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Abstract

A number of models – such as the Hawkes process and log Gaussian Cox pro-

cess – have been used to understand how crime rates evolve in time and/or

space. Within the context of these models and actual crime data, parameters

are often estimated using maximum likelihood estimation (MLE) on batch

data, but this approach has several limitations such as limited tracking in

real-time and uncertainty quantification. For practical purposes, it would be

desirable to move beyond batch data estimation to sequential data assimila-

tion. A novel and general Bayesian sequential data assimilation algorithm is

developed for joint state-parameter estimation for an inhomogeneous Pois-

son process by deriving an approximating Poisson-Gamma ‘Kalman’ filter

that allows for uncertainty quantification. The ensemble-based implementa-

tion of the filter is developed in a similar approach to the ensemble Kalman

filter, making the filter applicable to large-scale real world applications un-

like nonlinear filters such as the particle filter. The filter has the advantage

that it is independent of the underlying model for the process intensity,

and can therefore be used for many different crime models, as well as other

application domains. The performance of the filter is demonstrated on syn-

thetic data and real Los Angeles gang crime data and compared against a

very large sample-size particle filter, showing its effectiveness in practice. In
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addition the forecast skill of the Hawkes model is investigated for a forecast

system using the Receiver Operating Characteristic (ROC) to provide a use-

ful indicator for when predictive policing software for a crime type is likely

to be useful. The ROC and Brier scores are used to compare and analyse

the forecast skill of sequential data assimilation and MLE. It is found that

sequential data assimilation produces improved probabilistic forecasts over

the MLE.

Keywords: Nonlinear filtering, Hawkes Process, joint state-parameter

estimation, count data, particle filtering, ensemble Kalman filter

1. Introduction

Constructing computational algorithms for predictive policing is one of the

emerging areas of mathematical research. Given that police departments

worldwide are frequently asked to deliver better service with the same level

of resources, algorithms that can better allow authorities to focus their re-

sources could be of great value. To this end, there have been several methods

developed over the years to help make crime predictions and ultimately guide

policing resources to areas where they are likely to have the biggest impact.

One recently developed algorithm for predictive policing is the Epidemic-

Type-Aftershock-Sequence (ETAS) model described in some detail in [1, 2].

The idea behind the ETAS model is that crimes are generated stochastically,

but the rate of crime generation is history-dependent, such that crimes oc-

curring within an area will increase the rate of future crime generation in

that same or nearby areas for at least some period of time. In practice, the

ETAS model functions by taking in daily, up-to-date historical crime data

in the form of event times and geolocations, processing them within the

model’s mathematical framework described below, and then highlighting on

a fixed grid (typically 150m squares) the top N locations likely to have crime

on that day. The processing is done by carrying out a time series analysis

in each grid cell by fitting a self-exciting rate model known as a Hawkes

process to the historical data. The stochastic event rate λ(t) in this Hawkes
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process is given by

λ(t) = µ+
∑

τj<t

qβe−β(t−τj), (1.1)

where µ is the baseline crime rate, q is a sort of reproduction number that

is equal to the expected number of future events spawned by any single

crime occurrence, β is the decay rate of the increased crime rate back to

the baseline, and τj are the times of prior crime events, and each of these

vary by grid cell. Hence, at any given moment the crime rate is a linear

superposition of Poisson processes, including the homogeneous baseline rate

and several exponentially decaying rates equal in number to the number of

prior events. The ETAS algorithm then carries out a maximum likelihood

parameter estimation (MLE) on batch data to find µ, q, and β; typically q

and β are assumed to be the same across all grid cells, while µ is allowed to

vary from cell to cell. Finally, those N cells with the highest estimated λ

are highlighted for that day.

Two recent randomised field-trials conducted with police departments in Los

Angeles, CA and Kent, UK [2] showed that the ETAS algorithm was able

to predict 1.4-2.2 times as much crime as a dedicated crime analyst using

existing criminal intelligence and hotspot mapping practices. The trials

were also able to show that dynamic police patrolling based on the ETAS

algorithm led to an average of 7.4% reduction in crime volume at mean

weekly directed patrol levels, whereas patrols based upon analyst predictions

showed no statistically significant effect.

Despite the success of these field-trials, one fundamental question for any

predictive policing algorithm is whether or not a given crime type is ‘pre-

dictable’ at any practical level, and by how much. Analysing the opera-

tional predictability and forecast skill of any predictive policing software

is crucial in determining its worth. That is, even if one had a perfect

model for the crime rate and complete knowledge of all model parame-

ters, would the resulting predictions be actionable in any useful way? In

spatio-temporal crime forecasting, a classic measure is the prediction effi-

ciency index (PEI) [3]. This index requires that for each prediction period

of interest (day, week, etc.) a subset of the total spatial region in question
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be marked as the region of interest for that period. The PEI is the ratio

of the number of events occurring within the chosen region of interest to

the greatest possible number of events that could have occurred over all

potential regions of interest having the same size over that period; the PEI

is therefore ≤ 1. Hence, the PEI essentially captures how well the predic-

tion algorithm performs versus an oracle that had true knowledge of where

events would occur over the period in question for a fixed predicted area

size. While this measure is of practical importance, it does not take into

account the probabilistic nature of the underlying crime process. That is, if

one assumes crime is in fact a stochastic process, then even if one knew with

certainty all details of the process, there would be no reason to necessarily

expect a PEI of 1, and in fact the expected PEI in such a scenario could still

be quite small. Currently, there has been no assessment from a probabilistic

view of when crime location and rate is fundamentally predictable (or not),

despite the fact that this knowledge would be useful for both police forces

and predictive policing researchers and companies.

Another problem with the ETAS method is that there is no ability to track in

real time uncertainty in either the fitted parameters or the model predictions,

which could arise due to noisy and limited data or model selection errors.

While forecasts such as the ETAS cell highlighting would not necessarily

take into account such uncertainty, it is important to know from a police

patrolling strategy perspective. For instance, measures of uncertainty can

help to determine if the police are more likely to cover the most crime

locations by increasing/decreasing the number of locations to patrol.

More sophisticated Bayesian methods for estimation using batch data have

been looked at by Shinichiro & Gelfand [4] for a Log Gaussian Cox Pro-

cess (LGCP) and Mohler [5] for a combination of an LGCP and Hawkes

process to model the crime rate. These methods, though, are somewhat

specific to the model in question. It would be desirable to have a sequen-

tial Bayesian method for estimation that is independent of the underlying

model for the crime rate so that model comparison can be carried out for

instance between the Hawkes process and LGCP using the same estimator

in each case. One of the major computational advantages of such a method
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would be that the entire data history of observations would not be needed.

Taddy [6] developed a sequential Monte-Carlo filtering method for a Poisson

dynamic linear model. This filtering method has the drawback that it can

not be applied to self-exciting models such as the Hawkes process. Particle

filtering [7–11] would be able to achieve this and is considered the “gold-

standard” in sequential Bayesian filtering as it has been proved to converge

to the posterior distribution as the number of particles tends to infinity.

However, it comes with a major draw-back that is suffers from the “curse of

dimensionality” and hence one needs to develop a sequential Bayesian filter

that is computationally feasible in practice.

In order to overcome some of these problems and fill in gaps within the

literature, we propose here a sequential data assimilation approach to es-

timation of predictive policing models that will systematically incorporate

uncertainty and real-time tracking, enabling us to investigate the effect of un-

certainty in an operational context. To do this in a computationally efficient

manner, we develop an Ensemble Poisson-Gamma filter motivated by the

Ensemble Kalman Filter (EnKF) used in geophysical applications [12, 13].

Even though EnKF allows for non-normal prior distributions and relaxes the

assumption of a normal likelihood, a highly skewed and non-negative (pos-

terior) distribution can be better approximated, for instance, by a gamma

distribution. The uncertainty of crime intensity rate and observations for

some type of crimes (e.g. burglary) could be small, leading to a highly

skewed uncertainty for the burglary rate. By taking the EnKF philosophy

we build a computationally efficient and robust filter for point processes,

with emphasis on the Hawkes process in our examples, that compares well

with the “gold-standard” particle filter implemented with a large sample

size limit. We note that while we are able to use the gold-standard particle

filter for a single 1D process, in practice spatio-temporal predictive policing

software has to carry out filtering for many grid cells, making the particle

filter computationally infeasible. We note that the filter can easily be ap-

plied to other crime rate models, such as the LGCP, that allows for model

comparison to be carried out, and we demonstrate this on synthetic data.

