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ABSTRACT

Detecting regularities between complex events in temporal graphs
is critical for emerging applications. This paper proposes graph
temporal association rules (GTAR). A GTAR extends traditional
association rules to discover temporal associations for complex
events captured by a class of temporal pattern queries. We intro-
duce notions of support and confidence for GTARs, and formalize
the discovery problem for GTARs. We show that despite the en-
hanced expressive power, GTARs discovery is feasible over large
temporal graphs. We develop an effective rule discovery algorithm,
which integrates event mining and rule discovery as a single pro-
cess, and reduces the redundant computation by leveraging their
interaction. Using real-life and synthetic data, we experimentally
verify the effectiveness and scalability of the algorithms. Our case
study also verifies that GTARs demonstrate highly interpretable
associations in real-world networks.

1 INTRODUCTION

Temporal association rules have been studied to capture the tem-
poral regularities between item sets in transaction data [5, 11]. The
temporal regularities are typically captured as association rules
(ARs) [4] that hold on transactions at specified times [5, 11]. These
rules state “if items X exist in transactions at a specified time, then
items Y are likely to exist in the same set of transactions”.

Nonetheless, temporal regularities among network events are
more involved than their counterpart over item sets. (1) Network
events are represented by graph patterns, rather than a set of
items [21, 35]. (2) It is more desirable to discover temporal associ-
ations within a time window between two events P; and P, rather
than associations at specific time stamps. Such rules state “if event
Py occurs, then event Py is likely to occur in At time.” The need for
discovering such rules is evident in social analysis [37, 38], data
quality [2], software analysis [24], among others.

Example 1.1. Consider the following scenarios.

Masked Attack detection. Recent cyber security reports [1, 26] sug-
gest that Denial of Service (DDoS) attacks coincide with “more
than 45% (resp. 32%) of malware incidents (resp. network intru-
sions)”, which are frequently used as a decoy to distract defense
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Figure 1: Temporal association rules in graphs

effort and mask the true intrusion, e.g., information breaches [1].
Such masked attack can be described by a temporal association Ry
between two attack events Py and P, (as illustrated in Fig. 1), where
(1) P; is a DDoS attack, where the attacker u controls multiple bots
to create massive requests to target @, and (2) P, describes an infor-
mation exfiltration event, where a server @ takes commands from
a bot and browses compromised websites that lead to data breach.

The rule states that “if a host @ is involved in a DDoS attack (P;)
at some time, then this host is likely to be the victim of an information
exfiltration (attack P3) within 2 minutes”.

The above rule is a departure from our familiar ARs. (1) It speci-
fies the antecedent and consequent with graph patterns P; and Py,
which pose topological constraints over entities (e.g., hosts, bots
and Web servers). (2) It specifies a time window (< 2min) to de-
scribe the maximum gap between the occurrences of two events.
(3) A “focus” u is designated to indicate that both events occur at
the same host. Conventional (temporal) ARs are not capable to rep-
resent such regularities.

Time-aware POI recommendation. Social network users tend to be-
have in a short period triggered by social influences [37]. For exam-
ple, a temporal social influence can be represented by two graph
patterns P3 and P4 that capture social communities and a recom-
mendation pattern, respectively. The rule states that “if a user @
has a friend u and they retweet each other, and u checks in at a point
of interests (POI) w (e.g., “Shedd Aquarium, Chicago”) at some time
t (via e.g., Facebook Place), then it is likely he will visit a nearby POI
z (e.g., “Field Museum, Chicago”) in 2 hours.

Such rules can be used for time-aware POI recommendation that
holds for specific time and places [37], with the additional expres-
sive power to capture the context of social structures (e.g., Twitter
communities). For example, z in P, can be recommended as a POI
for @, and @ can be identified as a potential customer of z.

Activity prediction. Temporal associations can also help under-
stand and predict personal behavior (e.g., mobile users) [36]. One
such rule is “if a user @ joins a group call of his co-workers, he usu-
ally texts another contact in 5 minutes”. Such rules (not shown) can
be represented by a graph pattern Ps that represents a small call
network as a clique, and a single edge Ps from user @ to a specific
contact, associated with a time window of 5 minutes.

With no clear “transaction” in a dynamic network, conventional
ARs can no longer capture such temporal regularities. These call



for ARs that incorporate topological, semantic and temporal con-
straints to capture the events and their temporal associations.

Contribution. This paper formally introduces association rules
that explicitly use temporal graph patterns to capture complex
events and their temporal associations.

(1) We introduce graph temporal association rules (GTARs, Sec-
tion 3). A GTAR differs from conventional association rules in
both syntax and semantics. It incorporates temporal graph pattern
queries as both antecedent and consequent, constrained by a time
window that specifies their temporal associations.

To balance its expressive power and computational efficiency,

we introduce a class of temporal graph pattern matching to enforce
topological, value and temporal conditions of the events.
(2) We formalize the discovery problem for GTARs (Section 4).
Based on event matching, we formulate the support and confidence
for GTARs. We define the support of GTARs in terms of “minimal
occurrences” of associated event pairs, by revising a measure used
by its counterpart in item streams [6]. We extend conventional con-
fidence measures in terms of minimal occurrences of GTARs. We
show that the support of GTARs is anti-monotonic, and the confi-
dence of GTARs is “conditionally” anti-monotonic.

Based on the support and confidence, we formalize a parameter-
ized discovery problem to strike a balance between the enhanced
expressiveness of GTARs and the cost of GTAR discovery.

(3) We develop a feasible algorithm to discover GTARs (Section 4).
In contrast to prior algorithms, it integrates event mining and as-
sociation rule discovery in a single process. The algorithm inter-
leaves event matching and rule validation to enable the “anytime”
performance [7], i.e., the discovery process can be interrupted to
obtain high quality rules. We also provide effective pruning strate-
gies to reduce the redundant computation as early as possible.

(4) Using real-world and synthetic datasets, we experimentally ver-
ify the effectiveness of GTARs, and the efficiency of GTAR discov-
ery algorithms. We find that it is feasible to mine GTARs from large
temporal graphs, and converges fast to GTARs with desirable qual-
ity. For example, it takes 22 seconds to detect GTARs in a citation
network with 26 M nodes and edges and covers 80 timestamps, and
18 seconds to find GTARs with an accuracy of 90%. Moreover, our
optimization strategies improve the GTAR mining by 6.28 times
over real-world graphs. We also find that GTARs capture meaning-
ful temporal correlations that can be used for activity prediction.

Related work. We categorize the related work as follows.

Temporal association rules. Association rules (ARs) and their exten-

sions over temporal dimension have been studied for transactional
databases [4]. The usual object is to discover regularities in the
occurrence of item sets and their temporal relationships [22, 31].
Cyclic ARs (ARs that occur periodically over time) is studied in [28].
Temporal features for association rules (e.g., time intervals the rule
holds) are studied in [11], and are used as constraints such as lifes-
pans in the discovery process [5]. A class of patterns are studied
in [22], where each composite pattern consists of a bag of events
paired with temporal relations (e.g., before, after, during).

