 5 users, and 8 users in the case that both
obfuscation and anonymization techniques are employed. The
noise level is fixed as a = 0.5.

Likewise,

PR→L

(
P1 = p1, R1 = r1, P̂1 = p̂1

)
=

EPu,Ru

[
P

({
User u moves to left

}����{User u starts on right
})

· P
({

User u starts on right
}����Pu, Ru, P1, R1, P̂1

) ]
= EPu,Ru

[ bp̂1 ·mc∑
l=0

(
m
l

)
P̃l
u

(
1 − P̃u

)m−1 I{Pu ≥p1 }

]
=

∫ 1

p1

∫ a

0

bp̂1 ·mc∑
l=0

(
m
l

)
p̃lu (1 − p̃u)m−1 ·

(
1
a

)
drudpu,

As a result, for obtaining P
(
As |P1, R1, P̂1

)
, we write the

multinomial distribution as

P
(
As |P1, R1, P̂1

)
= P (N1 = s, N2 = s, N3 = n − 2s − 1)

=
(n − 1)!

s!s!(n − 2s − 1)! PI (P1, R1, P̂1)sPI I (P1, R1, P̂1)s

· PI I I (P1, R1, P̂1)n−2s−1,

where PI = PL→R, PI I = PR→L , and PI I I = 1−PL→R−PR→L .
Thus, the probability that the adversary successfully detects

user 1 is given by

Ps =EP1,R1, P̂1

[ d n2 e−1∑
s=0

P(As |P1, R1, P̂1)
]
.
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Now we can conclude

Ps =

∫ 1

0

∫ a

0

m∑
h=0

d n2 e−1∑
s=0

P
(
As |P1, P̂1

)
fP1R1 P̂1

(p1, r1, h)dr1dp1,

(2)

where fP1R1 P̂1
(p1, r1, h) is given by

fP1R1 P̂1
(p1, r1, h) = fP̂1 |R1P1

(h|r1, p1) fR1 |P1 (r1 |p1) fP1 (p1)

=

(
m
h

)
ph1 (1 − p1)m−h ·

(
1
a

)
.

Again, to get some insight of how anonymization and
obfuscation combine to affect privacy, we provide numerical
and simulation results in Figures 4 and 5. We compare the
theoretical results in (2) with the simulation results, and,
as expected, we see that the theoretical results match the
simulation results.

In Figure 4, we show the correct probability (Ps) for
different numbers of users (n) and length (m) of observation
sequences, with a fixed noise level of a = 0.5. The figure
implies that, similar to the case with only anonymization, if m
decreases or n increases, the correct probability (Ps) decreases.
In general, if we compare Figure 3 and Figure 4, we see that
anonymization among with obfuscation leads to better results
in preserving privacy, as expected from our intuition but in
contrast to what is suggested by the asymptotic results of [33].
We investigate this further in Figure 6 below.

In Figure 5, we fix m = 5 and show Ps for different n
and a. We see that a higher level of noise results in a lower
correct probability. It shows the degree to which a high level
of obfuscation preserves privacy.

Fig. 5: Comparison of simulation and theoretical results of
the correct probability (Ps) in identifying a given user when
there are 2 users, 5 users, and 8 users in the case that both
obfuscation and anonymization techniques are employed. The
length of the observation sequences is fixed as m = 5.

Finally, Figure 6 shows for small n and m, anonymization
and obfuscation work together for preserving users’ privacy.
We see that when the anonymization level is not high enough
(i.e. m is large) obfuscation helps in protecting user privacy
(i.e. Ps decreases when a is large), and when the obfuscation
level is not high enough (i.e. a is small), anonymization
helps in protecting user privacy (i.e. Ps decreases when m
is small). In fact, the sharp corner observed in the asymptotic
case, which would suggest the center of the plot in Figure 6,
would contain the corner of a box, is not evident. Instead, we
see a smooth transition where the techniques can be used in
conjunction when neither is sufficient by itself.

Fig. 6: Simulation results for the correct probability (Ps) in
identifying a given user vs. the number of observations per
user (m) and noise level (a) for 10 users in the case that both
obfuscation and anonymization techniques are employed.

IV. CONCLUSION

IoT privacy is a major concern in modern society. In this
paper, we have explored how anonymization and obfuscation
impact user privacy. We consider the discrete case, in partic-
ular, when the observation sequences are binary sequences,
and we focus on the non-asymptotic case where users’ data
samples are i.i.d. Then we analyzed the ability of a strong
adversary, who knows the prior distribution of users’ behavior,
to correctly identify users’ data samples as a function of
the rate of anonymization and degree of obfuscation. We
obtained the exact expression for two cases: case 1) only
the anonymization technique is used to achieve privacy; case
2) both anonymization and obfuscation techniques are used
to achieve privacy. We have shown that the level of privacy
of the users depends on three factors: Number of users (n),
number of observations per user (m), and noise level (a). We
also provide numerical and simulation results for the correct
probability with different parameter settings to investigate the
degree to which privacy is protected for various values of n,
m, and a. The results were then used to answer a compelling
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question left open in [33]: can the two techniques could be
used productively together in the finite case? In contrast to
what previous asymptotic results suggest, we find that the two
techniques can be used in conjunction to provide privacy when
neither is sufficient by itself.

In future research, we will consider the exact expression for
the probability of being correct when there are more than two
possible states for users’ data samples or the case where users’
behavior is modeled by Markov chains.
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