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ABSTRACT

Excessive physical impacts to the head have direct implications on the structural integrity
at the axonal level. Increasing evidence suggests that tau, an intrinsically disordered protein
that stabilizes axonal microtubules, plays a critical role in the physical biology of axonal injury.
However, the precise mechanisms of axonal damage remain incompletely understood. Here
we propose a biophysical model of the axon to correlate the dynamic behavior of individual tau
proteins under external physical forces to the evolution of axonal damage. To propagate damage
across the scales, we adopt a consistent three-step strategy: First, we characterize the axonal
response to external stretches and stretch rates for varying tau crosslink bond strengths using a
discrete axonal damage model. Then, for each combination of stretch rates and bond strengths,
we average the axonal force-stretch response of n=10 discrete simulations, from which we derive
and calibrate a homogenized constitutive model. Finally, we embed this homogenized model into
a continuum axonal damage model of [1-d]-type in which d is a scalar damage parameter that
is driven by the axonal stretch and stretch rate. We demonstrate that axonal damage emerges
naturally from the interplay of physical forces and biological crosslinking. Our study reveals an
emergent feature of the crosslink dynamics: With increasing loading rate, the axonal failure
stretch increases, but axonal damage evolves earlier in time. For a wide range of physical
stretch rates, from 0.1 to 10 /s, and biological bond strengths, from 1 to 100 pN, our model
predicts a relatively narrow window of critical damage stretch thresholds, from 1.01 to 1.30,
which agrees well with experimental observations. Our biophysical damage model can help
explain the development and progression of axonal damage across the scales and will provide
useful guidelines to identify critical damage level thresholds in response to excessive physical
forces.

Keywords: Tau protein, microtubules, slip bonds, diffuse axonal injury, neurodegeneration, multiscale modeling, finite element

analysis

1 INTRODUCTION

Brain injury is a major cause of disability and death that is often triggered by an external impact to the
head (Hyder et al., 2007; Taylor, 2017). This impact can consist of a single, severe event that immediately
leads to traumatic brain injury, or of repeated mild events that gradually result in chronic traumatic
encephalopathy. In both cases, the effect of the impact manifests itself at a much smaller scale in the
brain: the scale of the axon (Johnson et al., 2013; Smith and Meaney, 2016).

The axon is part of the nerve cell, the neuron, that further consists of a cell body with the cell nucleus
and synapses that form connections with other neurons. Figure 1 illustrates a typical axon as a long and
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Figure 1. The axon is a long and slender protrusion from the neuronal cell body that consists of a system
of longitudinally aligned microtubules. Microtubules are composed of heterodimers of α- and β-tubulin,
shown in green and blue, that form 13 laterally joined protofilaments, each up to 100µm long. Axons
can extend several centimeters in length and their microtubules never run continuously from the cell body
to the distal end. Instead, they form overlapping segments with 10-50 microtubules in any given cross
section. Neuronal microtubules are stabilized and cross-linked by tau proteins, shown in red, which bind
to microtubules with their three or four binding repeats, shown in yellow. Several components of the axon
including neurofilaments, other crosslinking proteins, and cytoskeletal organelles are not displayed.

slender protrusion from the cell body to provide signaling pathways and transport highways within and
away from the brain (Debanne et al., 2011). The axonal cytoskeleton consists of a system of longitudinally
aligned microtubules and neurofilaments (Ouyang et al., 2013; Kirkcaldie and Collins, 2016) surrounded
by an actin cortex and layers of fatty material, the myelin sheath. Axonal microtubules are composed
of heterodimers of α- and β-tubulin that form 13 laterally joined protofilaments, each up to 100µm
long (Alberts et al., 2014). These microtubules never run continuously from the cell body to the distal
end of the axon. Instead, they form overlapping segments with 10-50 microtubules in any given cross
section (Krieg et al., 2017). Microtubules are interconnected by active and passive crosslinking proteins
including dynein, kinesin, and tau (Coles and Bradke, 2015). Recent studies suggest that tau protein
plays a major role in various types of neurodegeneration that are collectively recognized as tauopathies.
Classical examples include Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy, and
chronic traumatic encephalopathy (Eisenberg and Sawaya, 2017; Woerman et al., 2017). A classical
hallmark of chronic traumatic encephalopathy is an abnormal increase of tangled tau protein across
the brain (Mez et al., 2017). Yet, the precise cause, development, and diagnosis of chronic traumatic
encephalopathy are only incompletely understood and remain active fields of research (Asken et al., 2017).

Physical forces play an important role in the axon under physiological conditions (Suter and Miller,
2011; O’Toole et al., 2015). However, beyond a critical level, forces can trigger axonal degradation and
damage (van den Bedem and Kuhl, 2015). Indeed, physical impacts to the head that result in excessive
axonal stretch (Ji et al., 2014) may trigger a gradual degradation of the tau-microtubule complex (van den
Bedem and Kuhl, 2017). Tau protein is an intrinsically disordered protein with three or four binding
repeats that bind to neuronal microtubules and prevents them from depolymerization (Kadavath et al.,
2015). Bound tau protein is believed to form an electrostatic zipper with tau protein from neighboring
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microtubules (Fitzpatrick et al., 2017). As such, tau plays a critical role in stabilizing individual
microtubules (Chung et al., 2015) and forming microtubule bundles (Choi et al., 2016). Increasing
evidence suggests that axonal damage develops when a physical force is large enough to break the tau-
microtubule bonds. An excessive loss of tau crosslinks results in the depolymerization of microtubules
(Kadavath et al., 2015), the disintegration of microtubule bundles (Krieg et al., 2017), and the disruption
of axonal transport (Tang-Schomer et al., 2012). While experimental testing of the structural integrity of
the tau-microtubule complex remains challenging (Li et al., 2015), computational modeling of the axon
in response to physical forces can provide useful mechanistic insight into these causal relations (de Rooij
and Kuhl, 2018). Although all cytoskeletal elements contribute to the mechanical properties of the axon
(Kirkcaldie and Collins, 2016), recent studies suggest that the mechanical stiffness of the axon is most
reduced when disrupting axonal microtubules, followed by neurofilaments and microfilaments (Ouyang
et al., 2013). Mechanical models of the axon have therefore mainly focused on microtubules (Suter and
Miller, 2011), which, because of their hollow circular cross section, provide the largest resistance to
bending and tension (Howard, 2001). Models of the axon exist at various levels of complexity ranging
from a combination of rheological spring and dashpot elements (O’Toole et al., 2008) via a discrete
arrangement of microtubules and crosslinks (Jakobs et al., 2015; Peter and Mofrad, 2012; Ahmadzadeh
et al., 2015; Lazarus et al., 2015) to a continuum representation of the axon as a whole (Recho et al., 2016;
Garcı́a-Grajales et al., 2017). Our group has recently proposed a new axonal damage model that integrates
the dynamics of microtubule polymerization and depolymerization, the biology of crosslink attachment
and detachment, and physics of stretching using a custom-designed finite element model (de Rooij et al.,
2016; de Rooij and Kuhl, 2018).