Nevertheless, these work study temporal ARs over item sets. In
contrast, GTARs extend conventional ARs with temporal graph pat-
terns. It requires the integration of temporal, topological and se-
mantic constraints. The discovery of GTARs is beyond rule mining
from temporal transactions.

Graph association rules. ARs extended with graph patterns are stud-

ied in recent work [8, 13, 14]. To detect data inconsistency, (condi-
tional) functional dependencies are extended [14] to specify value
dependencies on clustered values via path patterns and graph pat-
terns. The dependencies there are hard constraints rather than
rules. Specialized for social recommendation, ARs are extended
with graph patterns in [13], where the support is captured by sub-
graph isomorphism over static graphs, and the consequent is a sin-
gle edge rather than a general graph pattern. None of these work
address temporal associations.

Evolution rules [8] detect local changes between a graph pattern
and its sub-pattern occurred earlier. We show that these rules are
a special case of GTARs, where the consequent is a single edge. We
are not aware of temporal ARs for events as general graph patterns.

Temporal graph mining. A number of temporal queries have been
studied to detect events over dynamic networks. An event is de-
fined as a match of the query. These queries include subgraph
isomorphism [21, 32], dense subgraphs [3], quasi-cliques [34],
“heavy subgraph” that maximizes edge weight [9], continuous pat-
terns [16] that incrementally find subgraph matches over evolv-
ing graphs, and durable queries [32] that isomorphism matches
that last for the longest period of time. In contrast, we strike a
balance between the expressiveness and evaluation cost of event
model [27] by extending well established graph simulation [35].

Temporal graph mining is studied in [10], where a tree struc-
ture is used to enumerate and verify frequent patterns. A frequent
graph pattern is a set of edges with valid time intervals that occur
more than certain times. Mining algorithms are also introduced to
discover communication motifs in dynamic networks [19, 29]. Sub-
sequence mining has been leveraged to identify patterns over se-
quence representation of temporal graphs [19]. Motifs in temporal
networks as induced subgraphs on sequences of temporal ordered
edges are discovered over unlabeled networks [29] and fast algo-
rithms for specific 3-nodes 3-edges patterns were proposed to mine
topologically frequent motifs. These work do not consider events
captured by temporal graph patterns, and use mining models that
are very different from GTARs discovery.

2 TEMPORAL GRAPHS AND EVENTS

We start with the event model over temporal graphs.

Temporal graph. A temporal graph Gr is a tuple (V,E,LT),
where (1) T is a time window (a sequence of consecutive times-
tamps); (2) V is a set of nodes, E C V X V X T is a set of directed
edges associated with a timestamp from T, and (3) function L as-
signs a label L(v) (resp. L(e)) to each node v € V (resp. edge e € E).
An edge e=(uj, ug, t) (t € T) encodes a link with label L(e) between
u1 and uy that exists at timestamp ¢.

Given a timestamp t € T, a snapshot G; of Gr at t is a graph
induced by the set of all the edges associated with timestamp .
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Figure 2: Temporal social graph

Example 2.1. A temporal graph Gr over 5 hours (|T|=5) is
shown in Fig. 2. The graph depicts twitter users and their
POI recommendation activities. It carries temporal interactions
(e.g..retweets and check-ins) associated with timestamps (“packed”
as time intervals for the ease of presentation), as well as static
locations (e.g.,nearby). For instance, user x1 retweets user y at ev-
ery timestamp from 1 to 5, and checks in to a POI “Shedd Aquarium
Chicago” at time 2 and 4 near another POI “Field Museum, Chicago”.
A snapshot of Gr, G3 at time 3 consists of all its edges except for
the two edges from user x3 to “Field Museum, Chicago” and to h, re-
spectively, and the edge from user x; to “Shedd Aquarium Chicago”.

Events. An event P(u) is a connected graph pattern (Vp, Ep, Lp),
in which Vp and Ep are the sets of event nodes and edges, respec-
tively. Each node v, € Vp (resp. ey € Ep) has a label Lp(v)) (resp.
Lp(ep)) specifying a predicate (e.g., “Web servers” of P, in Exam-
ple 1.1). It also carries a designated focus node @ € Vp. The event
P(u) is connected if every pair of nodes in Vp is connected by an
undirected path in P(a).

In practice, an event P may represent e.g., attack events, com-
munication patterns [35], business models [17], among others. Ac-
cordingly, the focus # may encode the “key player” of user’s inter-
est [17, 33], such as attackers, active users, or companies.

How to characterize event occurrences? Strict pattern matching
(e.g., subgraph isomorphism) may miss meaningful occurrences
and return an excessive number of redundant matches [35]. We
thus adopt dual simulation [25], as a well established approximate
matching model [12, 35], to event matching over temporal graphs.

Event matching. Given an edge e=(u,u’) € Ep, a candidate
function f(e) specifies a set of edge candidates C(e) C E, such
that for each candidate e’=(v,v’,t) € C(e), f(L(v))=Lp(u),
f(L(v"))=Lp(u’), and f(L(e"))=Lp(e). Similarly, given a node u €
Vp, f(e) specifies a candidate set C(u) C V of u, such that for each
node v € C(u), f(L(v))=Lp(u).

Given event P and temporal graph Gr, there exists a event
matching R; between the snapshot G; of Gr and event P if

o for every edge e = (u,u’) € Ep, there exists an edge
e’=(v,v’,t) € C(e), such that (e, e’) € Ry;

o for each pair (e,e’) € R; and each edge eP=(u”,u) € Ep,
there exists an edge e?’ =(vP, v, 1) € C(eP) that matches e?,
ie., (eP, ep,) € Ry, and

o for each pair (e,e’) € Ry and each edge e“=(u',u¢) € Ep,
there exists an edge e“'=(v’,v¢, 1) € C(e°) that matches e,
ie., (e, ecl) € R;.

That is, snapshot G; of Gt preserves the labels and both parent
and child relationship of P in its match induced by R; [25, 35].

Symbol Description
Gr temporal graph with a range of timestamps [1, T]
u the focus node of user’s interest

C(e) (resp. C(u)) candidate set of event edge e (resp. node u)

O(p, GT) minimal occurrences of GTAR ¢ in G1

o(Pa,t) focus occurrence of P(i) at time ¢

@=(Py = Py, 4, At) | a GTAR ¢ pertains to events Py, P, and At

Supp(Py, GT) support of event Py in Gt (Section 4.1)

Supp(p, GT) support of GTAR ¢ in Gt (Section 4.1)

Conf(g, G1) confidence of GTAR ¢ over Gt (Section 4.1)

Table 1: Summary of notations

We use the following notations. (1) We say event P occursin Gr
at time ¢ if there exists a matching R;. (2) For an edge e=(u,u’)
and its match e’=(v,v’,t) in Ry, the pair (v,t) (resp. (v',1)) is a
match of u (resp. u”). Specifically, the focus occurrence of P at time
t (denoted as o(P, i, t)) refers to the nodes in V that matches @
induced by R;. (3) The matches of edge e (resp. node u) induced by
Rt refers to the set of all the matches of e (resp. u) induced by R;
(teT).