We also assess the operational predictability and forecasting skills of Poisson
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rate models at a fundamental level using the Receiver Operating Charac-

teristic (ROC). This characteristic measures the positive hit rate verses the

false alarm rate and allows us to assess predictive policing models precisely.

The ROC has been suggested before by a few authors (e.g. [14]) as a good

way to measure the success or failure of predictive policing software; however

their studies have focused on particular data sets rather than a theoretical

assessment of parameter regions where the underlying process is predictable

or not. By carrying out a theoretical synthetic experiment using the par-

ticle filter, we find parameter regions where the Hawkes process is “ROC-

predictable” and where the data assimilation approach shows improved skill

over the MLE based ETAS algorithm. We further demonstrate our method

on real LA gang violence data to show its effectiveness in practice. The MLE

and filter methods are also compared using the Brier score for probabilistic

forecasts.

The paper is outlined as follows. In section 2 we introduce ensemble filtering

for sequential data assimilation, provide an overview of the “gold-standard”

particle filter approach, then develop our own approach that we call the

Ensemble Poisson-Gamma filter for a univariate variable. In section 3 we

demonstrate both the accuracy and efficiency of our approach versus the

particle filter on simulated data generated via a Hawkes process that also

allows a joint state-parameter estimation. In section 4, we demonstrate the

Ensemble Poisson-Gamma filter using a Log Gaussian Cox Process for the

crime rate using synthetic data. In section 5 we employ our method on real

data from Los Angeles and assess the results. In section 6 we undertake

a general study on the inherent predictability of Poisson rate models, then

compare our method to the ETAS algorithm. Finally, we conclude and

discuss future directions and open questions in section 7.

2. Ensemble-based filtering

Consider a counting process N(t) associated with the conditional intensity

function

λ(t|Ht) := lim
δt→0

Pr(N(t+ δt)−N(t) = 1|Ht)

δt
, (2.1)
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where Ht is the event history of the process up to time t, containing the

list {0 < τ1 < · · · < τN(t) < t}, where τj is the time of the j-th event

and τN(t) is the time of the last event prior to t. We will use a shorthand

notation λ(t) := λ(t|Ht) in the rest of this work. For this work, we consider a

discrete-time intensity process λj := λ(tj) being a constant in the j-th time

step [(j − 1)δt, jδt) for j = 1, . . . , n, where a time step δt is small enough

such that the discrete process is a good approximation of the continuous

time process. Generally, this means that the number of events occurring

within any step is small. Let yj be the number of events in the j-th time

step and y1:n = {y1, . . . , yn} denote the collection of observations up to the

n-th time step. Then the probability of observing yj is Poisson distributed

Pr(yj |λj) = (λjδt)
yj exp(−λjδt). (2.2)

The state of the system and model parameters during any time interval δt

are assumed to be constant within the interval and a random variable vj

collectively denotes both state and parameters in the j−th time interval.

One goal of this paper is to develop a discrete-time filtering method for

the intensity process described by (2.1) and (2.2) that involves a recursive

approximation of the probability density p(vj |y1:j) given the probability den-

sity p(vj−1|y1:j−1). In other words, we wish to recursively make an inference

of the unknown state of a dynamical system (as well as model parameters)

using only the data from the past up to the present.

In most filtering algorithms, the computation of p(vj |y1:j) consists of two

main steps: (1) the Prediction step, which computes p(vj |y1:j−1) based on

p(vj−1|y1:j−1) using the transition kernel p(vj |vj−1); and (2) the Analysis

step, which uses Bayes’s formula to compute p(vj |y1:j) given a prior density

p(vj |y1:j−1) for vj . When the prior density and likelihood are both normal,

the normal posterior density p(vj |y1:j) is recursively given in a closed-form

expression by the Kalman filter. However, a numerical approximation is typ-

ically needed in general cases. One such method, discussed more extensively

below, is the particle filtering (PF) method, which provides an ensemble ap-

proximation of p(vj |y1:j). This method has become increasingly popular in

practical applications since it is relatively simple to implement and able to
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reproduce the true posterior p(vj |y1:j) in the large sample limit. Neverthe-

less, it suffers from the curse of dimensionality and the design of efficient

algorithms can be challenging. Though the time-series examples considered

in this work may all be tractable with the standard PF method, our ul-

timate goal is to consider higher dimensional spatio-temporal data, which

may require an algorithm that is more scalable than PF. In this work, we de-

velop a novel ensemble-based filtering algorithm geared to assimilating data

where the likelihood function is described by (2.2) with the application to

crime data analysis in mind. The new algorithm is built upon the Poisson-

Gamma conjugate pair in the univariate case, which can be extended to

a multivariate case via the serial update scheme as commonly used in the

serial-update version of the ensemble Kalman filter (EnKF), see [15]. Unlike

the PF, where particle weight is updated according to Bayes’s rule, the new

algorithm provides a formula that attempts to directly move the ensemble

into the region with a high posterior probability. In the rest of this section,

we will briefly review the concept of PF and then describe how to construct

a new ensemble-based algorithm.

2.1. Particle filter (PF)

Since we will be using a particle filter in a large sample size limit to assess

the quality of our new algorithm, we present here how a basic particle filter

works in a nutshell for our specific application and encourage the reader to

consult [7–11] for theoretical details and discussions in general cases. We

begin with a discrete-time (hidden) Markov process {Vj} corresponding to

an R
d-value that is not directly observed. Instead we observe a process {Yj},

which is the count data in the current application. Owing to the Markovian

assumption of the hidden process, the joint probability density of {Vj} for

j = 1, . . . , k is given by,

p(v1:k) = f1(v1)
k∏

j=2

fj(vj |vj−1), (2.3)

where fj(vj |vj−1) is a transition density function at the j-time step and

f1(v1) is an initial density. For a hidden Markov model (HMM), the con-
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ditional joint density Y1:k given V1:k := {v1, . . . , vk} is typically assumed to

have the following conditional independence form:

p(y1:k|v1:k) =
k∏

j=1

p(yj |vj). (2.4)

For the current application p(yj |vj) is the Poisson likelihood probability

given by (2.2) and vj usually combines the conditional intensity λk, which

also depends on unknown model parameters. The inference problem then

follows a recursive decomposition:

p(vk|y1:k) =
p(yk|vk)

p(yk|y1:k−1)
p(vk|y1:k−1). (2.5)

Under the Markovian assumption, we can write

p(vk|y1:k−1) =

∫

fk(vk|vk−1)p(vk−1|y1:k−1)dvk−1. (2.6)

In other words, given p(vk−1|y1:k−1), the filtering here is concerned with the

sequential computation of p(vk|y1:k) as the index k is incremented.

A PF algorithm is designed to approximate the density p(vk|y1:k) by M

weighted particles (i.e. empirical random measure)

p(vk|y1:k) ≈
M∑

i=1

w
(i)
k δ(vk − v

(i)
k ),

M∑

i=1

w
(i)
k = 1. (2.7)

The weighted particles are sequentially updated via two main recursive steps:

prediction and analysis. The prediction step draws v
(i)
k ∼ p(vk|v(i)k−1, y1:k)

to generate a new particle v
(i)
k . This sampling scheme is often the most

convenient choice. The particle weight is unchanged in this step. Thus, the

prediction step yields an ensemble approximation

p(vk|y1:k−1) ≈
M∑

i=1

w
(i)
k−1δ(vk − v

(i)
k ). (2.8)

In the analysis step, the current data yk is assimilated to update the particle

weight via Bayes’s formula. For the above implementation of the prediction
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step, the new particle weight is updated as

w
(i)
k =

w̃
(i)
k

∑M
i=1 w̃

(i)
k

, w̃
(i)
k = p(yk|v(i)k )w

(i)
k−1. (2.9)

After the analysis step, we obtain a new empirical approximation of P (vk|y1:k)
represented by weighted particles {w(i)

k , v
(i)
k }.

