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Abstract—The prevalence of mobile devices and location-based
services (LBS) has generated great concerns regarding the LBS
users’ privacy, which can be compromised by statistical analysis
of their movement patterns. A number of algorithms have been
proposed to protect the privacy of users in such systems, but the
fundamental underpinnings of such remain unexplored. Recently,
the concept of perfect location privacy was introduced and its
achievability was studied for anonymization-based LBS systems,
where user identifiers are permuted at regular intervals to
prevent identification based on statistical analysis of long time
sequences. In this paper, we significantly extend that investigation
by incorporating the other major tool commonly employed to
obtain location privacy: obfuscation, where user locations are
purposely obscured to protect their privacy. Since anonymization
and obfuscation reduce user utility in LBS systems, we investigate
how location privacy varies with the degree to which each of these
two methods is employed. We provide: (1) achievability results for
the case where the location of each user is governed by an i.i.d.
process; (2) converse results for the i.i.d. case as well as the more
general Markov Chain model. We show that, as the number of
users in the network grows, the obfuscation-anonymization plane
can be divided into two regions: in the first region, all users have
perfect location privacy; and, in the second region, no user has
location privacy.

Index Terms—Location Based Service (LBS), Location Privacy
Protecting Mechanism (LPPM), Information Theoretic Privacy,
Anonymization, Obfuscation, Markov chain.

I. INTRODUCTION

Mobile devices, ranging from smart phones to connected
automobiles, offer a wide spectrum of location-based services
(LBS), such as ride sharing, navigation, dining recommen-
dations, and accident warnings. However, these important
services can cause significant privacy threats to their users, as
even anonymized time series of locations can be statistically
matched to prior user behavior to allow for user identification
and tracking. Therefore, privacy in LBS applications is an
important and difficult challenge.

There are two major types of location privacy protection
mechanisms (LPPMs): identity perturbation (anonymization)
techniques, and location perturbation (obfuscation) techniques.
In anonymization techniques, privacy is obtained by conceal-
ing the mapping between users and location observations,
and the mapping is changed periodically to attempt to thwart
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statistical analysis, which benefits from long time series
when matching anonymized traces to prior user behavior.
In obfuscation techniques, privacy is obtained by returning
purposefully inaccurate (i.e., noisy) location information to the
LBS applications.

Anonymization and obfuscation improve user privacy at the
cost of user utility. In anonymization, we need to change
these pseudonym mappings frequently to achieve high privacy
by reducing the length of time series exploited by statistical
analysis. However, this frequent change could decrease us-
ability and functionality by concealing the temporal relation
between a user’s locations, which may be critical in the utility
of some LBS systems, e.g., a dining recommendation system
that makes suggestions based on the dining places visited
by a user in the past. For obfuscation-based mechanisms,
the added noise to the reported values of user locations will
degrade the utility of LBS applications that are sensitive
to the absolute values of location information, e.g., a ride-
sharing LBS system. Thus, choosing the right level of privacy-
protection mechanism is an important question, and under-
standing what levels of anonymization and obfuscation can
provide theoretical guarantees of privacy is of interest.

Despite extensive previous studies on location privacy and
LPPM mechanisms, the theoretical foundations of location
privacy have not yet been established. In [1]–[4], an ap-
proach was introduced to understand the fundamental limits
of location privacy when only anonymization is used. There,
users are characterized by the statistics of their locations, and
the adversary then tries to match traces to those statistics
to de-anonymize users. Per above, anonymization thwarts
such statistical analysis by reducing the time series available
for such a matching, and thus [1]–[3] consider the rate at
which pseudonyms must be changed so as to preserve perfect
location privacy. In this paper, the perfect privacy set-up of
[3] is again employed; however, in addition to anonymization,
location perturbation (obfuscation) is also considered; thus,
the adversary attempts to infer information about the actual
locations by observing the obfuscated and anonymized version
of the location data. We study both achievability and converse
results.

Due to space limitations, the proofs are provided in the long
version of the paper [5].



II. RELATED WORK

Prior LPPM mechanisms can be categorized into two main
groups: identity perturbation LPPMs (anonymization) [6], [7]
and location perturbation LPPMs (obfuscation) [8], [9]. Some
prior works combine techniques to achieve stronger location
privacy. For instance, Freudiger et al. combine techniques from
cryptography with mix-zones to improve location privacy [10].
Differential privacy [11] has also been applied to the problem
of location privacy [12], [13].