Example 2.2. Event P3 in Fig. 1 depicts a social event that two
users u and # (a focus) retweet each other, and u checks in at a POI
w. Event P4 depicts the event that user @ visits a POI z near w.

For event P3 and Gr in Fig. 2, (1) the matches of @ in-
duced by a matching R3 in the snapshot G3 of Gr contains
{(x1,3), (x2,3), (x3,3)}; (2) the focus occurrence o(P, i, 3) of P3 at
time 3 is {x1, x2,x3}; (3) the matches of the edge (u, %) in P3 con-
tains {(x1, y1, 3), (x2, Y2, 3), (x3, Y2, 3)}; (4) the matches of & in Gt
include {(x1,3), (x1,4), (x2, 3), (x2,4), (x3,3)}.

Similarly, for event P4 in Fig. 2, the matches of @ is
{(x1,2), (x1,4), (x2, 1), (x2,2), (x2,3), (x2,4), (x3,1), (x3,4), (x3,5)}.

3 GRAPH TEMPORAL ASSOCIATION RULES

In this section, we introduce graph temporal association rules.

GTARs. A graph temporal association rule (GTAR) ¢ is defined as
(P1 = Py, 1, At), where (1) P1=(V1, E1, L1, @) and Po=(V5, E2, L2, @)
are two events that share a common focus node @, and (2) At is
a constant that specifies a time interval. We refer to P; and P; as
the antecedent (or left-hand side (LHS) event) and consequent (or
right-hand side (RHS) event) of ¢, respectively.

The GTAR rule states that “if there exists an occurrence of event
Py at an entity specified by @i at some time t, then it is likely that an
event Py occurs at the same entity, within a time window [t, t+At[". A
GTAR ¢ incorporates three constraints: (1) topological constraint
specified by graph patterns; (2) common “focus” of the antecedent
and consequent specified by @; and (3) a temporal constraint At.

Example 3.1. Recall the temporal association for masked attacks
in Example 1.1. This can be expressed as a GTAR ¢1 = (P1 =
Py, i, At = 2min) with LHS event (antecedent) P; and RHS event
(consequent) P, given in Fig. 1. Similarly, the temporal associa-
tion for POI recommendation in Example 1.1 can be expressed as
a GTAR @3 = (P3 = Py, 0, At = 2) with P3 and Py in Fig. 1.

We consider nontrivial GTARs. A GTAR ¢ = (P; = P2, 4, At) is
trivial if (a) Py is a sub-pattern of Py, or (b) P;=0. Trivial GTARSs are
not interesting in practice.



Expressiveness. A GTAR subsumes a number of existing (tem-
poral) rules. (1) Evolution rules [8]. An evolution rule is a special
case of GTAR, where P; is a single-edge event between two nodes
in P;. (2) Graph association rules [13] are a special case of GTARs
where P, is a single-edge pattern, and At=0. Observe that the graph
association rules already subsume conventional association rules
defined over item sets [13].

The notations used in this paper is shown in Table 1.

4 THE DISCOVERY PROBLEM

We want to detect temporal event associations by explicitly using
GTARs. To this end, we introduce support and correlation mea-
sures for GTARs (Section 4.1), followed by the formulation of the
GTAR discovery problem (Section 4.2).

4.1 Interestingness Measures

To characterize interesting GTARs, below we first define sup-
port and confidence for GTARs. These notions have their coun-
terparts in conventional interestingness measures for temporal
ARs [18, 23], and are extended for GTARSs over temporal graphs.

Rule occurrence. Given Gr and a GTAR ¢ = (P; = P,,4,At), a
time window O(v)=[t1,t2] (t1 € T, t2 € T) is an occurrence of ¢ in
Gr supported by a node v € V, if the following holds:
o v € o(P1(@1), t1) N o(Py(@t), t2), i.e., node v is a match of @ in
Py at t1, and v is a match of # in P, at t, and
0 0< (tp—t1) <AL

That is, ¢ occurs if at least a node matches the focus of both
Py and P at t; and ty, respectively, within At time. This enforces a
strong association between P; and P; in terms of common matches.
Indeed, without common focus matches, P, and P; can be irrele-
vant even one occurred soon after the other.

A time window may contain multiple occurrences of a GTAR.
We want to further find “minimal” ones that suffice to support
GTARs. This can be characterized by a variant of the minimal oc-
currence, a well established notion for events in item streams [6].

Minimal occurrence. A minimal occurrence of a GTAR ¢ supported
by node v € V is a time window O(v)=[t1, t2], such that (1) O(v)
is an occurrence of ¢ in Gt supported by v, and (2) there exists no
time window O’(v) C O(v) (i.e, O’ (v) =[t],t;] and t; < t] < 15 <
ty, or t; < t] < tj < tp), such that O’(v) is an occurrence of ¢ in
Gt supported by v.

Example 4.1. Recall the GTAR ¢2 = (P3 = P4, u,At = 2) in
Example 3.1. The focus occurrences of P3 and P4 in T are shown
in Fig. 3. (1) The time window Oj(x3)=[3,5] is an occurrence of
@2 supported by x3. Indeed, x3 matches @ of P; and @ of P, at
time 3 and 5, respectively. Intuitively, it suggests that user x3 who
checks in at a POI at time 5 is potentially influenced by his friend
y2 who checks in at a POI earlier at time 3 (as required by Ps3). (2)
O2(x3)=[3, 4] is a minimal occurrence of ¢, supported by x3. This
suggests that an earlier check-in at time 4 of x3 at a nearby POl is
more likely to be influenced by the check-in of y; at time 3.

Similarly, x; and x support minimal occurrences O3 (x1)=[4, 4],
and {O4(x2) = [3,3],0s5(x2) = [4,4]}, respectively. Observe that
O3 and Os refer to the same time window [4,4], but are sup-
ported by different matches. We consider such cases as different

O,(%;)
1 2 3 5
| | — 1
Ps o x4 )
P, {x, X%} % X%} {% } {2 %} {5}
Oy(x) O0y(%) Os(x,)

Figure 3: Counting minimal occurrences
occurrences rather than a single one. Indeed, it suggests that both
users x1 and x are influenced by the temporal association at [4, 4],
which should be considered as a “stronger” evidence that ¢, holds.

Support. Based on minimal occurrences, the support of a GTAR ¢
in temporal graph Gr, denoted as Supp(¢, GT), is defined as

O(o,
Supp(e, Gr) = %

where O(p, Gg) refers to all the minimal occurrences of ¢ in
Gr1. We normalize its size with |C(@)| ( candidates of @, Section 2)
and |T|, as there are up to |C(@)| nodes that support a minimal
occurrence of ¢, and each node support up to |T| minimal occur-
rences.