Although brain damage has its mechanistic origin at the axon level, the severity of a head impact is often
quantified at the whole brain level by applying experimentally measured linear and rotational accelerations
to a human head model (Kuo et al., 2017). In these models, it is essential to accurately capture the brain
geometry (Kleiven and von Holst, 2002; Takhounts et al., 2003) and its material properties (de Rooij and
Kuhl, 2016; Budday et al., 2017). The most critical input to these models, however, is the critical strain or
stretch level beyond which axonal damage occurs (Bain et al., 2004). To better understand the propagation
of axonal damage across the scales, we have to connect the axon level to the whole brain level. Towards
this goal, we simulate the effect of physical forces across the axon and derive a continuum model for
axonal damage as function of the applied stretch and stretch rate. Central to our model is the classical Bell
model (Bell, 1978) that characterizes the dynamics of the tau-microtubule complex, from which we infer a
damage evolution law that can be easily embedded into finite element models at the whole brain level. Our
work provides a systematic strategy to mechanistically correlate crosslink dynamics on the microscopic
scale to the evolution of axonal damage on the mesoscopic scale. We anticipate that this work will provide
insight into the development of brain damage across the scales and improve current modeling techniques
to quantify brain damage for a given physical impact to the brain.

2 METHODS

2.1 Axon model

We model of the axon as a system of straight microtubules that are aligned in the longitudinal direction.
Each cross section of the axon has 19 potential microtubules sites arranged in a triangular grid (de Rooij
et al., 2016). On average, only half of these potential sites are occupied by a microtubule. As Figure 2
indicates, we assume that all microtubules have the same length and are randomly distributed along the
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axon. In our finite element model, each microtubule consists of 1,250 one-dimensional truss elements
(de Rooij and Kuhl, 2018).

Microtubule
Tau protein

Figure 2. Axon model with longitudinally aligned microtubules that are connected by tau protein
crosslinks. To account for axonal dynamics, we model each crosslink as a noncovalent slip bond and
assign each crosslink a mechanism of Bell model type. We fix the axon at its distal, left end and apply a
stretch, λ, and stretch rate, λ̇, to its proximal, right end.

Neighboring microtubules within a cross section are crosslinked by tau protein. At the beginning of
the simulation, these crosslinks are randomly distributed across the axon based on a crosslink density
parameter. To account for the dynamic behavior of the axon, we have created an extension to the standard
finite element method that can either effect individual finite elements or to sets of finite elements (de Rooij
et al., 2016). This dynamic behavior represents the molecular mechanisms of particular proteins. Here,
we assign a mechanism to each tau protein crosslink. The mechanism describes the dynamic behavior
of crosslink detachment and reattachment by modeling the crosslink as a slip bond. The detachment
and attachment rates, k(F ), are governed by the classical Bell model (Bell, 1978) that characterizes the
strength of a chemical bond under a mechanical force F :

k(F ) =

{
k0 attach
k0 exp (F/F0) detach

with F0 =
kBT

ξ
(1)

where k0 is the rate of crosslink attachment and detachment due to random thermal fluctuations. According
to the Bell model for slip bonds, the likelihood of detachment increases exponentially with the physical
force F applied to the bond. The sensitivity to this mechanical force is described by the characteristic bond
strength F0 = kBT/ξ, where kB is the Boltzmann constant, T is temperature, and ξ is the characteristic
bond separation distance.

We fix the axon at its proximal end, in our model on the left side, where it connects to the cell body
with the nucleus, and apply a physical stretch at the distal end, on the right side, where it connects to
other axons. This implies that we apply homogeneous Dirichlet boundary conditions to the microtubules
at both ends, zero on the left and non-zero on the right (de Rooij et al., 2016). We constrain all nodes in
the model to move along the longitudinal axon direction only. To represent the axonal cytosol, we embed
the axon in a viscous fluid with a viscosity of 5mPa·s (Haak et al., 1976). Table 1 provides an overview of
all model parameters.

Figure 3 illustrates the flowchart to solve our discrete axon model within our custom-designed finite
element algorithm. To include the dynamic behavior of individual proteins, we extended the conventional
finite element method by mechanisms (de Rooij et al., 2016). We include a mechanism by introducing a
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Table 1. Parameters of the axon model, the microtubule model, and the crosslink model. The crosslink
bond strength, F0, is the only unknown in our model. Here, we vary the bond strength over two orders of
magnitude to explore its effects on axonal damage. All other parameters are known from the literature.

Value Unit Reference
Axon
Axon length 40 µm (Caminiti et al., 2013)
Axon diameter 540 nm (Hirokawa, 1982)
Microtubules per cross section 9.5 – (Bray and Bunge, 1981)
Cytosol viscosity 5 mPa·s (Haak et al., 1976)
Mircotubules
Microtubule length 10 µm (Yu and Baas, 1994)
Microtubule stiffness 1200 MPa (Gittes et al., 1993)
Microtubule area 400 nm2 (Suresh, 2007)
Crosslinks
Crosslink distance 1 nm (Hirokawa, 1982)
Crosslink angle 45 deg (Hirokawa, 1982)
Crosslink stiffness 10 MPa (Mallik et al., 2004)
Crosslink area 1 nm2 (de Rooij et al., 2016)
Crosslink attachment rate, k0 4 1/s (Wegmann et al., 2011; Igaev et al.,

2014)
Crosslink bond strength, F0 1-100 pN [varied]

Mechanism object with an Apply() function that contains the full description of the crosslink behavior.
We assign this mechanism to each crosslink and execute the Apply() function at the beginning of
each iteration step in the Newton-Raphson solver with adaptive time stepping. To apply the slip bond
mechanism of the Bell model, the Apply() function has to ensure that each crosslink detaches and
attaches at a rate k(F ) as in Eq. (1) (de Rooij and Kuhl, 2018). At each time step of our simulation,
we calculate the probability of detachment or reattachment. We distinguish two cases to calculate the
probability of detachment: detachment at a constant force F and at a linearly increasing force F = rf t.