The above algorithm may lead to the issue of weight degeneracy when only

few particles have significant particle weights and all other weights are neg-

ligibly small. If unabated, there could eventually be only one particle left

with weight 1. An additional step called resampling is conventionally em-

ployed to mitigate this issue. The implementation of the resampling step in

this work is based on the residual resampling method, see Appendix A. Note

that the above weight update is usually called the “bootstrap filter”, which

is the simplest version of PF, but it is usually considered to be inefficient

since it may require a large number of particle to well approximate the de-

sired density, depending on many factors such as the dynamic of the model,

the likelihood function, and the dimension of the problem. A more general

weight update equation can be designed based on importance sampling and

in some cases an optimal proposal density can be achieved to minimise the

variation of the sample representation. The detail of the optimal particle

filtering is out of the scope of the current work and in-depth discussion may

be found in [8, 10]. We will use the bootstrap filter in this work since we

are able to increase the sample size to the level where the ensemble distri-

bution is unchanged as the sample size increases. Due to its convergence

property, the PF-generated ensemble, in a large sample limit, will be used

as the gold standard to test the performance of our novel ensemble method

in Section 2.2.

2.2. Poisson-Gamma filter

Suppose for now that the hidden state vk includes only the intensity λk, i.e.,

vk ≡ λk. We will extend our algorithm for the case of the combined state

and parameter later on. In contrast to PF, which constructs the ensemble

approximation by updating the particle weights, our new algorithm will take
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a different approach where a set of uniformly-weighted particles is used for

the approximation; hence we will attempt to place most of these particles

in a high probability region. The new algorithm also consists of two main

steps. In the prediction step, the particles are propagated in the same fashion

as PF, i.e., λ
(i)
k ∼ fk(λk|λk−1). However, we will denote these particles by

λ
(i)
k|k−1 instead since they will be transformed in the analysis step; recall that

for PF algorithm these particles are not changed in the analysis but their

weights are changed. In the analysis step, the proposed algorithm will then

transform the predicted particles λ
(i)
k|k−1 to a new set of particles λ

(i)
k , which

approximates p(λk|y1:k), according to a stochastic transformation that will

be derived below.

To this end, suppose that the predicted particle λ
(i)
k|k−1 has been obtained,

usually by propagating λ
(i)
k−1 to time step k via some mathematical model.

We now demonstrate how we develop the ensemble-based algorithm for the

analysis step based on the Poisson-Gamma conjugate pair, specified through

the mean and “relative variance” of the (univariate) conditional intensity.

To ease notational cluttering, we will suppress the time subscript in this

section and it should be understood that the algorithm below is applied

to the analysis step at each time step k. It will be seen later that the

update formula will be more compact when employing the relative variance

Pr = P/〈λ〉2, where 〈λ〉 is the mean of λ, instead of the variance of λ, denoted

by P . Following standard Bayesian analysis, it is simple to show that if λ

has a gamma prior distribution with a mean 〈λ〉 and relative variance Pr,

then given the Poisson distribution on y in (2.2), the posterior on λ is also

gamma distributed with mean and relative variance 〈λa〉 and P a
r given by

〈λa〉 = 〈λ〉+ 〈λ〉
P−1
r + 〈λ〉δt

(y − 〈λ〉δt)

(P a
r )

−1 = P−1
r + y.

(2.10)

Note that the conventional Bayesian scheme updates the posterior gamma

distribution via the so-called scale and shape parameters instead of mean

and relative variance. The update formula (2.10) will, however, suite well

our ensemble-based filtering algorithm that is intended to approximately
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sample the posterior density for a given prior ensemble; this is analogous

to the well-known Ensemble Kalman filter (EnKF) which is widely used to

sample the posterior distribution when the assumption of normality is not

strictly valid but can still be approximately satisfied. In our application,

although the prior density may not be exactly a gamma distribution, which

tends to be the case in practice, we may still insist to update our ensemble

of λ so that its mean and relative variance satisfy (2.10). This is drasti-

cally different from fitting the gamma distribution to the ensemble of λ and

then updating the scale and shape parameters of the gamma distribution

through Bayesian analysis and finally drawing the posterior sample from

the posterior gamma distribution described by the updated scale and shape

parameters. The latter will always have the sample distributed exactly as

a gamma distribution while the former can have a non-gamma sample. We

will refer to (2.10) as the Poisson-Gamma filter (PGF) and its ensemble-

based version as the ensemble Poisson-Gamma filter (EnPGF), which will

be derived in the subsequent section.

We now explain how we will generate a posterior sample that satisfies (2.10).

Let us suppose that we have a prior sample λ(i) for i = 1, . . . ,M . Let

A = [λ(1), . . . , λ(M)]−λ̄ be the “anomaly” matrix of size 1×M , where λ̄ is the

sample mean. Thus we can write the sample variance by P = (AAT )/(M−1)

and the relative sample variance Pr can be found accordingly using the

sample mean. Given (2.10), we can easily update the posterior ensemble

mean, denoted by λ̄a, as follows:

λ̄a = λ̄+
λ̄

P−1
r + λ̄δt

(y − λ̄δt) (2.11)

The update of the posterior ensemble anomaly, denoted by Aa, is also re-

quired so that the posterior sample can be generated by λa = λ̄a + Aa. It

is important that the anomaly Aa must be able to produce an ensemble

that is consistent with the second line of (2.10). There are several ways

to achieve this, which are analogous to several ensemble-based schemes of

EnKF, see [13, 16] for “stochastic” formulations and [17, 18] for “deter-

ministic formulations”. We focus only on the development of the so-called

stochastic formulation in the next section.
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2.3. EnPGF: Stochastic update

We first note that, if y = 0, (2.10) indicates that the ensemble mean should

update, but the ensemble relative variance should remain unchanged. In

order to achieve this along with (2.11), one can simply scale each ensemble

member such that λ(i),a = λ(i)λ̄a/λ̄, and the update is complete. But,

for y 6= 0, we use a stochastic update scheme in which each individual

ensemble member is stochastically perturbed to achieve the sample variance

that satisfies (2.10). This can be achieved based on the following stochastic

equation:

λ(i),a − λ̄a

λ̄a
=

λ(i) − λ̄

λ̄
+ Pr(Pr + (y)−1)−1

[
ỹ(i) − ¯̃y

¯̃y
− λ(i) − λ̄

λ̄

]

, (2.12)

where ỹ(i)
iid∼ Ga(y, 1) for i = 1 . . . ,M .

The derivation of (2.12) follows a similar idea of the gamma prior and inverse

gamma likelihood filter introduced by [19]. Denote each term in (2.12) as

the following:

λ(i),a − λ̄a

λ̄a
︸ ︷︷ ︸

:=w

=
λ(i) − λ̄

λ̄
︸ ︷︷ ︸

:=s

+Pr(Pr + (y)−1)−1

︸ ︷︷ ︸

:=c

[
ỹ(i) − ¯̃y

¯̃y
︸ ︷︷ ︸

:=t

−λ(i) − λ̄

λ̄

]

. (2.13)

Note that E[w2] is the posterior relative variance P a
r , E[s2] is the prior

relative variance Pr, and E[t2] = Var(ỹ)/(E[ỹ])2 = (y)−1 since ỹ ∼ Ga(y, 1).

It is also simple to check that E[st] = 0. Then, by taking the expectation

E[w2] given the equation above, it follows that

E[w2] = E[s2]− 2cE[s2] + 2c2E[s2 + t2]

P a
r = Pr − 2cPr + c2(Pr + (y)−1)

= Pr − 2Pr(Pr + (y)−1)−1Pr + Pr(Pr + (y)−1)−1Pr

= Pr − Pr(Pr + (y)−1)−1Pr,

which, after some simple algebra, matches the update in (2.10). Based on

the relative anomaly (2.12), the anomaly Aa for the posterior ensemble can

be readily obtained

Aa =

(
λ(i),a − λ̄a

λ̄a

)

λ̄a. (2.14)
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Therefore, (2.11) and (2.12) together complete our ensemble update algo-

rithm, which we call the Ensemble Poisson-Gamma filter (EnPGF).