Anti-monotonicity. The support of GTARs is well defined with

anti-monotonicity property with the following refinement relation

among GTARs. Given two GTARs ¢ = (P; = P,,4,At) and ¢’ =

(P{ = PJ,u,At), (1) P| refines Py, denoted by P; < P/, if P{=Py, or

P/ is obtained by adding nodes or edges to Py; P2 < P is similarly

defined; (2) ¢” refines ¢, denoted by ¢ < ¢’,if Py < P{ and P; < P,
We show that GTAR support is anti-monotonic.

LEmMA 4.2. For any temporal graph Gt and any GTARs ¢ and
¢, Supp(¢, Gr) = Supp(¢’. Gr) if p < ¢".

Proof sketch: Consider GTARs ¢ = (Py = P2,4,At) and ¢’ =
(P{ = P,,u,At) such that ¢ < ¢’. By definition of GTAR support,
it suffices to show that at any time ¢ € T, o(P/,d,t) C o(Py,,t)
and o(P}, i, t) € o(P2,@,t) As Py < P{, for any node v € o(P], uj, t),
v is also a match of @ in Py at time t. Otherwise, either v is not
a match of @ in Py, or P; contains at least an edge that is not in
P{. Both leads to contradiction. Hence, o(Py,@,t) C o(Py, #, t). Sim-
ilarly, o(P;, @, t) C o(P2,4,t). The anti-monotonicity thus follows.

O

Example 4.3. For GTAR @2 = (P3 = P4, u, At = 2) in Example 3.1
and temporal graph Gt of Fig. 2, as there are in total 4 minimal
occurrences contributed by common focus matches x1, x2 and x3,

respectively, Supp(p, GT) = % =0.26.

Confidence. The confidence of a GTAR ¢ in G, denoted as
Conf(¢, Gr), measures how likely P, occurs within At time at the
focus occurrence of P;. We define Conf(p, Gr) as

Supp(¢, Gr)
Contle-G1) = Supp(py. Gr)
where Supp(P1, Gr) is defined as
Zie[T] lo(P1, @, 1)
IC@)IITI
That is, Conf(¢, Gr) quantifies the probability that a focus match
in the occurrences of P; also support a minimal occurrence of ¢.

Supp(P1, Gr) =



Example 4.4. Consider GTAR ¢2 = (P3 = P4, u,At = 2) and
GTAR in Example 4.3. We can verify that Supp(Ps, G) = 2225 =

3%5
0.33. Hence, Conf(¢p, Gr) = % =0.78.

The anti-monotonicity does not hold for GTAR confidence: the
confidence of a GTAR may be larger than those it refines. However,
it has a “conditional” anti-monotonicity, as shown below.

LEMMA 4.5. Given two GTARs ¢=(P; = P»,u, At) and ¢’ =(P; =
Py, a,At), Conf(¢p’, Gr) < Conf(p,Gr) if P2 < P},

Proof sketch: As both ¢ and ¢’ pertain to the same antecedent
event Py, ¢ < ¢ if P, < P;. Given Lemma 4.2 and the definition of
Conf(¢, Gr), we can verify the following.

Supp(¢’, G1) ~ Supp(¢.G1)
Supp(P1,Gr) ~ Supp(P1,GT)

The lemma thus follows. O

Conf(¢’, G7) = = Conf(p, G1)

Informative GTARs. We prefer GTARs with high support and con-
fidence. Moreover, the rules should also be “informative” [30] and
concise. That is, they bridge complex events rather than trivial
(though more frequent) events (e.g., routine calls between two per-
sons). Meanwhile, they should be easily interpreted. To strike a
balance, we introduce maximal GTARs with size bound.

Given a support threshold 0, a GTAR ¢=(P; = P,,u,At) is a
maximal GTAR, if (1) Supp(e,Gr) = 0, and (2) there exists no
GTAR ¢/, such that ¢ < ¢, and Supp(¢’, G1) = 0.1tis a b-maximal
GTAR, if both P; and P, have at most b edges.

Example 4.6. Given graph Gr in Fig. 2, focus @, At = 2, support
threshold ¢ = 0.1, confidence threshold 6 = 0.7 , and size bound
b = 3, the GTAR ¢2 = (P3 = P4, 01, At = 2) is a 3-maximal GTAR.
Indeed, we can verify that no ¢’ such that ¢ < ¢’ has satisfiable
support and confidence.

4.2 The Discovery Problem

We now formalize the GTAR discovery problem. For practical ap-
plications, the problem is parameterized with user specified focus
, time bound At, support and confidence threshold. In addition,
a size bound b is posed on the events to strike a balance between
informativeness and interpretability.
o Input: Temporal graph Gr, focus @, time interval At, size
bound b, support threshold o and confidence threshold 6;
o Output: The set of b-maximal GTARs X pertaining to # and
At such that for each GTAR ¢ € 3, Supp(¢, Gr) > 0, and
Conf(p,GT) = 0.
Usually, we have At < T, and |V| < b. That is, we consider
discovering GTARs that associate two reasonably large events in a
short period, in a relatively much longer time period.

5 GTAR DISCOVERY

A brute-force algorithm first enumerates all the events in Gr, and
then enumerates and validates GTARs by pairing the events and
adding the temporal constraints. Enumeration of all events is al-
ready expensive when Gr is large. Moreover, one has to wait until
all the events are discovered before rule generation; both are in-
tractable processes themselves.
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Figure 4: GTAR discovery

We can perform GTARs discovery more efficiently. The idea is
to integrate event mining and rule discovery as a single process,
and prune non-interesting events and GTARs as early as possible.

5.1 Discovery Algorithm

We present the GTAR discovery algorithm, denoted as DisGTAR.
In a nutshell, the algorithm DisGTAR interleaves event mining
and rule discovery as a single mining process: it generates promis-
ing GTAR candidates by spawning and verifying the LHS events
and dynamically “append” promising RHS events, and validates
the generated GTAR candidates only when necessary. It eliminates
non-interesting GTARs whenever possible.
We start with the auxiliary structures used by DisGTAR.

Auxiliary structures. Algorithm DisGTAR uses structures below.

(1) It dynamically maintains an event lattice . Each lattice node
in P at level i records an event P with i edges, associated with (a)
its anchored matches o(P, @, G7) and (b) its occurrences O(P, GT),
both encoded as bit vectors to save space. The auxiliary informa-
tion will be used to validate GTAR candidates.

(2) It uses two priority queues below to control the generation of
P: (a) a LHS queue L, where each entry L[P;] points to a LHS
event Py in P, and (b) each entry L[P;] is associated with a RHS
queue L[P1].R that points to a set of RHS events in . Both priority
queues maintain two keys for an event P: its level (edge number)
in P, and Supp(P, Gr). A GTAR ¢=(P; = P, u, At) is encoded by
the LHS event £[P;] and its associated RHS event L[P;].R[P2].

