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Abstract

Maximum mean discrepancy (MMD), also called energy distance or N-distance in statis-
tics and Hilbert-Schmidt independence criterion (HSIC), specifically distance covariance
in statistics, are among the most popular and successful approaches to quantify the dif-
ference and independence of random variables, respectively. Thanks to their kernel-based
foundations, MMD and HSIC are applicable on a wide variety of domains. Despite their
tremendous success, quite little is known about when HSIC characterizes independence and
when MMD with tensor product kernel can discriminate probability distributions. In this
paper, we answer these questions by studying various notions of characteristic property of
the tensor product kernel.

Keywords: tensor product kernel, kernel mean embedding, characteristic kernel, Z-
characteristic kernel, universality, maximum mean discrepancy, Hilbert-Schmidt indepen-
dence criterion

1. Introduction

Kernel methods (Scholkopf and Smola, 2002) are among the most flexible and influential
tools in machine learning and statistics, with superior performance demonstrated in a large
number of areas and applications. The key idea in these methods is to map the data
samples into a possibly infinite-dimensional feature space—precisely, a reproducing kernel
Hilbert space (RKHS; Aronszajn, 1950)—and apply linear methods in the feature space,
without the explicit need to compute the map. A generalization of this idea to probability
measures, i.e., mapping probability measures into an RKHS (Berlinet and Thomas-Agnan,
2004, Chapter 4; Smola et al., 2007) has found novel applications in nonparametric statistics
and machine learning. Formally, given a probability measure P defined on a measurable
space X and an RKHS Hj, with k£ : X xX — R as the reproducing kernel (which is symmetric
and positive definite), P is embedded into Hy, as

Prs [ kC.2)dP(@) = julP) (1)
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where i (P) is called the mean element or kernel mean embedding of P. The mean em-
bedding of P has lead to a new generation of solutions in two-sample testing (Baringhaus
and Franz, 2004; Székely and Rizzo, 2004, 2005; Borgwardt et al., 2006; Harchaoui et al.,
2007; Gretton et al., 2012), goodness-of-fit testing (Chwialkowski et al., 2016; Liu et al.,
2016; Jitkrittum et al., 2017b; Balasubramanian et al., 2017), domain adaptation (Zhang
et al., 2013) and generalization (Blanchard et al., 2017), kernel belief propagation (Song
et al., 2011), kernel Bayes’ rule (Fukumizu et al., 2013), model criticism (Lloyd et al., 2014;
Kim et al., 2016), approximate Bayesian computation (Park et al., 2016), probabilistic pro-
gramming (Scholkopf et al., 2015), distribution classification (Muandet et al., 2011; Zaheer
et al., 2017), distribution regression (Szabé et al., 2016; Law et al., 2018) and topological
data analysis (Kusano et al., 2016). A recent survey on the topic is provided by Muandet
et al. (2017).

Crucial to the success of the mean embedding based representation is whether it en-
codes all the information about the distribution, in other words whether the map in (1)
is injective in which case the kernel is referred to as characteristic (Fukumizu et al., 2008;
Sriperumbudur et al., 2010). Various characterizations for the characteristic property of k
is known in the literature (Fukumizu et al., 2008, 2009; Sriperumbudur et al., 2010; Gretton
et al., 2012) using which the popular kernels on R? such as Gaussian, Laplacian, B-spline,
inverse multiquadrics, and the Matérn class are shown to be characteristic. The charac-
teristic property is closely related to the notion of universality (Steinwart, 2001; Micchelli
et al., 2006; Carmeli et al., 2010; Sriperumbudur et al., 2011)—*F is said to be universal if
the corresponding RKHS JHj, is dense in a certain target function class, for example, the
class of continuous functions on compact domains—and the relation between these notions
has recently been explored by Sriperumbudur et al. (2011); Simon-Gabriel and Scholkopf
(2016).