Crosslink detachment at a constant force F. For a constant force F , we compute the probability
of crosslink detachment, p(F, t), at time t, based on the detachment rate k(F ) in Eq. (1):

p(F, t) = k(F ) exp(−k(F )t) . (2)

This probability function directly yields the probability of detachment within the next time step, between
t0 and t0 +∆t, as:

P (F,∆t) =

∫ t0+∆t
t0

p(F, t̄) dt̄∫∞
t0

p(F, t̄) dt̄
= 1− exp(−k(F )∆t) . (3)

To obtain the probability of attachment of a crosslink, we simply substitute F = 0 into Eq. (3).

Crosslink detachment at a linearly increasing force F = rft . For a linearly increasing force F ,
the probability of detachment becomes (de Rooij and Kuhl, 2018):

p(F, rf ) =
k(F )

rf
exp

(
−F0

rf
[ k(F )− k0 ]

)
. (4)
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Figure 3. Axon model flowchart based on a conventional Newton-Raphson solver (blue) modularly
enhanced by the application of mechanisms (orange). At the beginning of each Newton-Raphson step,
we apply the mechanism to each crosslink element. In case the algorithms does not converge, we restore
the last equilibrium state of all mechanisms and reduce the time step size.

The probability of detachment within the next time step, between t0 and t0 +∆t, then follows as:

P (F,∆F ) =

∫ F0+∆F
F0

p(F ) dF∫∞
F0

p(F ) dF
, (5)

where ∆F = rf ∆t. In our simulations, we compute the individual loading rate rf for each crosslink as
the crosslink force divided by the time the crosslink has been attached.

2.2 Discrete axonal damage model

The major objective of our axon model is to interpret axonal damage as an emergent feature of the
dynamic attachment and detachment of crosslinks. Motivated by the common definition of damage in
continuum damage mechanics (Kachanov, 1986), we define axonal damage as the relative loss of axonal
stiffness due to excessive detachment of crosslinks as the result of a physical force. Indeed, Eq. (1) shows
that a physical force F increases the detachment rate of crosslinks and, thereby, results in net reduction
of attached crosslinks. To quantify the amount of damage, we first need to characterize the baseline,
undamaged, mechanical response of our model axon. This baseline response is nonlinear, viscoelastic,
and, therefore, rate dependent (de Rooij and Kuhl, 2018). We obtain the baseline response by performing
simulations at an infinite characteristic bond strength F0 → ∞, see Eq. (1). This implies that the
detachment rate, k(F ;F0 → ∞) = k0, is the same as the attachment rate, and the total number of attached
crosslinks will, on average, remain constant. To account for viscous effects in the baseline response of the
axon, we perform these baseline simulations for a range of loading rates rf .
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Figure 4. Characteristic force versus stretch and damage versus stretch curves for varying characteristic
bond strengths, F0. An infinite bond strength F0 → ∞ defines the baseline, undamaged stiffness E0(λ).
Finite bond strengths F0 trigger a net increase in crosslink detachment resulting in an increase in damage
d and a reduced axonal stiffness E(λ). Increasing the bond strength F0 decreases the not crosslink
detachment, which increases the stretch λ and force F required to trigger axonal damage. We define
axonal damage, d(λ) = 1 − E(λ)/E0(λ), as the ratio of the reduced and undamaged secant stiffnesses
E(λ) and E0(λ).

We define axonal damage for a finite characteristic bond strength F0 as the relative stiffness degradation
with respect to the undamaged axon. Consistent with continuum damage mechanics (Lemaitre, 1992), we
use the scalar-valued damage parameter d to quantify axonal damage. Damage ranges from d = 0 for a
completely intact axon to d = 1 for a fully damaged axon and relates the reduced stiffness E to the initial
undamaged stiffness E0 as:

E = [ 1− d ]E0 , (6)

where both E and E0 are the corresponding secant stiffnesses. Figure 4 (left) shows characteristic force-
stretch curves of the axon for varying characteristic bond strengths F0. From these force-stretch curves,
we compute axonal damage d(λ) for a given stretch λ as:

d(λ) = 1− E(λ)/E0(λ) . (7)

Figure 4 (right) shows characteristic damage-stretch curves of the axon for varying characteristic bond
strengths F0.

2.3 Homogenization

To bridge the scales, we postulate a specific functional form for the evolution of damage and assume
that its parameters emerge naturally from the dynamic behavior of the crosslinking tau proteins. In other
words, we seek an evolution equation that provides an analytical expression for axonal damage, d(λ, λ̇),
as function of the axonal stretch λ and stretch rate λ̇. We characterize the accumulation of damage through
the logistic function (Verhulst, 1845),

d(λ, λ̇) = Ĥ(λ− λ50(λ̇;F0);α(λ̇;F0)) . (8)
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The C∞-smooth Heaviside function Ĥ(x;α) = eαx/ [1 + eαx] represents an S-shaped sigmoid curve, λ50
is the half damage stretch at the midpoint of the S-shaped curve, at which d(λ = λ50) = 0.5, and α
is proportional to the slope at this midpoint. Widely used in population dynamics, the logistic function
implies that the initial stage of damage is approximately exponential, it then begins to saturate at the half
damage stretch λ50, and gradually converges to the fully damaged state, d = 1, as the stretch increases. We
assume that both λ50 and α are functions of the characteristic bond strength F0 and vary with the applied
stretch rate λ̇. Importantly, in our model, this rate dependence emerges naturally from the underlying
crosslink dynamics.