Example 5.1. A fraction of an LHS queue £ and RHS queues R is
shown in Fig. 4. The corresponding fraction of event lattice  (not
shown) contains LHS events P3’ and P3, and RHS events P4 and P;.
LHS queue L contains P3’ and Ps3. The event Pj is associated with
a RHS queue P3.R, which contains RHS events P4 and P;. Events
P3 and P4 together encode the GTAR ¢z in Example 4.6.

Overview. Algorithm DisGTAR, illustrated in Fig. 5, discovers and
stores maximal GTARs in a set 2. It “cold-starts” GTAR discovery
by initializing the event lattice  and the LHS stack £ with an
event P, as a single-node event that contains the focus @ (line 1).
DisGTAR then expands # by interleaving two processes, both
guided by best-first strategies: a prioritized LHS event generation
(lines 2-8) to generate and verify best new LHS events; and a rule
validation (lines 10-18) to generate and validate new GTAR candi-
dates by appending best RHS events to verified LHS events.



Algorithm DisGTAR

Input: temporal graph Gr, focus @, integer b, bound b, time window A¢
support threshold ¢ and confidence threshold 6.

Output: a set ¥ of b-maximal GTARs w.r.t. cand 6.

1 set X:=0; event lattice P:={P,, }; priority queue L:={P, };

2. while £ is not empty do

3. /" LHS event generation */

4. event Py:= L.poll (); /* retrieves the “best” LHS event */

5. if P; is “spawnable” then set S(P;):=1Spawn (P;, P);

6 for each P| € S(P;) do

7 eMatch (P}, G, P); /* LHS event verification */

8 L.push (S(P1) U Py); continue; /* prioritizes LHS events */

9. /" GTARs rule generation */

10. initializes queue P;.R;

11. while P;.R is not empty do

12. event Py := P1.R.poll (); /*retrieves the “best” RHS event */
13. generates GTAR ¢=(P; = Py, u, At);

14. valGTAR (¢, Gr); /*rule validation */

15. Identify maximal GTARs ¥; ¥ :=X U Y;

16. if P, is “spawnable” then set S(P;):=rSpawn (Py, P, P);
17. for each P; € S(P;) do eMatch (P;, GT, P);

18. Py.R.push (S(Py)); /* prioritizes RHS events */

19. return X;

Figure 5: Algorithm DisGTAR

LHS event generation (lines 2-8). The algorithm DisGTAR uses the
LHS queue L to generate LHS events. It applies a best-first strategy,
which gives priority to the generation of LHS events with larger
size and smaller support (lines 5-8; to be discussed shortly). To this
end, it (1) uses an atomic operation Ispawn (line 5) to spawn a set of
LHS events S(P;) from the “best” LHS event P; verified so far, and
(2) invokes a procedure eMatch (line 7) to perform event matching,
which finds Supp(P[, Gr) and its focus occurrence o(P], &, Gr) for
each new event P]. The verified LHS events are prioritized based
on their size and support in £ (line 8).

Rule generation (lines 10-18). Given a verified LHS event Pj,
DisGTAR generates GTARs that pertain to P, by appending RHS
events to P;.R. Similar to LHS event generation, it also uses a best-
first approach to prioritize the process of RHS events. The differ-
ence is that (1) it prefers RHS events with higher support (lines 16-
18, to be discussed), and (2) it uses a different operator rSpawn to
reduce RHS events verification based on both the best LHS and
RHS events so far (line 16, to be discussed).

Each RHS event produces anew GTARs (line 13). For each GTAR,
it invokes a procedure valGTAR to perform GTAR validation and
computes its support and confidence (line 14). It then finds maxi-
mal GTARs in # and updates ¥ accordingly (line 15). The rule gen-
eration terminates if all the GTARs pertaining to P; under event
size bound b are checked (P;.R is empty).

Algorithm DisGTAR “switches” between the two processes and
reduces redundant verification and validation by checking two sets
of “spawnable” conditions for LHS and RHS events, respectively.
(1) When a LHS event P; is no longer spawnable, it starts GTAR
generation at P; (line 10); (2) When no RHS events can be spawned
with a LHS event P; (line ), it “backtracks” to the parent of P; (re-
trieved from L, line 4) and starts LHS event generation. We intro-
duce the details of the spawnable conditions in Section 5.2.

The above process is illustrated in Fig. 4. We next introduce the
key components of algorithm DisGTAR.

GTAR Generation. Algorithm DisGTAR generates GTAR candi-
dates by performing two core operations below. Both share the ac-
cess to P to avoid redundant generation and verification; an event
in P can be either an LHS or RHS events in different GTARs.

Operators ISpawn. Given a LHS event Py, operator ISpawn (P;, )
spawns a set of LHS event S(P;) from P;. Each event P| € S(Py)
is obtained by adding an event edge e=(u,u’) to P;, such that (a)
either u or v’ is in P, and (b) e has at least a candidate ¢/ =
(v,v",e.I) € C(e). If P is new (P; ¢ P), it inserts P to P. The
events are then verified by procedure eMatch.

Operators rSpawn. By default, operator rSpawn works similarly as
its counterpart for LHS events. The difference is that it optimizes
the spawning of RHS events for LHS event P; when DisGTAR
“backtracks” from its children. We defer the details of optimized
rSpawn in Section 5.2.

Example 5.2. Consider the LHS queue £ in Fig. 4. When algo-
rithm DisGTAR executes 1ISpawn (P}, P), it spawns LHS event P3
(among others) by adding an edge (u, w) to P;, and inserts P3 to P.
Similarly, when rSpawn (Ps, P;, P) is executed (Pj(i) is a single-
edge pattern (@, z); not shown), it spawns Py (in Fig. 1) by adding
edge (z,s) to P;, and inserts Py to P.

Prioritization. Recall the anti-monotonicity properties of GTAR
support and confidence. (1) GTAR candidates with larger LHS
events are “closer” to maximal GTARs in P (Lemma 4.2). (2) GTARs
with LHS events P; having relatively smaller support Supp(P1, GT)
and RHS events Py with relatively larger support Supp(P2, GT)
tend to have higher confidence (Lemma 4.5).

Based on these intuitions, DisGTAR prioritizes the spawning
of events as follows. (1) DisGTAR inserts all the events in newly
spawned LHS events S(P;) to priority queue £, following a de-
scending order of their support. It also inserts P; to £ for backtrack-
ing. The LHS event with the lowest support is picked to spawn new
LHS events. (2) Given a “best” LHS event P in (1), R pushes newly
spawned RHS events S(P2) by ascending order of their support. Fix-
ing LHS event, the RHS event with highest support is selected to
construct the next GTAR candidate. The prioritization in (1) and
(2) lead to b-maximal GTARs with high confidence faster.