Based on the mean embedding in (1), Smola et al. (2007) and Gretton et al. (2012)
defined a semi-metric, called the maximum mean discrepancy (MMD) on the space of
probability measures:

MMDg (P, Q) := [[px(P) — px(Q)]l5¢,»

which is a metric iff k is characteristic. A fundamental application of MMD is in non-
parametric hypothesis testing that includes two-sample (Gretton et al., 2012) and inde-
pendence tests (Gretton et al., 2008). Particularly in independence testing, as a measure
of independence, MMD measures the distance between the joint distribution Pxy and the
product of marginals Px ® Py of two random variables X and Y which are respectively
defined on measurable spaces X and Y, with the kernel k being defined on X x Y. As afore-
mentioned, if & is characteristic, then MMDy(Pxy,Px ® Py) = 0 implies Pxy = Px ® Py,
i.e., X and Y are independent. A simple way to define a kernel on X x Y is through the
tensor product of kernels kx and ky defined on X and Y respectively: k = kx ® ky, i.e.,
k((z,y), (@, y)) = kx(z,2)ky (y,v), z,2" € X, y,y € Y, with the corresponding RKHS
Hy = Hyy ® Hp, being the tensor product space generated by Hj, and Hj, . This means,
when k = kx ® ky,

MMDy (Pxy, Bx @ Py) = |[tkxory (Pxy) — tixory (Bx @ By)lgq g5, - (2)

In addition to the simplicity of defining a joint kernel £ on X x Y, the tensor product kernel
offers a principled way of combining inner products (kx and ky) on domains that can
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correspond to different modalities (say images, texts, audio). By exploiting the isomorphism
between tensor product Hilbert spaces and the space of Hilbert-Schmidt operators!, it
follows from (2) that

MMDk(ny,PX ®]P’y) = HCXY”HS =: HSICk(ny), (3)

which is the Hilbert-Schmidt norm of the cross-covariance operator Cxy := fik ok, (Pxy)—
tiyx (Px) ® pky, (Py) and is known as the Hilbert-Schmidt independence criterion (HSIC)
(Gretton et al., 2005a). HSIC has enjoyed tremendous success in a variety of applications
such as independent component analysis (Gretton et al., 2005a), feature selection (Song
et al., 2012), independence testing (Gretton et al., 2008; Jitkrittum et al., 2017a), post
selection inference (Yamada et al., 2018) and causal detection (Mooij et al., 2016; Pfister
et al., 2017; Strobl et al., 2017). Recently, MMD and HSIC (as defined in (3) for two
components) have been shown by Sejdinovic et al. (2013b) to be equivalent to other popular
statistical measures such as the energy distance (Baringhaus and Franz, 2004; Székely and
Rizzo, 2004, 2005)—also known as N-distance (Zinger et al., 1992; Klebanov, 2005)—and
distance covariance (Székely et al., 2007; Székely and Rizzo, 2009; Lyons, 2013) respectively.
HSIC has been generalized to M > 2 components (Quadrianto et al., 2009; Sejdinovic et al.,
2013a) to measure the joint independence of M random variables

HSIC) (B) = oy, (F) = ©hlastin (Bl o ()

where P is a joint measure on the product space X := xM_,X,, and (IP’m)n]\;[:1 are the
marginal measures of P defined on (X,,)M_; respectively. The extended HSIC measure
has recently been analyzed in the context of independence testing (Pfister et al., 2017).
In addition to testing, the extended HSIC measure is also useful in the problem of inde-
pendent subspace analysis (ISA; Cardoso, 1998), wherein the latent sources are separated
by maximizing the degree of independence among them. In all the applications of HSIC,
the key requirement is that k = ®%:1km captures the joint independence of M random
variables (with joint distribution P)—we call this property as Z-characteristic—, which is
guaranteed if k is characteristic. Since k is defined in terms of (k,)M_,, it is of fundamental
importance to understand the characteristic and Z-characteristic properties of £ in terms
of the characteristic property of (km,,)M_;, which is one of the main goals of this work.

For M = 2, the characterization of independence, i.e., the Z-characteristic property of
k, is studied by Blanchard et al. (2011) and Gretton (2015) where it has been shown that if
k1 and ko are universal, then k is universal? and therefore HSIC captures independence. A
stronger version of this result can be obtained by combining (Lyons, 2013, Theorem 3.11)
and (Sejdinovic et al., 2013b, Proposition 29): if k; and ks are characteristic, then the
HSIC associated with k = k1 ® ko characterizes independence. Apart from these results,
not much is known about the characteristic/Z-characteristic/universality properties of k in

1. In the equivalence one assumes that Hy ., Hy, are separable; this holds under mild conditions, for exam-
ple if X and Y are separable topological domains and kx, ky are continuous (Steinwart and Christmann,
2008, Lemma 4.33).