Ansatz for the half damage stretch λ50. For the half damage stretch λ50(λ̇;F0), we use Eq. (4) to
compute the expected crosslink force, F̂ , at which a crosslink detaches:

F̂ =

∫ ∞

0
F̃ p(F̃ ; rf )dF̃ = F0 exp

(
k0F0

rf

)
Γ

(
0,

k0F0

rf

)
, (9)

where Γ (a, b) =
∫∞
b e−xxa−1dx is the upper incomplete gamma function. When the crosslinks are

attached to microtubules, we assume that they behave linearly elastic and we expect the transition stretch
to be proportional to the detachment force, [λ50 − 1] ∝ F̂ . With k0F0/rf ∝ 1/λ̇, we therefore propose:

λ50(λ̇;F0) = 1 + aλ exp

(
bλ

λ̇

)
Γ

(
0,

bλ

λ̇

)
, (10)

where aλ(F0) and bλ(F0) are parameters that depend on the characteristic bond strength F0 and will
emerge naturally from the tau crosslink dynamics within the axon.

Ansatz for the damage slope α. For the damage slope α(λ̇;F0), we follow a similar approach. Since
we interpret damage as the net loss of crosslinks, axonal damage is a function of the fraction of attached
crosslinks n̂att:

d = 1− n̂att with n̂att =
t̂att

1
2 [t̂att + t̂det]

(11)

where t̂att and t̂det are the expected duration that a crosslink is attached and detached respectively. This
implies that, in the limit of homeostasis between attachment and detachment, t̂att = t̂det and n̂att = 1 and
d = 0, whereas in the limit of an excessive detachment, t̂att << t̂det and n̂att = 0 and d = 1. From the
definition of the S-curve, we know that α is proportional to the slope of the damage curve at d = 0.5:

α ∝ dd
dλ

⏐⏐⏐⏐
d=0.5

=
dd

dt̂att
· dt̂att

dλ̇
· dλ̇

dλ

⏐⏐⏐⏐⏐
d=0.5

∝ dt̂att
dλ̇

. (12)

By combining the definition of the attachment time, t̂att = F̂ /rf , with Eqs. (9) and (12), we propose:

α(λ̇;F0) =
aα

(λ̇)3

[
λ̇−

[
bα + λ̇

]
exp

(
bα

λ̇

)
Γ

(
0,

bα

λ̇

)]
, (13)

where, again, aα(F0) and bα(F0) are parameters that depend on the characteristic bond strength F0 and
will emerge naturally from the tau crosslink dynamics within the axon.
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2.4 Continuum axonal damage model

To embed the homogenized equations into a continuum axonal damage model, we introduce the
deformation φ(X, t) along the axis of the axon and define the axon level stretch λ and stretch rate λ̇,

λ =
∂φ(X, t)

∂X
and λ̇ =

dλ(X, t)

dt
. (14)

We then introduce the free energy density of the damaged axon Ψ as the damage weighted stored energy
of the undamaged, elastic axon Ψ0,

Ψ(λ, λ̇) = [ 1− d ]Ψ0(λ) with d = d(λ, λ̇) , (15)

and assume that the evolution of damage is driven by both stretch and stretch rate, d(λ, λ̇), while the elastic
energy is a function of the stretch alone Ψ0(λ). Motivated by standard arguments of thermodynamics, we
introduce the Cauchy stress σ = P λ and the Piola stress P as thermodynamically conjugate quantity to
the stretch λ, and interpret the Piola stretch P as damage weighted elastic axonal stress P0,

P =
∂Ψ

∂λ
= [ 1− d ]P0 with P0 =

∂Ψ0

∂λ
. (16)

To keep track of the maximum amount of stretch the axon has experienced throughout its history, it is
common practice to introduce an internal variable,

λ∗ = max
0≤t≤τ

{λ(t)} , (17)

which drives the evolution of damage,

d =
exp(α [λ∗ − λ50])

1 + exp(α [λ∗ − λ50])
. (18)

The stretch rate dependent half damage stretch,

λ50(λ̇;F0) = 1 + aλ exp

(
bλ

λ̇

)
Γ

(
0,

bλ

λ̇

)
, (19)

and the stretch rate dependent damage slope,

α(λ̇;F0) =
aα

(λ̇)3

[
λ̇−

[
bα + λ̇

]
exp

(
bα

λ̇

)
Γ

(
0,

bα

λ̇

)]
, (20)

follow from the homogenization in Section 2.3 and vary with the bond strength F0 of the individual
crosslinks in the axon. Last, to solve the continuum equations of axonal damage within a finite element
setting, we derive the tangent modulus,

A =
dP
dλ

= [ 1− d ]A0 −
dd
dλ

P0 with A0 =
dP0

dλ
. (21)
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For our specific damage model with

dd
dλ

=
dd
dλ∗

dλ∗

dλ
with

dd
dλ∗

= α [ 1− d ] d and
dλ∗

dλ
=

{
1 ... loading
0 ... unloading

(22)

we obtain the following simple structure of the tangent modulus,

A = [ 1− d ][A0 − α dP0 ] . (23)

For example, for an elastic material of Mooney Rivlin type, with Ψ0 = c1 [λ
2 + 2/λ − 3 ] + c2 [ 2λ +

1/λ2 − 3 ], the Cauchy stress becomes σ = [ 1− d ] 2 [ c1 + c2/λ ][λ
2 − 1/λ ], the elastic tangent modulus

is A0 = 2c1 [ 1 + 2/λ3 ] + 6c2/λ
4, and the elastic Piola stress is P0 = 2 [ c1 + c2/λ ][λ − 1/λ2 ], where

c1 + c2 = 1
2 µ are the two constitutive parameters of the Mooney Rivlin model and µ is the overall shear

modulus of the axon (Goriely et al., 2015a).

3 RESULTS

3.1 Axon model

Figure 5 shows the result of a single simulation in which we applied a stretch of λ = 1.2 at a stretch rate
λ̇ = 10/s assuming a bond strength of F0 = 5pN. The computational kymograph in the top left traces the

2.0stretch λ [-]

0 50MT position [μm]

tim
e 

[m
s]

0

20

1.0

time [ms]

force [pN] damage [-]

0

3000

0

1

200

Figure 5. Characteristic output of a single simulation. The kymograph, (top left), tracks the position of all
microtubules throughout the simulation. It reveals a complete separation between the proximal and distal
ends of the axon. This separation manifests itself in a loss of the required external force and an increase
in axonal damage (bottom left). Four snapshots of the axon show the crosslinks color coded by crosslink
stretch (right). These snapshots show an initial increase in crosslink stretch, followed by a decrease after
the proximal and distal sets of microtubule bundles have separated.

location of all microtubules in the axon throughout the entire duration of the simulation. The snapshots
on the top right show the axon at four different time points with the tau crosslinks color coded by the
crosslink stretch. Towards the end of the simulation, the stretch in the remaining crosslinks decreases.
This decrease is accompanied by a clear separation between the proximal and distal ends of the axon, as
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we can see from the kymograph. This separation is indicative of axonal damage; it reduces the overlap
of microtubules and, thereby, the number of connecting crosslinks in the damaged region. Indeed, the
force versus time curve in the bottom left shows an initial increase in force followed by a rapid decrease
approximately 5 ms into the simulation. The axonal damage, computed according to Section 2.2, increases
from d = 0 at the beginning of the simulation to d = 1 when the two sets of microtubule bundles are fully
disconnected.