2.4. Tests: Gamma prior and mixture of gamma prior

In this section, we compare the performance of EnPGF and the ensemble

Kalman filter (EnKF) in the scenarios where the analytical form of the pos-

terior distribution is available. The sequential aspect of the algorithm is not

tested in these cases (i.e. there is just a single observation and δt = 1 in the

above formula). It will be shown that EnPGF outperforms EnKF in most

cases, even in the case of large observation y. To this end, we first present a

stochastic update method for the ensemble Kalman filter (EnKF), which is

a very popular method, especially in geophysical applications, for approxi-

mation of filtered distributions in high-dimensional applications. The EnKF

exploits the mean and covariance update of the Kalman filter to sample a

high probability region of the filtered distribution in the applications where

prior sample and observation likelihood are close to being normal. For large

λ, it is appealing to apply the EnKF to approximate the uncertainty of λ

because if y ∼ Poi(λ), y can be approximated by a normal distribution

N(λ, λ). Nonetheless, we would have to deal with the homoskedasticity is-

sue. To get around this, we apply the variance stabilizing transformation,

i.e., z =
√

y + 1/4 ∼ N(
√
λ, 1/4). Therefore, we may use the transformed

observation equation for EnKF:

z =
√
λ+ η,

where η ∼ N(0, 1/4). The standard EnKF with stochastically perturbed

observation provides a formulation to update the sample as the following:

λ(i),a = λ(i) +Ke(
√

y + 1/4 + η(i) − z(i)),

where z(i) =
√
λ(i), η(i) ∼ N(0, 1/4) and Ke is the (ensemble-based) Kalman

gain. The discussion of above implementation of EnKF can be found in [13].

We will show in the subsequent section that, albeit appealing, EnKF fails

to provide a correct sample representation of the true posterior even in the

case of a large λ.
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In the tests below, the ensemble size is 100 for both EnPGF and EnKF.

TEST 1: We want to ensure that when the prior sample comes from a

gamma distribution, the EnPGF in (2.12) can accurately sample the correct

posterior density. We test the EnPGF and EnKF algorithms for various

gamma prior densities and observations, which are chosen so that the over-

lap between prior and posterior densities are gradually reduced. The exper-

imental results in Figure 1 show that EnPGF provides accurate samples in

all cases. However, EnKF performs reasonably well only in the case that

the prior and posterior densities nearly overlap. Otherwise, it consistently

underestimates the mean and variance, even in the case of a large count

data. This result may suggest that if the prior uncertainty of λ is similar

to a gamma density, EnKF could be useful but only if the data is observed

near the mode of the prior density. Thus, if a mathematical model is used

to generate a prior distribution, it would have to be able to predict the data

very well in order to allow accurate uncertainty quantification, which may

be difficult to achieve in practice.

Figure 1: Comparing histograms generated by EnPGF and EnKF with the true

posterior density

TEST 2: We violate the assumption of gamma prior density by using a
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mixture of two gamma densities:

p(λ) = 0.5Ga(c1, d1) + 0.5Ga(c2, d2),

where Ga(a, b) is a gamma distribution with parameters a and b. The poste-

rior density can be analytically calculated. The results for y = 4 and y = 12

and various values of c1, d1, c2, d2 are shown in Figure 2. When the prior

and posterior densities significantly overlap, both EnPGF and EnKF work

reasonably well and they are only slightly different. However, as the prior

and posterior densities becomes more different, EnKF again shows a clear

underestimation of the mean while EnPGF can still reliably approximate

the significant probability region of the true posterior density, except in the

extreme case where the overlap is very small.

Figure 2: Comparing histograms generated by EnPGF and EnKF with the true

posterior density for the mixture of gamma prior densities. (Top left) y = 4 and

Prior distribution of λ is 0.5Ga(1, 1) + 0.5Ga(5, 1). (Top right) y = 4 and Prior

distribution is 0.5Ga(1, 1) + 0.5Ga(3, 3). (Bottom left) y = 12 and Prior distribu-

tion is 0.5Ga(1, 1) + 0.5Ga(5, 1). (Bottom right) y = 12 and Prior distribution is

0.5Ga(1, 1) + 0.5Ga(5, 1).
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3. State-space model for 1D Hawkes process

In order to implement the EnPGF for our chosen application, we require

a state-space model for the crime rate λ(t). For the log Gaussian Cox

process, it is defined as a dynamical state-space model and so can easily be

implemented for the EnPGF. However, for the Hawkes process this is not

the case and one needs to define a state-space model that approximates the

process. Hence, we consider the stochastic state-space model

λ(t+ δt) = µ+ (1− βδt)(λ(t)− µ) + kNt, Nt ∼ Poi(λ(t)δt), (3.1)

where λ(t) is assumed to be a constant in the interval [t, t+ δt). Under the

assumption of the Poisson likelihood (2.2), the EnPGF is available for the

state-space model (3.1), even though the distribution of λ may not strictly

follow a gamma distribution.

Note that the model (3.1) approximates the first two moments of the Hawkes

process (1.1), with k = qβ. In fact, the evolution of the mean M(t) and

variance V (t) of (3.1) satisfy the ordinary differential equations

M ′ =µβ + (k − β)M

V ′ =2(k − β)V + k2M ;
(3.2)

see also [20]. Figure 3 demonstrates a good agreement between the sample

mean and variance of the Hawkes process (1.1) and the solution of M(t)

and V (t) in (3.2), both in the transient and equilibrium stages. In fact, it is

well known that the unconditional expected value of the intensity process is

E[λ(t)] = µ(1 − k/β)−1, which is exactly the equilibrium solution of M(t).

Furthermore, one can readily show that the equilibrium variance of (3.2) is

given by V = k2βµ/2(β − k)2, which we find correctly predicts the variance

of the intensity process from simulations.

3.1. Tracking intensity

In this experiment, we generate the times of events and “true” intensity

λ∗(t) from one simulation of the Hawkes process (1.1) with µ = 2, k = 1.2,
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Figure 3: (Solid line) Mean and variance emperically approximated by the sample

generated from the Hawkes process (1.1) with parameter values µ = 0.1, k = 0.7, β =

1. (Dash line) Solutions of the odes (3.2).

and β = 2 using Ogata’s algorithm [21]. The simulation is taken in the time

interval [0, 110] and we remove the transient stage of the intensity in the

interval [0, 10) and its corresponding events from the data. Thus, we will

rename the time interval [10, 110] to [0, 100] in this experiment. We assume

that all parameter values are known, but the current (or initial) intensity

λ∗(0) is estimated by a sample drawn from the distribution Ga(36, 6), which

has mean 6 and variance 1. We wish to test the filtering ability of EnPGF

to track λ∗(t) given the data (i.e. times of events). The model (3.1) with

δt = 0.1 is used as a forecast model to generate the ensemble forecast,

which empirically represents the prior distribution in the data-assimilation

step. Once the data become available at the end of each timestep, EnPGF

uses the data to provide a new uncertainty estimate of λ(t). Although the

true intensity is known in this controlled experiment, the filtering ability

of EnPGF with a small sample size is tested by comparing the posterior

summary statistics against a “gold standard” sample statistic generated by

a particle filter with a large number of particles, which is 200,000 in this

case. We denote the sample mean of this gold standard sample by λ◦(t).

As shown in Figure 4, the ensemble mean of EnPGF with 20 samples is

able to accurately track the correct posterior mean of the gold standard

PF, which is also very close to the true intensity. However, the particle

filter with an equally small ensemble size performs poorly, particularly due
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to its underestimation of the “temporal hotspots”. The sample variance of

EnPGF is, however, less smooth than the gold standard case due to the

small sample size, and it tends to be lower except in the intervals of the

temporal hotspots.
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Figure 4: (Top) The true intensity is a realization of a Hawkes process (1.1). The

intensity tracked by PF with 200,000 particles is used as a “gold standard”. The

estimates of λ obtained fom EnPGF and PF, both of which use 20 samples, are

compared with the truth and gold standard. (Bottom) The evolutions of the sample

variance are compared.

We also demonstrate that EnPGF has much less “Monte Carlo fluctuation”

caused by a small sample size. Figure 5 shows the absolute error |λ(t)−λ∗(t)|
as well as |λ(t) − λ◦(t)| averaged over the time t = 40 − 100 since the gold

standard PF starts to converge at t = 40. Due to the stochastic nature of

the algorithm, we investigate the Monte Carlo variation by independently

repeating 50 experimental runs for each sample size. We can see that the

error |λ(t) − λ∗(t)| as well as variation in the error for EnPGF are much

smaller than PF for all sample sizes. In addition, the error of PF with

respect to the gold standard, |λ(t)− λ◦(t)|, is significantly larger at a small

sample size but becomes slightly better than EnPFG in the large sample

size limit, which is of course expected.