2. Blanchard et al. (2011) deal with c-universal kernels while Gretton (2015) deals with co-universal kernels.
A brief description of these notions are given in Section 3. Carmeli et al. (2010); Sriperumbudur et al.
(2010) provide further details on these notions of universality.
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terms of the individual kernels. Our goal is to resolve this question and understand the
characteristic, Z-characteristic and universal property of the product kernel (®%I:1km) in
terms of the kernel components ((kp,,)M_;) for M > 2. Because of the relatedness of MMD
and HSIC to energy distance and distance covariance, our results also contribute to the
better understanding of these other measures that are popular in the statistical literature.

Specifically, our results shed light on the following surprising phenomena of the Z-
characteristic property of ®%:1km for M > 3:

1. characteristic property of (km,)2_; is not sufficient but necessary for ®_, k,, to be

Z-characteristic;

2. universality of (k,,)_, is sufficient for ®_, k., to be Z-characteristic, and

3. if at least one of (k;,)M_; is only characteristic and not universal, then ®_, k,, need

not be Z-characteristic.

The paper is organized as follows. In Section 3, we conduct a comprehensive analysis
about the above mentioned properties of k and (k,)M_; for any positive integer M. To this
end, we define various notions of characteristic property on the product space X (see Defini-
tion 1 and Figure 2(a) in Section 3) and explore the relation between them. In order to keep
our presentation in this section to be non-technical, we relegate the problem formulation
to Section 3, with the main results of the paper being presented in Section 4. A summary
of the results is captured in Figure 1 while the proofs are provided in Section 5. Various
definitions and notation that are used throughout the paper are collected in Section 2.

2. Definitions and Notation

N:={1,2,...} and R denotes the set of natural numbers and real numbers respectively. For
MeN, [M]:={1,...,M}. 15:=(1,1,...,1) € R? and 0 denotes the matrix of zeros. For
a:=(a1,...,aq) € R* and b := (by,...,bq) € R?, (a,b) = Z?:l a;b; is the Euclidean inner
product. For sets A and B, A\B = {a € A : a ¢ B} is their difference, |A] is the cardinality
of A and xM_ A, = {(a1,...,an) : am € Apym € [M]} is the Descartes product of sets
(Am)M_,. P(X) denotes the power set of a set X, i.e., all subsets of X (including the empty
set and X). The Kronecker delta is defined as 5 = 1 if a = b, and zero otherwise. x4 is
the indicator function of set A: x4(z) = 1 if z € A and ya(x) = 0 otherwise. R X-*dn g
the set of d; x ... x dps-sized tensors.

For a topological space (X, 7y), B(X) := B(x) is the Borel sigma-algebra on X induced
by the topology 7. Probability and finite signed measures in the paper are meant w.r.t. the
measurable space (X, B(X)). Given {(X;,7;)},o; topological spaces, their product x;crX;
is enriched with the product topology; it is the coarsest topology for which the canonical
projections 7; : X;erX; — (X;, 7;) are continuous for all ¢ € I. A topological space (X, ) is
called second-countable if 7y has a countable basis.?> C(X) denotes the space of continuous
functions on X. Cy(X) denotes the class of real-valued functions vanishing at infinity on a
locally compact Hausdorff (LCH) space? X, i.e., for any € > 0, the set {z € X : |f(z)| > €}

3. Second-countability implies separability; in metric spaces the two notions coincide (Dudley, 2004, Propo-
sition 2.1.4). By the Urysohn’s theorem, a topological space is separable and metrizable if and only if it
is regular, Hausdorff and second-countable. Any uncountable discrete space is not second-countable.