3.2 Discrete axonal damage

To probe the sensitivity of axonal damage with respect to stretch and stretch rates, we performed several
sets of simulations for a range of stretches, λ ∈ [1, 1.2], and stretch rates, λ̇ ∈ [0.1, 10] /s. The only input
parameter that is not well defined in the literature is the characteristic bond strength of the tau crosslinks.
We therefore also probed a range of crosslink bond strengths, F0 = [1, 5, 10, 50, 100] pN.
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Figure 6. Axonal damage versus axonal stretch color coded by the stretch rate for five bond strengths.
Discrete axonal damage simulations with n = 10 simulations for each stretch rate (top); homogenization
using the average response for each stretch rate to identify the parameters for S-shaped curve of the
homogenized damage model (middle); and continuum axonal damage simulation (bottom). The graphs
demonstrate an important feature of the Bell model: at higher stretch rates, axonal damage occurs at
higher axonal stretch.

Figure 6 (top) shows the damage versus stretch curves for n = 1,000 simulations at all five crosslink
bond strengths, F0 = [1, 5, 10, 50, 100] pN, color coded by the stretch rate λ̇ ∈ [0.1, 10] /s. Consistent
with the Bell model, for smaller values of F0, axonal damage develops earlier, at lower axonal stretch
levels, than for larger values of F0. Indeed, Eq. (1) shows that at lower crosslink bond strengths F0, the
detachment rates for a given applied crosslink force F are higher, which manifests itself in an increased
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axonal damage. Our axon model also predicts that crosslink detachment is more likely to happen at
higher crosslink stretches for high loading rates, which follows directly from Eq. (9). Figure 6 captures
this prediction as axonal damage develops at higher values for axonal stretch for high loading rates.
Interestingly, this trend is reversed when considering damage versus loading time.
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Figure 7. Axonal damage versus time color coded by the stretch rate for five bond strengths. Discrete
axonal damage simulations with n = 10 simulations for each stretch rate (top); homogenization using the
average response for each stretch rate to identify the parameters for S-shaped curve of the homogenized
damage model (middle); and continuum axonal damage simulation (bottom). The graphs represent the
same data as in Figure 6, and demonstrate an important feature of the Bell model: at higher stretch rates,
axonal damage occurs at higher axonal stretch, but earlier in time.

Figure 7 shows the same simulations as Figure 6, but now as damage plotted versus loading time. It
is clearly visible that higher applied stretch rates lead to earlier development of axonal damage. Thus,
increased loading rates triggers earlier development of axonal damage, but at a higher axonal stretch, all
consistent with the Bell model.

3.3 Homogenization

To homogenize the results or our discrete axon model simulation towards an overall constitutive damage
model for the axon, we calibrate our damage model d(λ, λ̇) in Eqs. (8), (19), and (20), using our discrete
axon level simulations. For each characteristic crosslink force and applied stretch rate, we compute the
mean damage versus stretch curve from our simulations. For each mean curve, we calibrate the half
damage stretch λ50 and the damage slope α according to Eq. (8). Figures 6 (middle) and 7 (middle)
illustrate the mean damage curves for each applied stretch rate, together with the best analytical fit as a
dashed, black line. These figures show a good qualitative agreement between the discrete axon model and
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its homogenized response, which supports our initial selection for the damage evolution law, d(λ, λ̇), in
Eq. (8).

For each applied stretch rate, λ̇, the homogenization yields one value for the half damage stretch λ50 and
for the damage slope α, assuming a fixed characteristic bond strength, F0. In the next step, we use these
values together with Eqs. (19) and (20) to obtain a stretch-rate dependent half damage stretch λ50(λ̇) and
damage slope α(λ̇). From the best fits, we obtain discrete values for the parameters aλ and bλ in Eq. (19)
and aα and bα in Eq. (20). Naturally, these four parameters will be different for different characteristic
bond strengths F0.
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Figure 8. Homogenization of half damage stretch λ50 and damage slope α from average response of
n = 10 discrete axonal damage simulations for as function of the stretch rate, λ̇, for five bond strengths,
F0. Blue dots represents λ50 and α values from the average damage versus stretch relations in Figure 6;
solid black lines represent homogenization using Eq. (19) and (20) for five bond strengths, F0.

Figure 8 shows the numerical data points and the analytical fits for the half damage stretch λ50(λ̇) and
for the damage slope α(λ̇) for the range of F0 = [1, 5, 10, 50, 100] pN. Qualitatively, Figure 8 confirms
that our expressions for λ50(λ̇;F0) and α(λ̇;F0) in Eq. (19) and (20), respectively, accurately represent
the simulation data. In addition, Figure 8 confirms that λ50 increases with increasing stretch rate, λ̇, and
with increasing crosslink bond strength, F0. Both trends are consistent with our crosslink model and with
Figure 6. In contrast, the damage slope parameter α decreases with increasing stretch rate, λ̇, and with
increasing crosslink bond strength, F0.

Table 2. Homogenized axon parameters aλ and bλ to calculate the half damage stretch λ50 according to
Eq. (19) and aα and bα to calculate the damage slope α according to Eq. (20) for a range of characteristic
bond strengths F0.