Several studies aim at quantifying location privacy protec-
tion of specific LPPMs [14]–[16]. To defeat a localization
attack and achieve privacy at the same time, [17] proposed
a method which finds the optimal LPPM for an LBS given
service quality constraints.

However, the literature is missing a theoretical framework
that would allow us to provide provable location privacy
guarantees, obtain fundamental trade-offs between location
privacy and utility, and provide tools to optimally achieve
location privacy. Here, we continue to employ our metric based
on mutual information that was introduced in [1]–[3].

Mutual information has been used by others as a privacy
metric in various settings [18]–[22]. However, much of this
work is motivated by differential privacy, and thus prior work
is not directly applicable to the location privacy problem:
large sets of time-series data belonging to different users with
different movement dynamics that has gone through an LPPM.

Unnikrishnan provides a comprehensive analysis of asymp-
totically optimal matching of time series to source distributions
[23]. However, he does not study any privacy metrics as
considered in this paper. In fact, the most difficult technical
challenges we faced were in showing that the mutual infor-
mation converges to zero so we can conclude there is no
privacy leakage. There are also significant differences in the
setting, as: (1) [23] doesn’t study obfuscation; (2) [23] does
not consider non-i.i.d. cases; (3) fitting our application, we
assume the existence of a general (but possibly unknown) prior
distribution for the sources (i.e., a Bayesian setting); and (4)
we study the asymptotic limits in terms of both the number
of users and the number of observations.

III. FRAMEWORK

We assume a system with n users. Xu (k) denotes the
location of user u at time k, which would we like to protect
from an interested adversary A. To study guarantees of
privacy, we desire to protect against a powerful adversary, and
thus we assume the adversary A has a complete statistical
model of the users’ movements. Figure 1 shows the LPPM
configuration considered here: Zu (k) shows the (reported)
location of user u at time k after applying obfuscation to
Xu (k), and Yu (k) shows the (reported) location after applying
anonymization to the data. As in [1]–[3], we assume that
the anonymization permutes user pseudonyms every m(n)
observations. Hence, for attempting to determine the locations
Xu (k), k = 1, 2, . . . ,m(n), the adversary employs the observa-
tions of all users from times k = 1, 2, · · · ,m(n).

Fig. 1: The adversary A attempts to estimate Xu (k), k =
1, 2, . . . ,m(n) from Y (n)

u (k), k = 1, 2, . . . ,m(n).

Let X(n)
u be the vector which contains m(n) locations of

user u, and X(n) is the m(n) × n matrix which contains X(n)
u

for all users,

X(n)
u =



Xu (1)
Xu (2)
...

Xu (m)



, X(n) =
[
X(n)

1 ,X(n)
2 , · · · ,X(n)

n

]
.

Location Data Model: Assume the users move over r ≥ 2
possible locations (0, 1, · · · , r − 1). At any time, Xu (k) is
equal to a value in {0, 1, · · · , r − 1} according to that user’s
probability distribution, which satisfies some mild regularity
conditions given below. Per above, the users’ distributions
are known to the adversary A, and he/she employs them to
distinguish different users based on traces of user activity
of length m(n). In the first part of the paper, we assume
an i.i.d. model; each user’s locations at different times are
drawn independently from their distribution, as would be true
in situations where the location data is sampled at a low rate.
Any dependency can only favor the adversary, so these results
also provide lower bounds on the achievable privacy in those
settings, which would be desirable if the dependency is poorly
understood. Later, we consider the case where the movements
are modeled by Markov chains (Section V-C).

Obfuscation Model: We assume that each user has only
limited knowledge of the characteristics of the overall pop-
ulation and thus we employ a simple distributed method in
which the location of each user is reported with error with a
certain probability, where that probability itself is generated
randomly for each user. More precisely, let Z(n)

u be the vector
which contains the obfuscated versions of user u’s locations,
and Z(n) is the collection of Z(n)

u for all users,

Z(n)
u =



Z (n)
u (1)

Z (n)
u (2)
...

Z (n)
u (m)



, Z(n) =
[
Z(n)

1 ,Z(n)
2 , · · · ,Z(n)

n

]
.