To investigate the Bayesian quality of the EnPGF, the posterior density (ap-
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Figure 5: (Left) absolute error |λ∗(t)−λ(t)| and (Right) absolute error |λ◦(t)−λ(t)|,
both of which are averaged over the time t = 40− 100. Again, λ∗(t) and λ◦(t) are

the truth and the gold standard filtered density, respectively. The plot shows the

results from 50 experimental runs for each sample size.

proximated by a probability histogram) at the final time t = 100 obtained

from the gold standard PF is compared with EnPGF for various sample

sizes, see Figure 6. The gold standard posterior histogram evidently ex-

hibits a skewness, which is expected from using the gamma prior density,

and EnPGF is able to match this feature quite well. The results also show

the convergence of EnPGF to the gold standard posterior density in a large

sample size limit. For a small sample size, the sample mean still accurately

approximates the true mean but the density of EnPGF is less smooth and

too concentrated close to the true mean, so it tends to have a smaller vari-

ance than the gold standard result as alluded to briefly above based on one

experimental run.
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Figure 6: The approximated density of the intensity at t = 100 obtained from the

gold standard (black) and EnPGF (blue) with indicated sample size. The results

from 50 experimental runs for EnPGF are plotted for each sample size. The cross

mark indicates the true value of the intensity.
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3.2. Joint intensity-parameter estimation

This section develops a methodology to empirically estimate the joint pos-

terior distribution of λ and model parameters. Thus each ensemble member

is now a vector vk ≡ (λk, θ1,k, . . . , θp,k) where θj,k is the j-th unknown pa-

rameter for j = 1, . . . , p at the time step k. The joint intensity-parameter

estimation based on EnPGF follows the same format as the so-called serial-

update version of EnKF introduced in [15] for a geophysical application.

Again without explicitly writing the time index to avoid cluttering of no-

tation, the process below is applied after each analysis step of the EnPGF.

In particular, after obtaining the posterior particles for the intensity, λ(i),a,

based on EnPGF, the difference λ(i),a−λ(i) is linearly regressed to adjust the

other unknown quantities in the vector v. Thus if the i-th prior ensemble

member of the j-th model parameter is denoted by θ
(i)
j , the i-th posterior

ensemble member is given by

θ
(i),a
j = θ

(i)
j +

Cov(θj , λ)

Var(λ)
(λ(i),a − λ(i)), (3.3)

where Cov(θj , λ) is the sample covariance between the j-th parameter and

the intensity λ and Var(λ) is the sample variance of the λ.

The joint EnPGF is tested with synthetic data for the case where µ and k

in (3.1) are assumed unknown. The true parameters are µ = 2, k = 1.2

and β = 2 while the initial sample of the vector [λ(0), µ, k] is randomly

drawn from N([6, 6, 6], I3), where Im is an identity matrix of size m. The

estimates given by PF with 500,000 particles are used as a gold standard to

examine the performance of EnPGF and PF with a small sample size. We

also compare the results against the maximum likelihood estimate (MLE)

where the parameter vector [λ(0), µ, k] is estimated for the model (3.1) but

replacing the stochastic term by the observed times of events. By doing

so, the model for MLE is nearly identical to the data-generating model (i.e.

Hawkes model (1.1)) for a sufficiently small δt. Therefore, the model used

by the MLE in this experiment is more ideal than PF and EnPGF. It is

important to bear in mind that in the MLE approach the entire history

of observations up to time tk is used to calculate the estimate at time tk
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while in the filtering approach the past observation is never used again.

Another difference is that the MLE uses a new estimate of [λ(0), µ, k] at

time tk to produce a new entire trajectory estimate of λ up to time tk while

the filtering approach updates only the ensemble of the current state λk

(using only observation at tk), which then becomes an ensemble of initial

conditions for the next assimilation step. Figure 7 compares the results

obtained from one experimental run, where both EnPGF and PF have a

sample size of 300. Note that the intensity shown for the MLE is λk obtained

by using the observation up to time tk, not the intensity re-analysed over all

observations at the final time, t = 100. The MLE clearly provides the most

accurate parameter estimates but the gold-standard PF converges slightly

faster to the truth. More importantly, the EnPGF, using a small sample

size, also performs well and clearly outperform the PF at the same small

sample size. However, the EnPGF produces an over-spreading ensemble for

µ when compared to the gold standard PF.

In Figure 8, we show the Monte Carlo error with respect to the truth and

the gold standard estimate. We perform DA for 50 experimental runs for

varying sample sizes. The error is averaged over the time t = 40 − 100

since the gold standard PF starts to converge at t = 40. It can be seen that

EnPGF estimates of λ and k have substantially less Monte Carlo fluctuation

than PF when using small sample sizes. We also test the case where µ = 0.5,

k = 1.2, and β = 2 and find similar results, see Figure 9. This demonstrates

the strength of EnPGF over PF in a small sample size. As for the MLE,

the results in Figures 8 and 9 show a high accuracy of the estimate for the

true parameters; again the MLE setting is more ideal than filtering in this

experiment.

In Figure 10, we examine the Bayesian quality of the parameter estimates k

and µ given by EnPGF in a large sample size limit. In particular, we compare

the histograms of the gold standard PF and EnPGF (with 5000 samples)

at the final time t = 100. Interestingly, in the case of µ = 2, k = 1.2, the

EnPGF gives an estimate that is closer to the truth than PF, which becomes

more evident in the case of µ = 0.5, k = 1.2. It is also clear that EnPGF

produces samples of k and µ with a stronger (negative) correlation than the
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Figure 7: A result for the joint estimation of λ, k, and µ. The sample size for

EnPGF and PF is both 300 particles. (Top row) Comparison of the sample mean

of λ(t). (Middle row) Comparison of the estimates for k. The sample mean plotted

in a solid curve and the 90% quantiles plotted in a dash curve for the gold standard

in the left column , PF in the middle column and EnPGF in the right column.

Note that the ML estimates for k is overlaid on the gold standard result in the left

column. (Bottom row). Comparison of the estimates for µ, which is arranged in

the same manner as the parameter k in the middle row.

gold standard PF. This is, of course, a result of estimating µ and k through

an ensemble-based linear regression through (3.3).

4. Hawkes-Cox Process

In this section, we demonstrate the EnPGF on a somewhat different crime

model, the Hawkes-Cox process of [5], which combines the Hawkes process

above with a Log Gaussian Cox Process (LGCP) for the background rate µ.

We focus on the discrete-time version in this work as the continuous-time

version can readily be transformed into discrete-time via time discretisation;

see [5] for the continuous-time version. Thus we consider the time interval

[(k− 1)δt, kδt) for k = 1, 2, . . . , for a small time interval δt and the discrete-
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Figure 8: (Top) absolute error |λ∗(t) − λ(t)| and (Bottom) absolute error |λ◦(t) −
λ(t)|, both of which are averaged over the time t = 40 − 100 for the case µ = 2,

k = 1.2 and β = 2. The EnPGF results are shown in the black cross mark and

the results of a small sample-size PF are shown in red circle. The MLE estimate is

plotted with the blue dashed line.

time Hawkes-Cox process is given by:

xk+1 =xk − ω1(xk − µ)δt+ σ
√
δtZk (4.1a)

λk+1 =exp(xk+1) + (1− ω2δt)(λk − exp(xk)) + θyk, (4.1b)

Here yk is the number of events in the time interval [(k − 1)δt, kδt) and we

take y0 = 0. The (time-dependent) baseline of the intensity function λk is

determined by a Gaussian process xk. The parameters ω2 and θ determine

the decay rate of the self-excitation effect and the degree of self-excitation,

respectively, similar to the Hawkes process. The stochastic process xk is

a Gaussian process with mean µ (and x0 = µ), standard deviation σ, and

Zk ∼ N(0, 1). The parameter ω1 controls the decay rate of x to the mean.