4. LCH spaces include R?, discrete spaces, and topological manifolds. Open or closed subsets, finite prod-
ucts of LCH spaces are LCH. Infinite-dimensional Hilbert spaces are not LCH.
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Remark 7
8) 8 8 .
®g-char <(: ®-char ®) char ®) co-universal
3)
Example 1
g =
» g
~ Z-char 3
g =
Q ot
~
Sriperumbudur et al. (2011)
(km)M_, char (km)M_, co-universal

Sriperumbudur et al. (2011)

Figure 1: Summary of results: “char” denotes characteristic. In addition to the usual
characteristic property, three new notions ®g-characteristic, ®-characteristic and
Z-characteristic are introduced in Definition 1 which along with cp-universal (in
the top right corner) correspond to the property of the tensor product kernel
®%:1km, while the bottom part of the picture corresponds to the individual
kernels (k,)M_, being characteristic or co-universal. If (k,,)M_,-s are continuous,
bounded and translation invariant kernels on R% m € [M], all the notions are
equivalent (see Theorem 4).

is compact. Cy(X) is endowed with the uniform norm || f||, = sup,ey |f(z)]. Mp(X) and
Mf(f)C) are the space of finite signed measures and probability measures on X, respectively.
For P, € Mf(fxm), ®%:11P’m denotes the product probability measure on the product space
xM_ Xy, e, @M_ P, € M (xM_,X,,). d, is the Dirac measure supported on = € X.
For F € M, (xnf‘lexm), the finite signed measure F,, denotes its marginal on X,,. JHy,,
is the reproducing kernel Hilbert space (RKHS) associated with the reproducing kernel
km : Xy X X,y — R, which in this paper is assumed to be measurable and bounded. The
tensor product of (kn,)M_; is a kernel, defined as

M
Mk (1, znr) s (2h, ., 2)y)) = H ko (Tms @) s Ty Ty € X,
m=1
whose associated RKHS is denoted as Hgn = @M_ Ky, (Berlinet and Thomas-Agnan,

2004, Theorem 13), where the r.h.s. is the tensor product of RKHSs (Hy,,)_,. For h,, €
Hym, m € [M], the multi-linear operator @¥_, h,,, € @M_,3(,,, is defined as

M
(@m—1hm) (1, .. o) = [ (emsvm)ae, s vm € Hom.

m=1
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A kernel k£ : X x X — R defined on a LCH space X is called a co-kernel if k(-,x) € Cy(X)
for all z € X. k : R x R? — R is said to be a translation invariant kernel on R? if
k(z,y) = ¥(x —y), z,y € RY for a positive definite function ¢ : R? — R. 1 (F) denotes the
kernel mean embedding of F € M(X) to H, which is defined as ju,(F) = [y k(-, ) dF(x),
where the integral is meant in the Bochner sense.

3. Problem Formulation

In this section, we formally introduce the goal of the paper. To this end, we start with a
definition. For simplicity, throughout the paper, we assume that all kernels are bounded.
The definition is based on the observation (Sriperumbudur et al., 2010, Lemma 8) that a
bounded kernel k£ on a topological space (X, ) is characteristic if and only if

/ / k(z,2') dF(z) dF(a’) > 0, YF € My(X)\{0} such that F(X) = 0.
X

In other words, characteristic kernels are integrally strictly positive definite (ispd; see Sripe-
rumbudur et al., 2010, p. 1523) w.r.t. the class of finite signed measures that assign zero
measure to X. The following definition extends this observation to tensor product kernels
on product spaces.

Definition 1 (F-ispd tensor product kernel) Suppose kp, : X, X Xy, — R is a bounded
kernel on a topological space (Xy,, Ty, ), m € [M]. Let F C My (X) be such that 0 € F where
X:i=xM_X,,. k=@M _ ky is said to be F-ispd if

=0=F=0 (Fe9), or equivalently

k(B2 = / / (&M k) (2,2') dF(z) dF(2') > 0, VF € R\{0}. (5)

Specifically,

e if k-5 are co-kernels on locally compact Polish (LCP)® spaces Xp,-s and F = My(X),
then k is called co-universal.

o if
F = [Mp(X))° 1= {F € My(X) : F(X) = 0}
F = [@M_ My(Xn)]” = {F € @M_ M, (X,n) =0},
F=1 = {P—@mzlpmzpemj( M X)), (M >2)
F =M MY(Xn) = {F=M_F,:FpnecM(Xn), Fn(Xm) =0, Ym € [M]},

then k is called characteristic, ®-characteristic, Z-characteristic and ®g-characteristic,
respectively.