For user u, we generate the random variable R(n)
u that is

uniformly distributed between 0 and an
1. The value of R(n)

u

is the probability that any location of the user is changed to a
different location by obfuscation, and an is termed the “noise
level” of the system. Hence, the effect of the obfuscation is to
alter the probability distribution function of each user across
the r locations in a way that is unknown to the adversary,

1The uniform distribution assumption for R(n)
u is not necessary and the

results can be extended to a general set of distributions when we employ an =

E[R(n)
u ]. However, the assumption of a uniform random variable simplifies

the presentation of the results significantly.



since the obfuscation is independent of all past activity of the
user.

Anonymization Model: Anonymization is modeled by a
random permutation Π(n) on the set of n users. The user u
is assigned the pseudonym Π(n) (u). For simplicity, we will
employ Π(u) instead of Π(n) (u) where the meaning is not
ambiguous. Y(n) is the anonymized version of Z(n)

u ; thus

Y(n) = Perm
(
Z(n)

1 ,Z(n)
2 , · · · ,Z(n)

n ;Πn
)

=

[
Z(n)
Π−1 (1)

,Z(n)
Π−1 (2)

, · · · ,Z(n)
Π−1 (n)

]

=
[
Y(n)

1 ,Y(n)
2 , · · · ,Y(n)

n

]
,

where Perm( . ,Π) shows the permutation operation using
the permutation function Π. As a result, Y(n)

u = Z(n)
Π−1 (u)

and

Y(n)
Π(u) = Z(n)

u .
Adversary Model: The adversary is assumed to have com-

plete statistical knowledge of the users’ movements. The ad-
versary also knows the value of an , as it is a design parameter.
However, the adversary does not know the realization of
the random permutation Π(n) or the realizations of random
variables R(n)

u , as these are independent of the past behavior
of the users.

Perfect location privacy is defined as follows [3]:

Definition 1. User u has perfect location privacy at time k,
if and only if

lim
n→∞

I
(
Xu (k); Y(n)

)
= 0, (1)

In this paper, we also consider the situation in which there is
no location privacy:

Definition 2. User u has no location privacy at time k, if there
exists an algorithm for the adversary to estimate Xu (k) such
that, as n → ∞,

Pe (u) , P
(JXu (k) , Xu (k)

)
→ 0,

where JXu (k) is the estimated location of user u at time k.

IV. PERFECT PRIVACY: ACHIEVABILITY

A. Two-State Model

We first consider the two-state (r = 2) model, which
captures the salient aspects of the problem, in particular the
proof techniques that will be employed throughout. With two
possible locations 0 and 1, a user’s location is characterized
by a Bernoulli random variable with a single parameter pu ,
which is the probability of user u being at location 1. Thus,
Xu (k) ∼ Bernoulli (pu ) . We assume that pu , u = 1, 2, . . . , n
are drawn independently from a continuous density function,
fP (pu ), on the (0, 1) interval. Specifically, we assume there
are δ1, δ2 > 0 such that2:




δ1 < fP (pu ) < δ2 pu ∈ (0, 1)
fP (pu ) = 0 pu < (0, 1)

2The condition δ1 < fP (pu ) < δ2 is not actually necessary for the
results and can be relaxed; however, we keep it here to avoid unnecessary
technicalities.

Since Xu (k) are i.i.d. and have a Bernoulli distribution,
Zu (k)’s and Yu (k)’s are also i.i.d. with a Bernoulli distribution.

The adversary, armed with knowledge of pu, u = 1, 2, . . . , n,
and the obfuscated and anonymized observations Yu (k) for
u = 1, 2, . . . , n and k = 1, 2, . . . ,m(n), wants to determine the
locations Xu (k), k = 1, 2, . . . ,m(n). The following theorem
states that if an is significantly larger than 1

n in this two-state
model, then all users have perfect location privacy independent
of the value of m(n).

Theorem 1. For the above two-state model, if
• m = m(n) is arbitrary;
• R(n)

u ∼ Uni f orm[0, an], where an , c′n−(1−β) for c′ > 0
and β > 0;

then user 1 has perfect location privacy. That is,

∀k ∈ N, lim
n→∞

I
(
X1(k); Y(n)

)
= 0.