Example 5.3. Continuing the example 5.2, once a set of LHS
events S(P;) is spawned by 1Spawn(P5, P) (step 1), DisGTAR ver-
ifies each event (step 2) and pushes them into LHS queue with
descending order of their support. It selects P3 as the top event
to be spawned with relatively low support. As P3 already has 3
edges (with size bound b=3), it is no longer “spawnable”. Algorithm
DisGTAR then enters rule spawning (step 3).

In the rule spawning with LHS event P3, once a set of RHS
events S(Py) is spawned by rSpawn(P3, Py, ), DisGTAR verifies
and selects P4 with relatively higher support, and constructs the
GTAR ¢ for further validation.

We now introduce procedures eMatch and valGTAR, used in
event verification and rule validation, respectively.



Procedure eMatch

Input: An event P(Vp, Ep, Lp), temporal graph G1
Output: focus occurrence o(P, i, Gr);

1. for each e = (u, u’) € Ep do

2 set C(e) := f(e); /* initializes edge candidates™/

3. while there are changes in edge candidate sets do

4 for each pair of edges e? = (u”, u) and e=(u, u’) in Ep do

/* refines candidates with “join” C(e?) »< C(e)*/

5. for each edge e?' =(v?, v, e .t) € C(eP) do

6. if there exists no edge e’=(v, v/, t) € C(e) such that
e .t=¢’.t then C(eP) := C(eP) \ {e?'};

7. if C(e?) = () then return 0;

8. for each edge ¢’=(v, v/, t) € C(e?) do

9. if there exists no edge e?’ =(vP', v, t) € C(eP)
such that e?’ .t=¢’.t then C(e) :=C(e)\ {e'};

10. if C(e) = 0 then return 0;

11.  derives RT  and o(P, @, Gr) from edge candidates;
12.  return o(P, u, Gr);

Figure 6: Procedure eMatch

Event verification. A straightforward algorithm first induces a
set of T “snapshots” of Gr, and then computes matching relation
R; between P and each snapshot G; (¢ € T) one by one. This incurs
redundant verification, and is expensive when Gr and T are large.

We introduce a more efficient procedure eMatch (illustrated in
Fig. 6). The procedure performs a “one batch” matching to directly
compute RT between P and Gr, without one-by-one matching. It
extends the algorithm in [20] by using a fixed-point join over can-
didates as tables. More specifically, it works as follows.

(1) For each edge e = (u,u’) € Ep, eMatch initializes its candidate
set C(e) specified by the candidate function f (lines 1-2), as a “table”
of triples < v,v’, t >, each encodes an edge e=(v,v’,t) in Gr.

(2) It iteratively refines the candidate sets via fixed-point “join” op-
erations as follows. For each pair of event edges e? = (u”,u) and
e = (u,u®) in P, it performs a join operation C(e?) »< C(e) with
condition “C(ef).v’ = C(e).v AC(eP).t = C(e).t"which encodes the
semantics of temporal matching (lines 4-10). eMatch iteratively re-
moves the edge candidates from C(e”) (line 6) and C(e) (line 9)
which fails the join condition, until no edge candidate can be re-
moved from the candidate sets (line 3).

Procedure eMatch then extracts the temporal matching relation
RT by pairing the edges with their candidates, and extracts the fo-
cus occurrences o(P, Gr), and Supp(P, Gr) (line 11) from RT.The
information is associated to P in the event lattice .

Remarks. We optimize the join operation in eMatch by “group-
ing” consecutive timestamps as time intervals and perform range
intersections.

GTAR Validation. Given a GTAR candidate ¢=(P; = P, u, At),
procedure valGTAR (not shown) validates ¢ as follows.

(1) As Py is verified in LHS event verification, it invokes eMatch to
verify P2 only when necessary, and update # accordingly.

(2) Procedure valGTAR then finds O(¢, Gr), the minimal occur-
rences of ¢, by a linear scan over T. It finds the common focus
matches of P; and Py. It initializes a pair of pointers (t1, t2) for P;
to indicate the first time interval in which a common focus match

of Py occurs, and similarly set pointers (t], ;) for Py. It then iter-
atively counts the intersection of the pointed time intervals of P;
and P, as a minimal occurrence and moves the pointers, until the
last interval in T is visited. This takes a linear scan of T.
Procedure valGTAR then computes and returns Supp(¢, G1)
and Conf (¢, Gr) with O(¢, Gt) and Supp(Pi1, G1) by definition.

5.2 Optimization

Algorithm DisGTAR further reduces cost with a set of pruning
rules, verified by the result below.

LEmMMA 5.4. For a GTAR ¢=(P; = P, 4, At)with Supp(p, GT) >
o and Conf(p,Gr) > 0,
(a) Supp(P1,Gr) = 0, and Supp(P2, GT) = 0;
(b) for any GTAR ¢’ that ¢’ < ¢, Supp(p,Gr) > 0; and if ¢’
pertains to Py, then Conf(p, GT) > 6;
(¢) If ¢ is a b-maximal GTAR, then any GTAR ¢’ is not a b-
maximal GTAR if ¢’ < ¢.
Proof sketch: (a) We can verify that the event support
Supp(P, Gr) is a valid upper bound of any GTARs with P as ei-
ther LHS or RHS event. (b) The result can be verified by the (condi-
tional) anti-monotonicity of GTAR support (Lemma 4.2) and confi-
dence (Lemma 4.5). (c) If ¢ < ¢ and ¢ is a b-maximal GTAR, then
one can add at least an edge to either LHS or RHS event of ¢’ that
leads to ¢. Thus ¢’ is not a b-maximal GTAR and can be pruned. O

In accordance, DisGTAR uses the pruning rules below.
(a) DisGTAR spawns events only from “spawnable” P, i.e., P has no
more than b edges, and Supp(P, Gr) > o (line 5 and 16, Fig. 5).
(b) For any validated GTAR ¢ with RHS event Py, if either
Supp(¢, Gr) < 0, or Conf(p,Gr) < 6, DisGTAR stops spawning
the RHS events from P, (line 16, Fig. 5).
(c) Optimized rSpawn (line 16, Fig. 5): whenever DisGTAR “back-
tracks” from a LHS event P; to its parent P/, rSpawn (i) bookkeeps
the set of RHS events $, from P;.R that are in a maximal GTAR
pertaining to Py, and (ii) skips all GTARs that pertains to P; and P}
with le < Py (Py € Po).

Example 5.5. We continue with Example 5.3. (1) Once RHS event
P7 is generated by rSpawn (step 3, rule spawning), DisGTAR
finds its support Supp(P7, Gr) = 0.06 < o. By pruning rule (c)
(Lemma 5.4(c)), DisGTAR stops spawning new RHS events from P;
and skips all its descendants in #. (2) When DisGTAR backtracks
from P53 to P/, since RHS event Py is in a validated 3-maximal GTAR
@2, rSpawn starts spawning LHS events from Py for P, skipping
all the LHS events refined by Py (e.g., P; in Example 5.2).