5. A topological space is called Polish if it is complete, separable and metrizable. For example, R? and
countable discrete spaces are Polish. Open and closed subsets, products and disjoint unions of countably
many Polish spaces are Polish. Every second-countable LCH space is Polish.
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In Definition 1, k being characteristic matches the usual notion of characteristic kernels
on a product space, i.e., there are no two distinct probability measures on X = X ,f‘,{:lxm
such that the MMD between them is zero. The other notions such as ®-characteristic,
Z-characteristic and ®q-characteristic are typically weaker than the usual characteristic
property since

DM () € [EHM(X)]” € (Mo (i Xm)]” € My (g Xim) - (6)
u
7

Below we provide further intuition on the F measure classes enlisted in Definition 1.

Remark 2 (i) F = My(X) : If kp,-s are co-kernels on LCH spaces Xy, for all m € [M],
then k is also a co-kernel on LCH space X implying that if k satisfies (5), then k is co-
universal (Sriperumbudur et al., 2010, Proposition 2). It is well known (Sriperumbudur
et al., 2010) that co-universality reduces to c-universality (i.e., the notion of universality
proposed by Steinwart, 2001) if X is compact which is guaranteed if and only if each
X, m € [M] is compact.

(ii) F = T : This family is useful to describe the joint independence of M random variables—
hence the name I-characteristic—defined on kernel-endowed domains (X;,)M_,: If P
denotes the joint distribution of random variables (X)M_; and (P,,)M_, are the asso-

ciated marginals on (X;,)M_,, then by definition k = @M_, k,,, is T-characteristic iff

HSIC,(P) = 0 <= P = @M_ P,,.

In other words, HSIC captures joint independence exactly with T-characteristic kernels.
Similarly, the I-characteristic property ensures that COCO (constrained covariance;
Gretton et al., 2005b) is a joint independence measure as COCO is defined by replacing
the Hilbert-Schmidt norm of the cross-covariance operator (see (3) and (4)) with its
spectral norm.

(iti)) F = QM_ M(Xy,) : In this case T is chosen to be the product of finite signed
measures on X such that each marginal measure F,, assigns zero to the correspond-
ing space Xp,. This choice is relevant as the characteristic property of individual ker-
nels (km)M_, need not imply the characteristic property of @M_,k,,, but is equiva-
lent to the ®qg-characteristic property of ®%:1km. The equivalence holds for bounded
kernels ky, @ Xp X Xy — R on topological spaces X, (m € [M]) since for any
F =M T, oM M, (Xn), FrulXn) =0 (Ym € [M])

M
Hﬂk(F)H?ﬁ@M = T Ntk ()13, (7)
m=17m m=1

and the l.h.s. is positive iff each term on the r.h.s. is positive.

(iv) F = [®%=1Mb(xm)]0 : This class is similar to the one discussed in (iii) above—
i.e., class of product measures—with the slight difference that the joint measure F is
restricted to assign zero measure to X without requiring all the marginal measures F,,
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characteristic

®-char. Co-univ.

(a) (b)

Figure 2: (a) J-ispd @M_,k,, kernels (see (8)); (b) F C My(X), X = xM_,X,,. Exam-
ple 1: ®%:1km is ®o-characteristic but not ®-characteristic and therefore not
characteristic.

to assign zero measure to the corresponding space Xy,. While the need for considering
such a measure class may not be clear at this juncture, however, based on (7), it turns
out that this choice of F has quite surprising connections to the characteristic property
and co-universality of the product kernel; for details see Remark 7.

(v) F-ispd relations: Given the relations in (6), it immediately follows that k = @M_, k,,
satisfies

®o-characteristic <= ®-characteristic <= characteristic <= cg-universal (8)

4

T-characteristic

when Xy, for all m € [M] are LCP. A wvisual illustration of (6) and (8) is provided in
Figure 2.

(vi) [®%:1Mb(xm)]°mz = {0} : While it is clear that [®%:1Mb(fxm)]0 and T are subsets
of [Mb(xnﬂlexm)}ﬂ, it is interesting to note that [@f‘r{:le(xm)]o and I have a trivial

intersection with 0 being the measure common to each of them, assuming that X,,-s are
second-countable for all m € [M]; see Section 5.1.

Having defined the F-ispd property, our goal is to investigate whether the characteristic or
co-umiversal property of kp,-s (m € [M]) imply different F-ispd properties of ®M_, k,,, and
vice versa.