Proof: Recall that the proofs of all theorems are in [5].
By symmetry, the theorem readily applies to all users u =
1, 2, . . . , n.

Although m(n) is arbitrary and thus can be arbitrarily
large, suggesting anonymization becoming unnecessary in the
limit, it is important to note that some (small) degree of
anonymization is indeed required. In particular, asymptotically
large m(n) does imply that the system does not need to change
the pseudonyms during system operation. However, the system
does need to assign pseudonyms once to the users, as it is the
obfuscation preventing the adversary from determining which
trace is associated with user u that prevents him from tracking
user u in the limit of large n. This is readily observed by noting
that, without anonymization, the noise level of the obfuscation
specified in Theorem 1 goes to zero for large n; hence, if the
adversary knows which trace is associated with user u, that
user has no location privacy.

B. Extension to r-States

Now, assume an r-location model with locations
(0, 1, · · · , r − 1), where pu (i) shows the probability of
user u being at location i. We define the vector pu

pu =
[
pu (1), pu (2), · · · , pu (r − 1)

]T
.

We assume pu (i)’s are drawn independently from some con-
tinuous density function, fP (pu ), on the (0, 1)r−1 hypercube
(note that the pu (i)’s sum to one, so one of them can be
considered as the dependent value and the dimension is r −1).
In particular, define the range of the distribution as

RP = {(x1, · · · , xr−1) ∈ (0, 1)r−1 :
xi > 0, x1 + x2 + · · · + xr−1 < 1}.

Then, we assume there are δ1, δ2 > 0 such that:




δ1 < fP(pu ) < δ2, pu ∈ RP

fP(pu ) = 0, pu < RP

The obfuscation is similar to the two-state case. Specifically,
for j ∈ {0, 1, · · · , r − 1} we can write



P(Z (n)
u (k) = j |Xu (k) = i) =




1 − R(n)
u , for j = i

R(n)
u

r−1 , for j , i

Theorem 2. For the above r-state model, if:
• m = m(n) is arbitrary;
• R(n)

u ∼ Uni f orm[0, an], where an , c′n−
(

1
r−1−β

)
for c′ >

0 and β > 0;
then user 1 has perfect location privacy. That is,

∀k ∈ N, lim
n→∞

I
(
X1(k); Y(n)

)
= 0.

V. CONVERSE RESULTS: NO PRIVACY

In this section, we prove that if the number of observations
by the adversary is larger than its critical value and the value of
the noise level is less than its critical value, then the adversary
can find an algorithm to successfully estimate the location
of users with arbitrarily small error probability. Combined
with the results of the previous section, this implies that
asymptotically (as n → ∞), location privacy can be achieved if
and only if at least one of the two techniques (obfuscation or
anonymization) are used on the proper side of their thresholds.
However, it is important to recall the discussion following
Theorem 1. In particular, looking at the results of [3], we
notice that anonymization alone can provide perfect privacy
if m(n) is below its threshold (even when no obfuscation is
employed). On the other hand, as described in the discussion
after Theorem 1, the threshold for obfuscation is only valid
when obfuscation is used in conjunction with anonymization
(with arbitrary m(n)) as shown in Figure 1.

A. Two-State Model

Consider first the i.i.d. two-state model. Recall that we
can consider the location of users at any time as a Bernoulli
random variable with parameter pu . As before, we assume that
pu’s are drawn independently from some continuous density
function, fP (pu ), on the (0, 1) interval. Specifically, there are
δ1, δ2 > 0 such that




δ1 < fP (pu ) < δ2, pu ∈ (0, 1)
fP (pu ) = 0, pu < (0, 1)

Theorem 3. For the two-state i.i.d. model, if:
• m = cn2+α for c > 0 and α > 0;
• R(n)

u ∼ Uni f orm[0, an], where an , c′n−(1+β) for c′ > 0
and β > α

4 ;
then user 1 has no location privacy as n goes to infinity. In
other words, there exists an algorithm for the adversary to
estimate X1(k) such that

Pe (1) , P
(JX1(k) , X1(k)

)
→ 0 as n → ∞.

Note that due to the symmetry of the problem, the theorem
applies to all users.

The basic idea is that the adversary first inverts the
anonymization mapping Π(n) to obtain Z1(k), and then esti-
mates the value of X1(k) from that. To invert the anonymiza-
tion, the adversary calculates the empirical averages for the

observed presence of users at location 1 and then assigns the
string with the empirical average closest to p1 to user 1.