The parameter estimation of the model (4.1) and its application to crime and

security data was demonstrated in [5] using a Metropolis adjusted Langvien

algorithm (MALA) to assimilate a time-series count data (all in one large

batch) for parameter estimation. It is an “off-line” algorithm that requires

a path sampling of the process xk in (4.1). However, using our EnPGF we

can carry out estimation in real-time.

We will assume that the noise standard deviation σ is known and the

combined state-parameter vector is vk = [λk, xk, µ, ω1, ω2, θ]. We now use
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Figure 9: (Top) absolute error |λ∗(t) − λ(t)| and (Bottom) absolute error |λ◦(t) −
λ(t)|, both of which are averaged over the time t = 40 − 100 for the case µ = 0.5,

k = 1.2 and β = 2. The EnPGF results are shown in the black cross mark and

the results of a small sample-size PF are shown in red circle. The MLE estimate is

plotted with the blue dashed line.

EnPGF (with 103 particles) to sequentially estimate vk given yk. The pa-

rameter estimation for a small noise case (σ = 0.1) is shown in Figure 11

for the evolution of ensemble mean and the histogram at the end of data as-

similation. These results are compared with those obtained from PF with a

large sample size (106 particles). Both PF and EnPGF converge to the true

value based on the ensemble mode for ω1 and ensemble mean for the other

parameters. The convergence rate of PF is, however, noticeably faster than

EnPGF. Except for ω1, the posterior densities of the parameters concentrate

around the true value. Intuitively, we expect that the uncertainty of ω1, the

rate of decay back to µ, is large due to the smallness of σ. Therefore, we

also investigate the case of a large noise (σ = 1). As shown in Figure 12,

both PF and EnPGF results clearly show significant uncertainty reduction

of ω1 but noticeably less reduction for EnPGF. In Figure 13, we compare the

true intensity with the tracked intensity, which is estimated by the ensemble

mean of EnPGF and show that the true intensity lies mostly between the

10% and 90% quantiles of the tracked ensemble.
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Figure 10: Joint histograms at the final time t = 100 of the gold stadard PF (Left)

and EnPGF with 5000 sample (Right) for the case µ = 2, k = 1.2 (Top) and

µ = 0.5, k = 1.2 (Bottom). The cross mark is the true parameter values.

5. Data Assimilation for gang violence data

As a test of our new algorithm on actual crime data, we use a dataset

of over 1000 violent gang crimes from the Hollenbeck policing district of

Los Angeles, CA over the years 1999-2002 and encompassing roughly 33

known gangs. The data is analyzed purely as a time series denoted by

0 < τ1 < · · · < τn, though more information such as victim and suspect

gang are available. The summary histograms for the time-series data are

shown in Figure 14. Most consecutive violent events occurred within 6 hours

and the observed frequency of zero events per day is nearly 40%.

The data under investigation here has been analyzed through the lens of

a Hawkes process previously in [22]. One can check the suitability of the
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Figure 11: Small noise case, σ = 0.1, for the Hawkes-Cox model. (Top) Evolution

of the ensemble mean, except for the parameter ω1 where the ensemble mode is

plotted. (Bottom) The probability histogram of the parameter ensemble.

★ ✩★★★ ✪★★★ ✫★★★

✬✭✮✯

★

✩

✪

✫

✰

✱

✲

✳

✴
✽

✾✿❀ ❁❂
❃
❄❅❆❇❈❉❋●❍

■❏✾❑✿❀ ❁❂
▲
❄❅❆❇❈❉❋●❍

▼❆◆❇❖

★ ✩★★★ ✪★★★ ✫★★★

✬✭✮✯

★◗✱

✩

✩◗✱

✪

✪◗✱

✫

✫◗✱

✰

✰◗✱

✴
❘

★ ✩★★★ ✪★★★ ✫★★★

✬✭✮✯

★

★◗✪

★◗✰

★◗✲

★◗❙

✩

✩◗✪

✩◗✰

✩◗✲

❯

★ ✩★★★ ✪★★★ ✫★★★

✬✭✮✯

★◗✲

★◗❙

✩

✩◗✪

✩◗✰

✩◗✲

✩◗❙

✪

✪◗✪

❱

★ ✪ ✰ ✲ ❙

❲
❁

★

★◗★✱

★◗✩

★◗✩✱

★◗✪

★◗✪✱

★◗✫

✾✿❀ ❁❂
❃
❄❅❆❇❈❉❋●❍

■❏✾❑✿❀ ❁❂
▲
❄❅❆❇❈❉❋●❍

✾❆❈❳❆

▼❆◆❇❖

★ ✪ ✰ ✲ ❙

❲
❨

★

★◗★✱

★◗✩

★◗✩✱

★◗✪

★◗✪✱

★◗✫

★ ★◗✱ ✩ ✩◗✱ ✪

❩

★

★◗★✱

★◗✩

★◗✩✱

★ ✩ ✪ ✫ ✰ ✱

❬

★

★◗★✪

★◗★✰

★◗★✲

★◗★❙

★◗✩

★◗✩✪

Figure 12: Large noise case, σ = 1 for the Hawkes-Cox model. (Top) Evolution of

the ensemble mean, except for the parameter ω1 where the ensemble mode is plotted.

(Bottom) The probability histogram of the parameter ensemble.
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Figure 13: The true intensity at time t = 700 − 750 is plotted against the tracked

ensemble mean obtained from EnPGF. The upper and lower bounds of the shaded

region are the 90% and 10% quantiles, respectively.

Hawkes process model for this data by first defining the re-scaled time by

uk :=

∫ τk

0
λ(t|Ht)dt, (5.1)

where u0 = 0. It is well known that if τk is a realization from a given

λ(t|Ht), then duk = uk − uk−1 are independent exponential random vari-

ables with mean 1; hence zk = 1 − exp(−duk) has a uniform distribution

U(0, 1]. The Kolomogrov-Smirnov (KS) test for zk can be used to diagnose

the consistency of a given model and observed time-series; more precisely,

one can look for a significant difference between the empirical cumulative

distribution of the zk derived from re-scaled time and the cdf of U(0, 1].

5.1. Model diagnostic

Suppose that the conditional intensity function is modelled by a Hawkes pro-

cess as in (1.1), with three parameters µ, β, and k = qβ. The KS test for the

gang data is carried out to diagnose the consistency between the gang data

and the Hawkes model with various model parameter values. Only the first
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Figure 14: (Left) Histogram of time between two events in a unit of one day. (Right)

Histogram of the number of violence crime event per day

300 events (out of 1031 events) are used for the test. In particular, we first

choose a parameter vector (µ, k, β) in the rectangle [0, 1.5]× [0, 1.5]× [0, 20],

which is arbitrarily chosen so that it is large enough to contain the maximum

likelihood estimates below, plotted in Figure 15. By applying the re-scaled

time (5.1) to the gang data, we obtain zk for each value of the parameter

vector and the KS test is used to compare zk and the uniform distribution

as described above. The results are shown in Figure 15 and it can be seen

that parameter values for which the P-value of the KS test is above 0.1

are clearly within the 95% confidence interval, which is well approximated

by the formula 1.36/
√

n+
√

n/10 for the length of observation n > 40 [23].

The geometry of these parameters suggests a broad range of potential values

for the decay rate β. The projection of the parameters with P-value above

0.1 onto the (µ, k) plane for various values of β is plotted in Figure 16. It is

quite intuitive that the correlation between µ and k is negative for all fixed

values of β since having a larger µ would require a smaller k in order to

explain the same data. Similarly, a large value of µ would be required for

a larger value of β in order to achieve consistency with the data, given the

formula for the expected mean λ of (3.2).

We also estimate the parameters using the maximum likelihood estimator

(MLE) for the first 300 events in the data. The likelihood function of the

Hawkes process can be found in [21]. The optimization of likelihood is com-

puted based on a Nelder-Mead simplex algorithm in MATLAB. As shown
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in Figure 15, the MLE lies within the set of parameters with P-value from

the KS test above 0.1. We will later use the parameters with a large P-value

as the initial knowledge of the model parameters in the Bayesian frame-

work. However, we note that in general large P-values do not imply a

higher accuracy of these parameters, but the parameter values in the small

neighborhood of the true parameter should have a large P-value. Thus our

initial guess based on the P-value of the historical data is not necessarily

accurate but it at least contains a region of parameters that is large enough

to include the optimal parameters.