Parameter F0 = 1 pN F0 = 5 pN F0 = 10 pN F0 = 50 pN F0 = 100 pN
aλ [-] 1.81 · 10−3 8.74 · 10−3 1.40 · 10−2 5.26 · 10−2 5.76 · 10−2

bλ [1/ms] 1.28 · 10−6 1.11 · 10−5 1.01 · 10−5 3.40 · 10−5 1.28 · 10−5

aα [-] −0.655 −0.675 −0.384 −0.151 −0.633
bα [1/ms] 0.048 0.074 0.069 0.070 0.1723
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Table 2 summarizes the homogenized parameters aλ, bλ, aα, and bα, for bond strengths within the range
F0 = [1, 5, 10, 50, 100] pN. With increasing bond strength F0, aλ, bλ, and bα increase, while aα decreases.
To interpolate between the five bond strengths, we suggest the following rationale: Motivated by Eqs. (19)
and (20), we expect that aλ → 0 and aα → ∞ as the characteristic bond strength decreases towards zero,
F0 → 0. This suggests power law relations for the parameters a of the form aλ = 1.936 · 10−3 (F0)

0.835

and aα = −0.675 (F0)
−0.166. Motivated by phenomenological considerations, for the parameters b, we

suggest a linear dependence on ln(F0) of the form bλ = 4.64 · 10−6 ln(F0) + 1.61 · 10−6 and bα =
1.55 · 10−2 ln(F0) + 4.55 · 10−2. This completes our damage model that is fully determined as function
of stretch, λ, and stretch rate λ̇, parameterized by the characteristic bond strength, F0.

3.4 Continuum axonal damage

Once homogenized and calibrated, we can use the axonal damage model and embed it into a continuum
damage simulation using the governing equations from Section 2.4. We can, for example, embed these
equations into a nonlinear finite element analysis and project the homogenized axonal response along
the axonal direction, in a one-, two-, or fully three-dimensional brain model. These continuum damage
simulations are fully determined by our evolution equations for the damage variables d(λ, λ̇), which
emerge naturally from the axon-level crosslink dynamics.

Figures 6 (bottom) and 7 (bottom) summarize the resulting damage versus stretch and damage versus
time contours color coded by the stretch rate for five bond strengths. Both graphs highlight an important
feature of the Bell model: at higher stretch rates, axonal damage occurs at higher axonal stretch, but
earlier in time. Comparing the continuum axonal damage model (bottom) to the discrete axonal damage
model (top) and its homogenization (middle) confirms that our transient damage model at the continuum
level captures the same failure characteristics as the discrete axonal damage model based on crosslink
detachment and reattachment dynamics.

Figure 9 illustrates the emergent axonal damage versus stretch λ [1.0, 1.5] (left) and time t ∈ [0.0, 1.0] s
(right) at varying stretch rates λ̇ ∈ [0.1, 10]/s at a constant bond strength of F0 = 100 pN. The white circles
represent experimentally characterized damaged, d = 1, and undamaged, d = 0, nervous tissue samples
that had been exposed to different strain levels (Bain and Meaney, 2000). These experiments clearly report
a transition from a low likelihood of damage at low stretch rates to a high likelihood of damage at high
stretch rates and characterize the critical stretch levels at which damage emerges. The black circles define
the conservative damage threshold at d = 0.05 for 14% strain and a stretch of 1.13, the liberal damage
threshold at d = 0.90 for 34% strain and a stretch of 1.30, and the optimal damage threshold at d = 0.25
for 21% strain and a stretch of 1.19, indicated through the black dashed dlines (Bain and Meaney, 2000).
The thick black line highlights the best fit. Its half damage stretch is λ50 = 1.22, which implies that at a
stretch of 1.22 corresponding to a 25% strain, half of the samples were damaged. The graphs in Figure
9 demonstrate an emergent feature of our transient crosslink model: For increasing stretch rates, damage
develops at a larger stretch (left) but earlier in time (right).

Figure 10 illustrates the emergent axonal force versus stretch λ ∈ [1.0, 1.5] (left) and time t ∈ [0.0, 1.0] s
(right) at varying stretch rates λ̇ ∈ [0.1, 10]/s at a constant bond strength of F0 = 100 pN. The dark red
area marks the elastic, undamaged regime, here for the example of a Mooney Rivlin model according
to Section 2.4, with a parameter ratio of c1 : c2 = 3 : 1. All other colors highlight the effect of
damage with a gradually increasing force that eventually reaches a peak and decreases as a result of
axonal softening. The continuum level force versus time behavior (right) agrees well with the axon level
force versus time behavior in Figure 5 (bottom left). The graphs in Figure 10 demonstrate an emergent
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1

Figure 9. Continuum axonal damage. Axonal damage versus axonal stretch (left) and time (right) at
varying stretch rates and constant bond strength. White circles represent experimentally characterized
damaged, d = 1, and undamaged, d = 0, nervous tissue samples at different strain levels (Bain and
Meaney, 2000). Black circles define the conservative damage threshold at 14% strain, the liberal damage
threshold at 34% strain, and the optimal damage threshold at 21% strain (Bain and Meaney, 2000). The
graphs demonstrate an emergent feature of our transient crosslink model: For increasing stretch rates,
damage develops at a larger stretch (left) but earlier in time (right).

feature of our transient crosslink model: For increasing stretch rates, the peak axonal force increases (left)
but is reached earlier in time (right).

4 DISCUSSION

Brain damage can be caused by a wide variety of physical impacts, ranging from a single and strong
blow to the head to several mild but repeated concussive events. Independent of the type of impact, brain
damage typically originates at the level of the axon: Diffuse axonal injury may develop instantaneously
upon a single severe impact, whereas chronic traumatic encephalopathy develops gradually in response
to repeated mild impacts to the head. Yet, the precise mechanisms how physical impacts to the head
triggers pathologies at the axon level remain incompletely understood (Goriely et al., 2015b). With current
technologies, we cannot reliably measure the direct effects of physical forces to the head. However,
mechanical modeling can help to indirectly assess the effects of physical impact and correlate external
loading to critical damage thresholds on the axonal level (Greenwald et al., 2008; Kuo et al., 2017;
Giordano et al., 2017). Towards this goal we propose a mechanistic biophysical model that interprets
axonal damage as an emergent property of crosslink dynamics, physical stretches, and stretch rates.