B. Extension to r-di.i.dStates

Now, assume users can go to r locations (0, 1, · · · , r − 1),
with pu (i) the probability of user u being at location i. The
vector pu is defined as in Section IV-B. We also consider
pu (i)’s are drawn independently from some continuous density
function, fP (pu ), on the (0, 1)r−1 hypercube. We also defined
fP (pu ) and the range of distribution in Section IV-B.

Theorem 4. For the above r-state mode, if:
• m = cn

2
r−1+α for c > 0 and α > 0;

• R(n)
u ∼ Uni f orm[0, an], where an , c′n−

(
1

r−1+β
)

for c′ >
0 and β > α

4 ;
then user 1 has no location privacy as n goes to infinity. In
other words,

Pe (1) , P
(IX1(k) , X1(k)

)
→ 0.

C. Markov Chain Model

To this point, we have assumed there are r locations and
users’ movements are i.i.d. Here, we model users’ movements
by Markov chains to capture the dependency of the users’
movement across time. Again, we assume there are r possible
locations, which in this case corresponds to the number of
states in the Markov chain. Let E be the set of edges. More
specifically, (i, j) ∈ E if there exists an edge from i to j with
probability p(i, j) > 0. In this case, the users are distinguished
by their transition probabilities pu (i, j) (where subscript u
refers to user u). The adversary A again knows the transition
probabilities of all users, and the model for obfuscation and
anonymization is exactly the same as before.

We show that the adversary will be able to estimate the
locations of the users with low error probability if m(n) and
an are in the appropriate range. The key idea is that the
adversary can focus on a subset of transition probabilities that
are sufficient for recovering the entire transition probability
matrix. By estimating those transition probabilities from the
observed data and matching them with the known transition
probabilities of the users, the adversary will be able to first de-
anonymize the data, and then estimate the locations of users.

Theorem 5. For an irreducible, aperiodic Markov chain with
r states and |E | edges as defined above, if:

• m = cn
2

|E |−r +α for c > 0 and α > 0;
• R(n)

u ∼ Uni f orm[0, an], where an , c′n−
(

1
|E |−r +β

)
for

c′ > 0 and β > α
4 ;

then the adversary can successfully identify the location of
user 1 as n goes to infinity. In other words,

Pe (1) , P
(IX1(k) , X1(k)

)
→ 0.

VI. CONCLUSION

In this paper, we have considered both obfuscation and
anonymization techniques to achieve location privacy from
an information-theoretic perspective. In particular, we have



employed the mutual information metric from [3] to explore
the minimum amounts of obfuscation and anonymization such
that there is no information leakage to an interested adversary
who possesses full statistical knowledge of user mobility
patterns. We have characterized the limits of location privacy
in the entire m(n) − an plane for the i.i.d. case, as shown
in Figure 2. The privacy level of the users depends on both
m(n) (number of observations per user by the adversary for
a fixed anonymization mapping) and an (noise level of the
obfuscation). That is, larger m(n) and smaller an indicate
weaker location privacy. In this paper, we obtained the exact
values of the thresholds for m(n) and an . We showed that if
m(n) is fewer than O

(
n

2
r−1
)
, or an is bigger than Ω

(
n−

1
r−1
)
,

users have perfect location privacy. On the other hand, if none
of the above conditions are satisfied, users have no location
privacy. For the case where the users’ movements are modeled
by Markov chains, we obtained a no-privacy region in the
m(n) − an plane.

It is worth noting that these are somewhat coarse-grained
thresholds in the sense that we have proven the results up to
the exponents of n. In other words, we did not investigate
the case that we are exactly at the thresholds or maybe a
factor log n above or below the thresholds. Such a fine-grained
investigation left for the future work.

Future research in this area needs to characterize the exact
privacy/no-privacy regions under Markov models for user
movements. It is also important to consider different ways
to obfuscate users’ movements, and study the utility-privacy
trade-offs across these different obfuscation techniques.

Fig. 2: Limits of location privacy in the m(n)−an plane for the
i.i.d. case: in regions 1, 2, and 3, users have perfect location
privacy, and in region 4, users have no location privacy.
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