Figure 15: (Left) KS plot of zk for the Hawkes model. The dash lines indicate

the 95% confidence bound and the green curves are the (observed) cumulative dis-

tribution obtained from simulated time-series with parameter values with P-values

over 0.1. The black curve is the cumulative distribution of a time-series simulated

with the MLE. (Middle) A histogram of P-values for uniform parameter grid points

(k, β, µ) in [0, 1.5] × [0, 20] × [0, 1.5]. (Right) The blue dots shows those parameter

with P-value between 0.1 and 0.2 and the red dots shows those with P-value over

0.2. The MLE is shown in the dark + marker (µ ≈ 0.92, k ≈ 1.00, β ≈ 7.56).

5.2. Sequential Data Assimilation

We now apply EnPGF and PF to jointly track the intensity process λ(t)

and model parameters for the Hollenbeck gang violence data. Again, we

use (3.1) as a forecast model for λ(t), where we choose δt = 1/6 days, i.e.,

every 4 hours. This time interval is small enough in the sense that the data

30



Figure 16: Projection of the parameters with P-value above 0.1 onto the (µ, k) plane

for various values of β, see also Figure 15

contains at most 1 event for nearly all of the intervals. As discussed earlier,

the range of likely values of β is very broad, so we fix its value to β = 2 and

try to track only the parameters µ and k. We use two different initializations:

Initialization 1: The data during the first 300 days is used to initialize the

ensemble of parameters through the KS test as already done in Section 5.1.

In particular, we use the parameters on the plane β = 2 with P-value greater

than 0.1, see again Figure 15, as the initial set of parameters. If a sample

size M is desired, M particles are randomly drawn from the finite set of the

initial parameters and then perturbed with a normal noise N(0, 0.01I2). We

then choose the initial sample λ(i) to be the same as µ(i) for i = 1, . . . ,M .

Initialization 2: We draw initial sample (λ, µ, k) from a multivariate nor-

mal distributionN([6, 3, 3], 0.1I3), which is chosen arbitrarily to be far enough

from the truth in order to investigate the convergence speed.

We estimate the filtered distribution of (λ(t), µ, k) in the time interval [300, 600]

using PF with 200,000 samples for the above two initializations. We test

EnPGF with 100 samples using the initialization 2. The results in Figure 17

shows that the estimation given by PF with initialization-1 parameters are

relatively stable over the whole data assimilation period. In addition, the

sample computed from PF with the initialization 2 converges to the sample
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of the initialization-1 parameters. This suggests that the set of parameters

found by KS indeed agrees well with the parameters tracked by the PF al-

gorithm. The sample generated by EnPGF shows a similar convergence but

with a noticeable discrepancy in the ensemble spread for the parameter k.

The empirical distribution at the final time is compared in Figure 18. The

marginal distribution of λ and joint distribution of µ and k after the final

data assimilation time step are compared for the cases of PF and EnPGF,

both with initialization 2. The sample supports of the two results mostly

overlap but the sample of EnPGF seems to be relatively overspreading.

6. Predictability and forecast skills

6.1. Predictability

The “predictability” of an event can be defined in many ways. Here we

focus on the predictability of a specific type of event and forecast system. We

consider a forecast system that releases an “indicator” to alarm an upcoming

event of interest. For example, in the context of police patrolling, once

patrol officers complete their current assignment, a forecast system may

try to suggest the location where criminal activity is most likely to happen

within the next hour. In the current time-series application, this kind of

forecast system is simplified to predicting whether or not the next violent

crime would occur within the next H units of time. After the intensity is

updated as a result of the n-th observed crime at time τn, we wish to use the

intensity of the Hawkes process at τn as an indicator variable. Therefore,

we may choose a threshold of the intensity, denoted by ℓ, so that whenever

λ(τn) > ℓ, the forecast system will suggest to the user that τn+1 − τn < H.

As such, the event we wish to predict can be considered as a binary event,

say, Y = 1 if τn+1 − τn < H and Y = 0 otherwise. The so-called “hit rate”

is defined by

H(ℓ) := Pr(λ(τn) > ℓ|Y = 1), (6.1)

and the “false alarm rate” by

F(ℓ) := Pr(λ(τn) > ℓ|Y = 0). (6.2)
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Figure 17: A result for the joint estimation of λ, k, and µ for Holenbeck gang

violence data in the time interval [300, 600]. (Top row) Comparison of the sample

mean of λ(t). (Middle row) Comparison of the estimate of k. The sample mean is

plotted in a solid curve and the 90% quantiles is plotted in dash curve. The result

for gold standard is plotted in the left column, for PF in the middle column and

EnPGF in the right column. Note that the ML estimates for µ and k is overlaid

on the plot of the gold standard result. (Bottom row) Comparison of the estimate

of µ, which is arranged in the same manner of k in the Middle row.
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The Receiver Operating Characteristic (ROC) curve, which is a graph of

the pair (F(ℓ),H(ℓ)) for various values of ℓ, can be used to measure the

performance of a forecast system. We are interested in measuring the per-

formance of two intensity-based forecast systems: (1) the ensemble mean

of PF and (2) the Hawkes process with parameters obtained from MLE.

As suggested in [24], the hit rate and false alarm rate can be empirically

estimated by the observed frequencies. Suppose that we have the indicator-

observation pairs (λJ , y(J)) for J = 1, . . . , n, sorted in ascending order such

that λ1 ≤ λ2 ≤ · · · ≤ λn and y(J) is the observation corresponding to λJ .

The empirical hit rate and false alarm rate are given by

H(J) = 1− 1

N1

J∑

m=1

y(J), F(J) = 1− 1

N0

J∑

m=1

1− y(J), (6.3)

where N1 is the number of events y(J) = 1 and N0 = n−N1. The ROC plot

is the graph (F(J),H(J)) and its area under the curve (AUC) is usually

used to diagnose the association between the indicator variable and the

observation. An AUC close to 1 is desired while an AUC of 1/2 would

suggest zero association. For empirical ROC, the AUC can be approximated

by

AUC =
1

N0N1

( n∑

J=1

ny(J)− N1(1 +N1)

2

)

. (6.4)

To understand the accuracy of the above forecast system in different pa-

rameter regimes of the Hawkes process, we simulated 100 sample paths for

various parameters and approximate the AUC in each case, assuming that

all true parameters are known. The pairs (λJ , y(J)) in this case are the

self-excited intensity at the time of observation and y(J) = 1 if the sub-

sequent gang-related violence occurs within a certain H unit of time. We

investigate the AUC in different parameter regimes, which are determined

by the ratio k/β. It is well known that the ratio k/β describes the fraction

of events that are endogenously generated by previous events (i.e. being the

“offspring” of a past event instead of being a new “immigrant” generated

according to the baseline rate µ). Intuitively, the clustering is more pro-

nounced when k/β → 1. Figure 19 shows the histogram of the interarrival

34



time for k/β = 0.1 and k/β = 0.9 where µ is chosen for each ratio so that

the intensity mean in the equilibrium state from (3.2) is 1/2 and β is fixed

to 1. It is clear that the high clustering regime has much smaller interarrival

times. Also shown in Figure 19, the AUC increases as k/β → 1 for all val-

ues of H used in the test. This is intuitive because in the highly predictable

regime the event is unlikely to be generated by the baseline intensity µ and

most events are actually the “offspring” of the preceding events.

6.2. Evaluation of forecast skills for the LA gang data

We now measure the performance of the PF-based and MLE-based forecast

systems for the gang violence data. Again, the system releases a binary pre-

diction according to the estimated value of λ(t) at the time of current event.