Axonal damage as a result of excessive crosslink detachment. We model the axon as a parallel
arrangement of longitudinally aligned microtubules that are crosslinked by tau protein. These crosslinks
can break and form according to the Bell model for chemical bond breaking (Bell, 1978) under external
physical forces (Evans and Ritchie, 1997). The Bell model is characterized by a characteristic bond
strength, F0, which is the only unknown variable in our axon model. All other parameters in the model
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1

Figure 10. Continuum axonal damage. Axonal force versus axonal stretch (left) and time (right) at
varying stretch rates and constant bond strength. The dark red area marks the elastic, undamaged regime.
The graphs demonstrate an emergent feature of our transient crosslink model: For increasing stretch rates,
the peak axonal force increases (left) but is reached earlier in time (right).

have been reported in the literature as summarized in Table 1. To investigate the evolution of damage
inside the axon, we apply a displacement controlled external stretch at different stretch rates. Damage
emerges naturally as a result of the stretch-induced forces acting on the crosslinks, which, according to
the Bell model, triggers a net increase of crosslink detachment. From a physics perspective, we define
axonal damage as the loss in axon stiffness (Kachanov, 1986; Lemaitre, 1992) triggered by a gradual loss
of crosslinks (Ahmadzadeh et al., 2014) that promotes microtubule depolymerization (Kadavath et al.,
2015) and destabilizes the axonal cytoskeleton and (Krieg et al., 2017).

Damage accumulates at the location of weakest connectivity. A representative simulation of
axonal damage is characterized by an applied stretch, λ, at a given stretch rate, λ̇. The main output of
our simulation is the overall force-stretch behavior of the axon, see Figure 5. We use this axonal force-
stretch response to derive the axonal damage-stretch response compared to the undamaged baseline case,
see Section 2.2. Figure 5 shows that the axonal force increases initially, peaks, and then quickly drops
down to zero. This drop is a defining feature of axonal damage and indicates that the axon has lost all its
mechanical resistance to loading. The kymograph in Figure 5 illustrates that this rapid loss in stiffness is
associated with a primary axotomy, the development of two disconnected sets of microtubule bundles, one
at the proximal and one at the distal end, which ultimately defines axonal failure. The exact location of
the axotomy is stochastic due to the probabilistic nature of the slip bond model and the underlying axon
geometry: Once a weak cross section randomly develops along the axon, each remaining crosslinks in
this cross section has to carry more mechanical load; this increases its probability of detachment, which
increases the probability that the cross section becomes even weaker and eventually fails completely.

At higher stretch rates, axons can sustain higher stretches. We perform numerical simulations
for a range of stretches λ ∈ [1, 1.2] and stretch rates λ̇ ∈ [0.1,10] /s, and systematically vary the
characteristic bond strength over two orders of magnitude F0 ∈ [1,100] pN. Motivated by the randomness
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in the precise axonal geometry and in the time of detachment and attachment of individual crosslinks,
we perform n = 10 simulations for each set of input parameters and use the average result of those
simulations for further analysis. Figures 6 and 7 (top) show the axonal damage versus stretch and time for
a range of stretch rates. The results in these figures are consistent with an important emergent feature of
our transient crosslink model: at higher applied stretch rates, axonal damage develops at a higher axonal
stretch, but earlier in time (de Rooij and Kuhl, 2018).

The homogenized axonal damage behavior displays an S-shaped response. To derive a
constitutive model for axonal damage that we can embed into whole brain damage simulations (Goriely
et al., 2015a), we homogenize the discrete axonal response. For each combination of stretch, stretch rate,
and characteristic bond strength, we perform n = 10 discrete axonal damage simulations and average
their damage-stretch response. We homogenize the discrete model by fitting an S-shaped damage curve
through the average damage-stretch response. The S-shaped damage model is similar to damage evolution
laws for soft materials that exponentially approach complete damage at d = 1 (Beatty and Krishnaswamy,
2000; Weisbecker et al., 2012).However, several damage evolution laws assume that damage only starts
beyond a certain stretch threshold (Peerlings et al., 2001). Here, we choose the smooth S-shaped curve
because our crosslink model is also smooth (Bell, 1978) and because it nicely captures the homogenized
axonal response in Figures 6 and 7 (middle).

The damage-stretch behavior of the axon is defined by two parameters. Our S-shaped
damage curve is defined by two parameters with a clear physical interpretation: the half damage stretch
λ50 that defines the stretch at which the axon is half damaged and the damage slope α associated with
the slope at this half damage stretch. Note that the half damage stretch λ50 is conceptually similar to the
damage stretch threshold that has been proposed in literature (Marini et al., 2012; Li, 2016). We assume
that both the half damage stretch and the damage slope depend on stretch rate and characteristic crosslink
force, λ50(λ̇;F0) and α(λ̇;F0). We derive the qualitative dependence on the stretch rate λ̇ from the Bell
model in Eqs. (19) and (20), which we compare to our discrete axon simulations in Figure 8. Figure 8
reveals that the half damage stretch, λ50, increases with increasing stretch rate and with increasing bond
strength. The increase of λ50 with increasing stretch rate λ̇ is consistent with the Bell model that assumes
that, at higher stretch rates, the axon can sustain higher stretches prior to damaging. The increase of λ50
with increasing bond strength F0 is also consistent with the Bell model in Eq. (1), since higher bond
strengths F0 require higher forces F to generate the same detachment rate. Figure 8 shows that the slope,
α, decreases with increasing stretch rate and increasing bond strength. This is consistent with the Bell
model in Eq. (20) and with the smoothness of the Bell model. Table 2 summarizes the homogenized axon
parameters aλ and bλ to calculate the half damage stretch λ50 and the homogenized axon parameters aα
and bα to calculate the damage slope α for a range of bond strengths F0. Table 2 suggests that, with
increasing bond strength F0, aλ, bλ, and bα increase while aα decreases.