4. Main Results

In this section, we present our main results related to the F-ispd property of tensor product
kernels, which are summarized in Figure 1. The results in this section will deal with vari-
ous assumptions on X,,, such as second-countability, Hausdorff, locally compact Hausdorff
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(LCH) and locally compact Polish (LCP), so that they are presented in more generality.
However, for simplicity, all these assumptions can be unified by simply assuming a stronger
condition that X,,’s are LCP.

Our first example illustrates that the characteristic property of k,,-s does not imply the
characteristic property of the tensor product kernel. In light of Remark 2(iv) of Section 3,
it follows that the class of ®g-characteristic tensor product kernels form a strictly larger
class than characteristic tensor product kernels; see also Figure 2.

Example 1 Let X1 = Xo = {1,2}, 7, = ¢, = P({1,2}), ki(z,2") = ka(z,2") = 20, ,» — 1.
It is easy to verify that k1 and ko are characteristic. However, it can be proved that k1 ® ko
is not ®-characteristic and therefore not characteristic. On the hand, interestingly, k1 ® ks
18 L-characteristic. We refer the reader to Section 5.2 for details.

In the above example, we showed that the tensor product of k; and ko (which are
characteristic kernels) is Z-characteristic. The following result generalizes this behavior for
any bounded characteristic kernels. In addition, under a mild assumption, it shows the
converse to be true for any M.

Theorem 3 Let k,, : X,y X Xy, = R be bounded kernels on topological spaces X, for all
m € [M], M > 2. Then the following holds.

(i) Suppose X, is second-countable for all m € [M] with M = 2. If ki and ky are
characteristic, then k1 ® ko is I-characteristic.

(ii) Suppose X, is Hausdorff and |X,,| > 2 for allm € [M]. If @M_, k,, is I-characteristic,
then ki, ..., ky are characteristic.

Lyons (2013) has showed an analogous result to Theorem 3(i) for distance covariances
(M = 2) on metric spaces of negative type (Lyons, 2013, Theorem 3.11), which by Sejdinovic
et al. (2013b, Proposition 29) holds for HSIC yielding the Z-characteristic property of k1 ®ks.
Recently, Gretton (2015) presented a direct proof showing that HSIC corresponding to
k1 ® ko captures independence if k1 and ko are translation invariant characteristic kernels
on R? (which is equivalent to co-universality). Blanchard et al. (2011) proved a result
similar to Theorem 3(i) assuming that X,,’s are compact and kj, ko being c-universal.
In contrast, Theorem 3(i) establishes the result for bounded kernels on general second-
countable topological spaces. In fact, the results of Gretton (2015); Blanchard et al. (2011)
are special cases of Theorems 4 and 5 below. Theorem 3(i) raises a pertinent question:
whether ®_, k,,, is Z-characteristic if k,,-s are characteristic for all m € [M] where M >
27 The following example provides a negative answer to this question. On a positive
side, however, we will see in Theorem 5 that the Z-characteristic property of ®%:1km
can be guaranteed for any M > 2 if a stronger condition is imposed on k;,-s (and X,,-s).
Theorem 3(ii) generalizes Proposition 3.15 of Lyons (2013) for any M > 2, which states that
every kernel k,,, m € [M] being characteristic is necessary for the tensor kernel ®_, k,, to
be Z-characteristic.

Example 2 Let M = 3 and X, == {1,2}, m,, = P(Xpm), km (z,2") = 20, — 1 (m =
1,2,3). As mentioned in Example 1, (k:m)f’n:l are characteristic. Howewver, it can be shown
that @3, _ kn, is not I-characteristic. See Section 5.4 for details.
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In Remark 2(iii) and Example 1, we showed that in general, only the ®q-characteristic
property of ®J\m/[:1km is equivalent to the characteristic property of k,-s. Our next result
shows that all the various notions of characteristic property of ®,]‘,/{:1 k., coincide if k,,-s are
translation-invariant, continuous bounded kernels on R¢.

Theorem 4 Suppose k,, : Rém x R — R are continuous, bounded and translation-
invariant kernels for all m € [M]. Then the following statements are equivalent:

(i) km-s are characteristic for all m € [M];
(ii) @M_. k., is ®o-characteristic;
(iii) @M_|ky, is ®-characteristic;

(iv) @M_. k,, is I-characteristic;

(v) @M _. Ky, is characteristic.