5.3 Performance analysis

The algorithm DisGTAR correctly discovers the maximal GTARs
when terminates, and is feasible over large temporal graphs.

Correctness. Algorithm DisGTAR enumerates GTAR candidates.
It enumerates all the LHS events via depth-first pattern generation.
For each LHS event P, it enumerates RHS events that contributes
to maximal GTARs pertaining to P. The pruning rules only remove
redundant events in pattern and rule generation. Moreover, the
procedure eMatch and valGTAR correctly verify and validate the
events and GTARs, respectively.



Complexity. Algorithm DisGTAR incurs the following cost.

Event verification cost. Denote by N (b) the number of events with

size bounded by b. For each event, procedure eMatch takes
O(IT|(b+|V|)(b+]E|)) time to compute Supp(P, Gr), following the
analysis in [20], with an additional cost on the timestamps posed
on the edges. Thus DisGTAR takes O(|TIN(b)(b + |V])(b + |E]))
time.

GTAR validation cost. There are at most N(b)2 GTARs for N(b)
events. For each GTAR ¢, valGTAR verifies RHS event only when
necessary, and O(|T|) time to scan T and identify minimal occur-
rences of ¢. Thus, it takes in total O(|T|N(b)(b + |V|)(b + |E|) +
N(b)?|T|) time to validate and identify all maximal GTARs.

Taken together, the overall cost of DisGTAR is in O(|T|N(b)(b+
[V)(b + |E]) + N(b)?|T|) time. In practice, b is small, and N (b) is
significantly reduced by the optimization strategies.

Space cost. Algorithm DisGTAR takes in total O(N(b)|C(a)||T]|)
space. Indeed, (1) it maintains up to |C(#)| focus matches with as-

sociated timestamps up to |T| for each event, and (2) the LHS and
RHS queues maintain up to N(b) pointers to the shared #.

Anytime performance. With integrated event mining and rule
validation, DisGTAR enables “anytime” performance that can re-
turn GTARs as the events are discovered. This is desirable for ap-
plications that require ad-hoc detection of temporal associations.
As verified by our experimental study (Section 6), DisGTAR con-
verges 73 times faster and report GTARs with accuracy 90% com-
pared with its “enumerate-and-validate” counterpart.

Remarks. Algorithm DisGTAR can be easily extended for GTARs
with multiple focus nodes, with extended support and confidence
that aggregate weighted sum of minimal occurrences. To this end,
it only needs to extend valGTAR to validate GTARs with multiple
focus. The time and space complexity remains intact.

6 EXPERIMENTAL EVALUATION

Using real-life and synthetic graphs, we conducted four sets of ex-
periments to evaluate (1) the efficiency and scalability of GTARs
discovery algorithms, (2) the impact of the parameters (e.g., sup-
port, event size) to their efficiency, (3) the “anytime” performance
of GTAR discovery, and (4) the effectiveness of GTARs model.

Experimental setting. We used the following setting.

Datasets. We use the following datasets. (1) Citation! is a citation
network of 4.3M entities (e.g., papers, authors, publication venues),
21.7M edges (e.g., citation, published at), and 273 labels (e.g., key-
words, research domains), with timestamps corresponding to pub-
lication date. The active timestamps span from the year 1936 to
the year 2015 (|T|=80). (2) Panama? contains in total 839K off-
shore entities (e.g., companies, countries, jurisdiction), 3.6M rela-
tionships (e.g., establish, close) and 433 labels covering 40 years
of offshore entities and financial activities including 12K active
days (|T|=12K). (3) MovieLens?® records 10M ratings of 71.5K users
given to 10K movies in an online movie recommendation system.
In addition to User and Movie, the temporal graph includes 20

!https://aminer.org/citation
Zhttps://offshoreleaks.icij.org/pages/database
Shttps://grouplens.org/datasets/movielens/

other labels demonstrating the category of each movie (e.g., Ro-
mance, Drama) and it has 1439 hours of interactions (|T|=1439).

Besides real-world temporal graphs, we also use a generator that
simulates a synthetic dynamic traffic network using VISSIM [15].
The generator is controlled by the number of nodes (vehicles, lo-
cations, traffic signs), edges (roads), and the size of snapshots. We
generated synthetic traffic networks of up to 91K snapshots, each
with 1.2M nodes and 15M edges on average.

Algorithms. We implemented the following algorithms, all in
Java: (1) Algorithm DisGTAR (including procedures eMatch
and valGTAR); (2) Algorithm DisGTARn, a variant of DisGTAR
without the pruning strategies (Section 5.2); (3) Algo-
rithm [soGTAR, a variant of DisGTAR that uses an event matching
procedure different with eMatch, which “isolates” the snapshots
and computes event matching over each snapshots one by one
(Section 5.1). For a fair comparison, we apply all the applicable
optimizations of DisGTAR to IsoGTAR. (4) Algorithm SeqGTAR
is a variant of DisGTAR that separates event mining and rule
discovery to two independent processes. It discovers all the events
using the event spawning and procedure eMatch in DisGTAR, and
then enumerates and validates all GTARs candidates.

We ran all of our experiments on a machine powered by an Intel
2.3GHz CPU with 64GB memory. Each experiment was run 3 times
and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Performance of DisGTAR. We first evaluate the efficiency
of DisGTAR over real-world and synthetic datasets, compared
with DisGTARn, SeqGTAR and IsoGTAR. For all the datasets, we
sampled focus nodes specified with common interests (e.g., pa-
per with popular topics in Citation, active companies and jurisdic-
tions in Panama) with proper candidate size (100-300 nodes). We
fix At=5, b=4 and draw support (resp. confidence) threshold from
[0.1-0.2] (resp. [0.6 — 0.9]) for all datasets. For a fair comparison,
we tuned the thresholds to ensure (1) the mining process runs to
completion for most baselines, and (2) over all datasets, they return
reasonably large number (> 100) of maximal GTARs.

Efficiency. The performance of GTAR discovery is shown in Ta-
ble 2. The result tells us the following. (1) DisGTAR performs best
among all the algorithms. It outperforms DisGTARn, SeqGTAR and
IsoGTAR by 6.28, 7.85 and 64.79 times on average over real-world
graphs. In particular, it outperforms the three baselines by 43, 71
and 561 times respectively over Citation. (2) In general, DisGTAR
is feasible over large graphs. For example, it takes 22 seconds over
Citation with 26 M nodes and edges and 80 snapshots, and identi-
fies 20 4-maximal GTARs. (3) The pruning strategy significantly re-
duces the verification cost. DisGTAR incurs at most 90.3% number
of verifications over all real-world datasets. In particular, it reduces
98% verifications over Citation.