Our damage model agrees well with experimental findings. Section 2.4 and Figures 6 and 7
(bottom) summarize our constitutive model for axonal damage. Our damage model is completely
determined as a function of stretch λ and stretch rate λ̇, parameterized in the bond strength F0. Although
the characteristic bond strength F0 is currently unknown, our selected range F0 ∈ [1,100] pN lies well
within the range of physiological force levels observed at the protein level. For example, dynein protein
generates a force of about 1 pN (Mallik et al., 2004), microtubule assembly may generate pushing forces
up to 3−4 pN (Dogterom and Yurke, 1997), and the growth cone of the axon generates a total pulling
force of about 1−20 nN (Rajagopalan et al., 2010; Hyland et al., 2014). Strikingly, Figure 8 suggests that
the values for the half damage stretch λ50 all lie within λ50 ∈ [1.01,1.3] for our entire range of stretch
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rates λ̇ ∈ [0.1,10] /s and bond strengths F0 ∈ [1,100] pN. By definition, λ50 is the axonal stretch at which
50% of the axon is damaged. This suggests that we can use the λ50 value as a surrogate measure for the
axonal damage level threshold. The range of λ50 ∈ [1.01,1.30] agrees well with reported critical stretch
values for axonal injury: critical values between 1.05−1.10 have been found based on animal and physical
studies (Margulies and Thibault, 1992), a critical stretch of 1.05 caused mild injury in cortical axons in
culture (Yuen et al., 2009), axonal stretch between 1.09−1.16 led to axonal injury in rats (Singh et al.,
2016), and critical stretches between 1.14−1.34 were found at stretch rates between 30−60 /s in white
matter brain tissue (Bain and Meaney, 2000). Notably, these reported critical damage stretch thresholds
are all based on a single severe loading of the axon and mimic the event of traumatic brain injury. To date,
there is no reliable data on critical damage stretch thresholds for multiple mild loading of the axon that
would mimic the event of chronic traumatic encephalopahy (Asken et al., 2017).

Our damage model integrates well into finite element algorithms. Once calibrated and
validated, we can embed our constitutive model for axonal damage in a continuum mechanics model
for whole brain simulations and superpose it to the isotropic behavior of the tissue (Cloots et al., 2013;
Mao et al., 2013; Goriely et al., 2015b; Giordano et al., 2017; Weickenmeier et al., 2017). Figures 9 and
10 show that the continuum implementation of the damage model, e.g., within a nonlinear finite element
setting, correctly reproduces the axon level features of damage. Notably, a well-known problem with
continuum damage models is that, in the softening regime, the governing equations become ill posed
and the numerical solutions become mesh dependent. These issues can be resolved with appropriate
regularization techniques (de Borst et al., 1993; Kuhl et al., 2000). A natural regularization technique
is to account for the rate dependent nature of damage (Geers et al., 1994). Although we do not explicitly
investigate regularization here, the inherent rate dependence of our axonal damage model potentially
regularizes the simulation at no additional cost (Pereira et al., 2017).

Our axon model has a few limitations. We have proposed a consistent strategy to relate microscale
protein behavior to axonal damage and to develop a constitutive damage model that can be used at
the continuum, whole brain level. However, we do recognize several limitations to our model that we
plan to address in future work: First, our model assumes that axonal damage is solely caused by the
disruption in tau protein crosslinks. Although this disruption is consistent with, e.g., the diagnoses of
chronic traumatic encephalopathy through an abnormal increase of unbound tau, other mechanisms such
as microtubule rupture may contribute to damage of the axon (Tang-Schomer et al., 2010; van den Bedem
and Kuhl, 2015). In addition, we simplified the axonal cytoskeleton as a composition of microtubules and
tau proteins, while we recognize that the axon contains additional cytoskeletal elements and organelles
that could be structurally relevant, such as neurofilaments, microfilaments, dynein, myosin, and the
actin cortex (Ouyang et al., 2013; Kirkcaldie and Collins, 2016; Tofangchi et al., 2016). For example,
neurofilaments and microfilaments contribute to the axon’s elasticity and provide additional mechanical
support (Ouyang et al., 2013; Kirkcaldie and Collins, 2016). The actin cortex generates an overall
compressive force around the axon that counteracts axonal tension and will likely affect the development
of damage (Garcı́a-Grajales et al., 2017; Fan et al., 2017). The extracellular matrix and the myelin sheaths
around the axon provide additional stability and mechanical support (Goriely et al., 2015c; Weickenmeier
et al., 2016). Clearly, further experimental and computational research is needed to qualify and quantify
the effects of these structural elements on axonal damage. Second, although the Bell model is widely used
for a variety of chemical bonds (Evans and Calderwood, 2007), it is not specific to the tau-microtubule
complex. The tau-microtubule interaction is largely unknown and an active field of research (Li et al.,
2015; Kadavath et al., 2015; Vemu et al., 2016). An improved understanding of the tau-microtubule
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binding mechanisms and tau-tau interactions can directly feed into our model and will help improving
our model predictions. Third, we assume an S-shaped damage evolution as function of axonal stretch that
provides a good representation of the numerical simulation results. However, our current S-shaped curve
does not explicitly enforce that a zero damage condition at no loading. In principle, we could use any
other damage evolution law to model the stretch- and stretch rate-dependent evolution of damage. Fourth,
our method of quantifying axon damage is based on the excessive detachment of crosslinks caused by
an externally applied stretch. Within our computational model, however, this axonal damage may recover
when the axon is unloaded or when the stretch is held constant and crosslinks reattach to the microtubules.
This recovery is non-standard in continuum damage mechanics. Future research should investigate this
issue in more detail to improve on the dynamic mechanism assigned to our crosslinks. For example,
crosslinks that detach due to an excessive force may not be able or allowed to reattach again, which could
be consistent with the experimentally observed increase in tau protein concentration upon axonal damage.

CONCLUSION

The interplay of protein dynamics and physical forces is critical to understand the underlying mechanisms
of axonal degradation and brain damage. Here we provides a systematic strategy to relate the discrete
dynamic behavior of tau crosslinks on the protein level to the progressive structural degradation on
the cellular level to a continuum damage model on the tissue level. Consistent with the definition in
nonlinear mechanics, we interpret damage as the gradual stiffness degradation that emerges naturally
from a net reduction of crosslinking tau proteins. Motivated by molecular mechanisms, the evolution of
damage depends on both the axonal stretch and stretch rate. The only unknown parameter in our model
is the characteristic crosslink bond strength, which we vary systematically over two orders of magnitude.
Strikingly, for a wide range of stretches, from 1.0 to 1.5, stretch rates, from 0.1 to 10 /s, and bond strengths,
from 1 to 100 pN, our model predicts a rather narrow window of critical damage thresholds from 1.01 to
1.30. These values agree well with the experimentally observed axonal damage thresholds reported in the
literature. We anticipate that our biophysical model will improve our fundamental understanding of the
development and propagation of brain damage across scales and provide useful guidelines to characterize
the critical damage level thresholds in response to physical forces.
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