The following result shows that on LCP spaces, the tensor product of M > 2 ¢p-universal
kernels is also cp-universal, and vice versa.

Theorem 5 Suppose kp, : X, X Xy, — R are co-kernels on LCP spaces X, (m € [M]).
Then @M_, k., is co-universal iff k,-s are co-universal for all m € [M].

Remark 6 (i) A special case of Theorem 5 for M = 2 is proved by Lyons (2013, Lemma
3.8) in the context of distance covariance which reduces to Theorem & through the equiv-
alence established by Sejdinovic et al. (2013b). Another special case of Theorem 5 is
proved by Blanchard et al. (2011, Lemma 5.2) for c-universality with M = 2 using the
Stone-Weierstrass theorem: if k1 and ko are c-universal then ki ® ko is c-universal.

(ii) Since the notions of co-universality and characteristic property are equivalent for transla-
tion invariant co-kernels on R? (Carmeli et al., 2010, Prop. 5.16, Sriperumbudur et al.,
2010, Theorem 9), Theorem 4 can be considered as a special case of Theorem 5. In
other words, requiring (km)M_, to be also co-kernels in Theorem 4(i)-(iv) is equivalent
to

(v) km-s are co-universal for all m € [M];
(vi) @M_.ky, is co-universal.

(i4i) Since the co-universality of @M_, ky, implies its T-characteristic property (see (8)), The-
orem 5 also provides a generalization of Theorem 3(i) to M > 2 under additional
assumptions on kp,-s, while constraining X,,-s to LCP-s instead of second-countable
topological spaces.

In Example 2 and Theorem 5, we showed that for M > 3 components while the charac-
teristic property of (km)%zl is not sufficient, their universality is enough to guarantee the
I-characteristic property of ®7]‘,{:1k‘m- The next example demonstrates that these results
are tight: If at least one k,, is not universal but only characteristic, then ®_, k,, might
not be Z-characteristic.

Example 3 Let M = 3 and X,,, := {1,2}, 7, = P(Xyn), for all m € [3], k1 (z,2') =
20y 0 — 1, and ky, (x,2") = 050 (M = 2,3). ki is characteristic (Example 1), ko and ks are
universal since the associated Gram matric G = [ky,(z,2')]yex,, is an identity matriz,

10
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®-char.

—characteristic

=cp-universal

Figure 3: Simplification of the F-ispd property of tensor product kernels; see Remark 7.

which is strictly positive definite (m = 2,3). However, @3, _kp, is not Z-characteristic. See
Section 5.7 for details.

Remark 7 Note that the l.h.s. in (7) is positive if and only if each term on the r.h.s. is
positive, i.e., if k = ®%:1km 18 ®-characteristic with kp,-s being co-kernels on LCP X,,-s,
then all kn,-s are co-universal. A similar result was also proved by Steinwart and Ziegel
(2017, Lemma 3.4). Combining this with Theorem 5 yields that for tensor product cg-
kernels, the notions of ®-characteristic, characteristic and co-universality are equivalent,
which is quite surprising as for a joint kernel k (that is not of product type), these notions
need not necessarily coincide. In light of this discussion, Figure 2(a) can be simplified to
Figure 3.

5. Proofs

In this section, we provide the proofs of our results presented in Section 4.

5.1 Proof of Remark 2(iv)
By the second-countability of Xp,-s, B (x¥_,X,,) = @M_, B(X,,), where the r.h.s. is defined
as the o-field generated by the cylinder sets A,, Xnzpy X, where m € [M] and A,, €

B(X,,). Suppose there exists F € [@nf‘{:le(xm)]O N Z such that F # 0. This means
there exists P € M{ (x¥_,X,,) with (Pp,))_, being the marginals of P such that F =
®%:1Fm =P- ®%:1]P’m. Since F # 0 there exists Ay, Xptm Xy for some m € [M] and
A € B(Xy) such that 0 # F(Ap Xt Xn) = Fn(Am) [T Fn (X)) = P (App Xt X)) —
P (Am) [z Pr(Xn) = P (Am) — P (Am) = 0, leading to a contradiction.