Algorithm DisGTAR takes less time over Panama with more ver-
ifications than over Citation. This is because eMatch takes much
less time over Panama which is more sparse and heterogeneous,
despite of more verifications. Algorithm IsoGTAR takes more than
3.5 hours over Citation with 80 snapshots, and does not run to
completion in other datasets in 10 hours.



DisGTAR DisGTARn SeqGTAR IsoGTAR
Time (s) | # of verification | Time (s) | # of verification | Time (s) | # of verification | Time (s) [ # of verification
Panama 9 1,194 276 8,393 560 8,393 N/A
Citation 22 157 994 12,507 1,621 12,507 12,721 [ 11,461
MovielLens 558 191 2,432 1,423 2,445 1,423 N/A
Synthetic 42 303 358 20,230 816 20,230 N/A
Table 2: Performance of GTAR discovery
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Figure 7: Scalability of DisGTAR
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Figure 8: Impact of parameters
We generate a synthetic graph with 91K snapshots, each with
size (1.2M, 15M) (i.e., contains 1.2M nodes and 15M edges). The
results over synthetic graphs (Table 2) is consistent with its coun-
terparts over real-world graphs. In particular, DisGTAR outper-
forms DisGTARn and SeqGTAR by 8.5 and 19.5 times.

Scalability. We also evaluated the scalability of DisGTAR vs. the
baselines over synthetic graphs.

(1) Fixing |T|=91K, 0=0.2, 6=0.15, b=4, and node size |V|=1.2M, we
varied |E| from 5M to 25M. Fig. 7(a) shows that all algorithms take
more time, as expected. Algorithm DisGTAR is less sensitive to |G|
due to the pruning strategies. While SeqGTAR does not terminate
after 10 hours over |G| with size (1.2M, 25M), DisGTAR success-
fully discovered all the maximal GTARs in 1.38 hours.

(2) Fixing |G| as (1.2M, 15M), we varied |T| from 10 to 30. As
shown in Fig. 7(b), all the algorithms take more time with larger
|T]. DisGTAR is much less sensitive than IsoGTAR due to the “pack-
ing” of consecutive timestamps to time intervals for more efficient
fixed-point joins (Section 5.1), reducing the impact of |T| . Among
the algorithms, 1soGTAR is most sensitive due to its one-by-one
matching. This also verifies the results that [soGTAR fails to com-
plete over real-world graphs with more snapshots (Table 2).

Exp-2: Impact of parameters. We evaluated the impact of the
support threshold o, 6 and event size bound b. We report the result
over Panama; the results over other real-world datasets Citation
and Movielens are consistent, hence omitted.

Varying o. Fixing b=4, confidence 0=0.9, and At = 5, we vary o
from 0.06 to 0.2. As shown in Fig. 8(a), all the algorithms take less
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Figure 9: Anytime performance

time for larger o. DisGTAR is more sensitive to larger o compared
with DisGTARn and SeqGTAR, due to its optimization strategies.

Varying b. Fixing confidence 6 = 0.9, 0=0.12 and At = 5, we vary
b from 3 to 5. As shown in Fig. 8(b), all the algorithms take longer
time when b is larger due to more events need to be verified. How-
ever, DisGTAR is less sensitive due to the pruning strategy.

We also evaluated the impact of 6 (results not shown). We found
that the algorithms are insensitive to the change of 0 except for
DisGTAR: it takes less time with larger 6. This is also due to
that its pruning strategy takes advantage of the conditional anti-
monotonicity of GTAR confidence.

Exp-3: Anytime performance. In this experiment, we evalu-
ate the impact of time constraint on the anytime performance of
DisGTAR, compared with SeqGTAR. To this end, we define a met-
ric of anytime quality of the GTARs as follows. Denote the set of
maximal GTARs discovered by DisGTAR (resp. SeqGTAR) at time
t as Xf (=*!), and the complete maximal GTAR as X*. The any-
time quality at time ¢ of DisGTAR (resp. SeqGTAR) is computed
s Y gest Conf(p,G1) (res 2 pes+t Conf(p, G1)
T pex+ Conf (@, G7) P- 5 o+ Coni(g, G1)
t=1000 seconds for both algorithms.

As shown in Fig. 9(b) and Fig. 9(a), DisGTAR converges with
high quality GTARs much faster than SeqGTAR. It produces the re-
sults with a quality above 0.9 within 8 seconds and 18 seconds over
Panama and Citation, respectively. In contrast, SeqGTAR takes 850
seconds to reach the same quality in Panama, and waits for 900 sec-
onds over Citation before it starts to produce GTARs.

). We set a time bound

Exp-4: Case study. To demonstrate the effectiveness of GTARs
and its application, we perform two case studies below.

Real-world GTARs. We manually examined top GTARs returned
by DisGTAR over real-world datasets. Two real-world GTARs are
shown in Fig. 10, from Panama and Citation, respectively.

(1) GTAR ¢3 =(Ps = Py, i, At = 1.5K): The rule identifies a tem-
poral association among offshore entities that indicate a business
shifting operation. It states that companies with jurisdiction area
“BVI” (British Virgin Islands) that were once inactive become active
again with a changed jurisdiction “Panama” in 4 years ( < 1500
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Figure 10: Real-life GTARs

days). One of such entity that support a minimal occurrence of
@3 is “F.Geneve Project Management”. Interestingly, ¢3 corresponds
to a fact that when BVI cracks down the bearer shares, many com-
panies moved bearer share clients to Panama.

(2) GTAR ¢4 = (P10 = Pi11,u,At = 5): The rule identifies a re-
search trend that states “Authors who publish in NLP area (Natu-
ral Language Processing) and cited linguistic papers (P1g) start to
cite/publish deep learning papers. in 5 years.” One of the authors
that support the minimal occurrence of ¢4 is Chris Manning (Stan-
ford U).

GTARs for prediction. We also evaluated the application of GTARs
as prediction rules over “unseen” data, using Panama. We induce
a temporal graph Gr from Panama with 75% of in total 12K snap-
shots as training dataset, and another graph G/ with the rest 25%
(newer) snapshots as the testing set. We mined top 10% GTARs
from G using the same setting as in Table 2 for Panama, and eval-
uated their confidence in Q} as prediction rate for P;.

We found that these GTARs have prediction rate on average at
87%. with the highest achieving 94%. This suggests that GTARs are
quite effective in predicting the events.

7 CONCLUSION

We have proposed a class of temporal association rules over graphs
(GTARs) including rule model, semantics and interestingness mea-
sures. We have studied the discovery problem of GTARs and de-
veloped a mining algorithm for GTARs in temporal graphs. Our
experimental study has verified that despite the enhanced expres-
sive power of GTARs, it is feasible to find and apply GTARs in prac-
tice. We also found that GTARs can be used for activity prediction,
among other applications.

We are exploring other quality metrics for GTARs, and experi-
menting with larger-scale real-world graphs. Another topic is to
develop fast online discovery of GTARs over graph streams.
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