We use the data [τ1, . . . , τ300] as “training data” to determine the model

parameters using MLE, see again Figure 15. This data size is long enough

that the MLE estimate starts to converge. We then use [τ301, . . . , τ600] as

a test data to evaluate the forecast skill. First, we consider the empiri-

cal ROC and let λJ ≡ λ(τ300+J−1) for J = 1, . . . , 300 and y(J) = 1 if

τ300+J − τ300+J−1 < H, otherwise y(J) = 0. The ROC results are shown

in Figure 20 for H = 1/4 day, and we find that the MLE-based forecast-

ing scheme shows a slightly better ROC performance. Next, we examine

the probabilistic forecasting schemes from which the probability assignment

of the next event occurring in a specific interval is estimated based on the

frequency of the inter-arrival time obtained by a large number of simula-

tions of the model (3.1) given the distributed intensities at the time of the

current event, which are presented by the particles, for the PF-based sys-

tem. Similarly, a large number of simulations is independently run for the

MLE-based system using the Hawkes model and the proportionality of the

events is used as a probability forecast. In Figure 20, the relative observed

frequency (or just observed frequency from now on) of the inter-arrival time

in the test data is compared with the forecast probability (averaged over all

of the test data) computed by the simulation as explained above. For the in-

terval (0, 1/4], which is the most observed event, the PF-based probability is

apparently closer to the observed frequencies than the MLE-based forecast.
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We also calculate the Brier score (BS) [25] where the formula is given in Ap-

pendix B. In order to make a “reference” Brier score, we calculate the Brier

score based on the observed frequencies of each event in the training data

(i.e. using this historical frequency at every forecast). Of course, the PF-

based or MLE-based forecast system are expected to have lower Brier score

if we wish to say that they possess a good forecast skill. The Brier scores for

these forecast systems are reported in Figure 20, which demonstrates that

both PF-based and MLE-based probabilistic forecasts provide an improved

probability forecast over the historical frequency and the PF-based forecast

performs slightly better than the MLE-based system.

7. Conclusion

We have introduced a novel sequential data assimilation ensemble Poisson-

Gamma filtering (EnPGF) algorithm for discrete-time filtering suitable for

real-time crime data that observes repeat event behaviour. The algorithm

is independent of the model used for the crime rate, and we demonstrated

its effectiveness on two models – pure Hawkes and Hawkes-Cox. The ad-

vantage of sequentially updating the forecast in real-time while taking into

account uncertainty in model parameters could have a significant impact

on predictive policing algorithms that currently use MLE. Computation-

ally, the EnPGF has the major advantage that one does not need the entire

history of observations and hence we believe it is feasible to implement in

practice. The ensemble mean of EnPGF is used not only to track the true

signal, which is the crime intensity rate in this case, but also approximate

the parameters of the process. One could then look for “step changes” in the

model parameters indicating a need to investigate. These changes are cur-

rently hard to detect via MLE with windowing as such algorithms are likely

to smooth out the steps. In the numerical experiments, the tracking skill is

justified by comparing the estimate with the true signal and the particle fil-

tering (PF) in the large sample size limit. The key strength of EnPGF over

PF is its improved accuracy as well as less monte-carlo fluctuation in the

case of relatively small sample size. For the real-world time-series of gang
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violence data, the validity of EnPGF is testified by comparing with PF and

the “likely” parameter region identified by the Kolmogrov-Smirnov statis-

tics. We showed that the results from these distinct data analysis methods

happen to agree very well. Nevertheless, our experimental results suggest

an issue where EnPGF tends to produce over/under-spreading ensembles for

some parameter estimates; hence probabilistically over/under-confidence in

the parameter estimates. The implication of this in terms of forecasting

would be an interesting future direction for research. Although we demon-

strate the application of the new method only to time-series data, the exten-

sion to high-dimensional spatio-temporal data can be achieved by serially

processing M grid cell time-series analysis one at a time and use the ensem-

ble updated through data assimilation of the first grid cell as a new prior for

data assimilation in the second grid cell and so on. This serially-updated

formulation is one of the commonly used implementations for EnKF [15].

Work is currently underway to develop this high-dimensional extension of

EnPGF and study its effectiveness with burglary data.

In this paper we have also examined the forecast skills provided by the

time-series Hawkes model in the perfect model scenario, where all model

parameters are known. We studied the forecast system whereby the ele-

vated risk of criminal activities is alerted whenever the crime intensity rate

predicted by the data assimilation exceeds a given threshold. Thus, the ROC

analysis is a suitable tool to study the ability of such a forecast system. We

show that even in the ideal situation, the ROC results vary with parameter

regimes. The high clustering regime tends to have a better AUC due to the

high probability of generating offspring. We also investigated the impact of

using data assimilation in the real-world data in comparison with MLE. We

carried out sequential data assimilation using a particle filter with a large

sample size to construct the ensemble forecast system. In the gang violence

data, our results show that data assimilation and MLE give similar perfor-

mance with respect to ROC curves, but data assimilation gives a significant

improvement in the probabilistic forecast skill based on the Brier score.
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Appendix A: Resampling

In the resampling step, particles with low weights are removed with high

probabilities and particles with high weights are multiplied. Thus the com-

putation can be focused on those particles that are relevant to the obser-

vations. There are a number of resampling algorithms and most common

algorithms are unbiased; hence the key difference in performance lies in the

variance reduction, see [26] for a review and comparison of common resam-

pling schemes. The most basic algorithm is the so-called simple random

resampling introduced in Gordon, which is also known as multinomial re-

sampling. Suppose that the original set of weighted particles is {wj , vj}
for j = 1, . . . ,M . The simple resampling generates a new set of particles

{1/M, v∗k} for k = 1, . . . ,M based on the inverse cumulative density function

(CDF):

Step 1 Simulate a uniform random number uk ∼ U [0, 1) for k = 1, . . . ,M

Step 2 Assign v∗k = vi if uk ∈ (qi−1, qi], where qi =
∑i

s=1ws.

In this work, we use the residual resampling algorithm introduced in [27] to

reduce the Monte Carlo variance of the simple random resampling. In this

approach, we replicate Nj exact copies of vj according to

Nj = ⌊Mwj⌋+ Ñj ,

where ⌊⌋ denotes the integer part and Ñi for j = 1, . . . ,M are distributed

according to the multinomial distribution with the number of trials M −
∑M

j=1⌊Mwj⌋ and probability of success

pj =
Mwj −

∑M
j=1⌊Mwj⌋

M −
∑M

j=1⌊Mwj⌋
.
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The simple resampling scheme can be used to select the remaining M −
∑M

j=1⌊Mwj⌋ particles; hence obtaining Ñj .

The resampling scheme should be used only when it is necessary since by

selecting out only high-weight particles, it causes particle depravation. A

criterion to activate the resampling step in particle filtering is usually done

by setting a certain threshold for the effective sample size, defined by

Neff =
1

∑M
i=1w

2
i

.

In this work, we use the resampling step only when Neff < 1/8.

Appendix B: Brier Score

Consider r categories of events, and assume each of the observations can

occur only in one of these categories. The probability forecast of the i-th

event is, therefore, denoted by pij for j = 1, . . . , r, where
∑

j pij = 1. Given

n observations of such categorial data, the Brier score (BS) is defined by

BS =
n∑

i=1

r∑

j=1

(pij − δij)
2,

where δij = 1 if the i-th event occurs in the category j and δij = 0 otherwise.

In Figure 20, we have r = 5 for the events defined by the inter-arrival time

within the intervals ((k − 1)/4, k/4] for k = 1, . . . , 4, and (1,∞).
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Figure 18: (Left) Comparing the histogram of λ for PF (200,000 particles) with

EnPGF (100 particles), both of which use the initialization 2. (Right) Empirical

joint distribution of k and µ at the final step for the gang violence data, which is

initialized by using the sample spread obtained from the KS test with the p-values

above 0.1. The sample of 100-member EnPGF with the initialization 2 is shown in

the solid black dots on top of the approximated density obtained from PF

Figure 19: (Left) Histogram of the interarrival time for k/β = 0.1 and k/β =

0.9, where µ is chosen so that the equilibrium mean is 1/2 in both cases. The

inserted pictures show a portion of the intensity process generated according to

these parameters. In the low clustering scheme (k/β = 0.1), the events spread out

more evenly than in the high clustering case, which show two tight clusters here.

(Middle) AUC as a function of k/β for various values of H. (Right) The ROC

curve associated with H = 0.05; k/β = 0.9.
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Figure 20: Forecast skill analysis of the gang data. (Left) Empirical ROC of the

PF-based and MLE-based inferences. (Right) Comparison between the observed

frequencies of test data (i.e. [τ301, . . . , τ600]), observed frequencies of training data

(i.e. [τ1, . . . , τ300]), PF-based average probability forecast for test data, and MLE-

based average probability forecast. The Brier scores are also reported in the labels.
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