5.2 Proof of Example 1

The proof is structured as follows.

1. First we show that k& := ki = ks is a kernel and it is characteristic.

11
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2. Next it is proved that ki ® ko is not ®-characteristic, which implies k; ® ko is not
characteristic.

3. Finally, the Z-characteristic property of k1 ® ks is established.
The individual steps are as follows:

k is a kernel. Assume w.lo.g. that 1 = ... =2y =1, 2y41 = ... =2, = 2. Then it is
easy to verify that the Gram matrix G = [k(z;, 7)1 = aa' where a:= (1}, —1;7]\,)T
and a' is the transpose of a. Clearly G is positive semidefinite and so k is a kernel.

k is characteristic. We will show that k satisfies (5). On X = {1,2} a finite signed
measure F takes the form F = a161 + asds for some ay,ay € R. Thus,

F e Mp(X)\{0} & (a1,a2) #0 and F(X)=0<a; +a2=0. 9)
Consider
/ / k(z,2') dF(z) dF(z') = a2k(1,1) 4+ a3k(2,2) + 2a1a2k(1,2)
o =a? 4 a3 — 2a1az = (a1 — az)* = 4a? > 0, (10)

where we used (9) and the facts that k(1,1) = k(2,2) =1, k(1,2) = —1.

k1 ® ko is not ®-characteristic. We construct a witness F = F; @ Fy € ®2,_; My (X )\ {0}
such that

IF(DCl X :X:Q) = IFl(f)Cl)IE‘g(DCg) = 0, (11)

and

o= [ | ne k(i) 1, 5) G dE( )
I)C1><3C2 X1 ><:X:2 '
k1 (i1,i7)k2(i2,i5)

H/ / m (i 1) AP (i) B (i) (12)

Finite signed measures on {1,2} take the form F; = Fy(a) = a101 + a2d2, Fo = Fo(b) =
b101 + bads form, where a = (a1, as) € R%, b = (b1, by) € R2. With these notations, (11) and
(12) can be rewritten as

0 = (a1 + a2)(by + b2),

Z k1(i,i")a;a; Z ka(4,7")bibjr | = (aa fa2)2(b1 fb2)2.

ZZ_ 7.7_

Keeping the solutions where neither a nor b is the zero vector, there are 2 (symmetric)
possibilities: (i) a; + az = 0, by = bg and (ii) a; = ag, by + b2 = 0. In other words, for any
a,b # 0, the possibilities are (i) a = (a, —a), b = (b,b) and (ii) a = (a,a), b = (b, —b). This
establishes the non- [®%1:1Mb(xm)]o—ispd property of k1 ® ks.

12
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k1 ® ko is Z-characteristic. Our goal is to show that k1 ® ko is Z-characteristic, i.e., for
any P € Mf(xl x X2), tiyoky (F) = 0 implies F = 0, where F = P —P; ® P. We divide the
proof into two parts:

1. First we derive the equations of
F(X; x X9) =0 and // (k1 ® k2) ((4,7), (r,s)) dF(i,5) dF(r,s) =0 (13)
:X:1 ><:X:2

for general finite signed measures F = Z?,j:l a;j0(; ) on Xy X Xo.

2. Then, we apply the F = P—P; ® Py parameterization and solve for IP that satisfies (13)
to conclude that P = P; ® Py, i.e., F = 0. Note that in the chosen parametrization for
F, F(X1 x X2) = 0 holds automatically.

The details are as follows.

Step 1.
0=F(X1 x X2) & 0=a11 + a12 + as1 + a9, (14)
0= (k1 ® k2) ((4,5), (r,s)) dF(4,5) dF (r, s)

Xl X:X:Q 3C1 X:X:Q
k1(3,m)k2(j,s)

2 2
Z Z Z T k2 .]7 a'L]ars = Z kl Z r Z k2 ]) azjars
1r,s=

i,r=1 7,5=1

= k1( ;1) [ 2(1, Darrarr + ko1, 2)aria12 + k2(2, 1)arza1r + k2(2, 2)arzars]
+ k1(1,2) [k2(1, D)ariaz + k2(1,2)arraze + ka(2, 1)aizas + k2(2, 2)arzazs)]
[k
[k

+ k1(2,1) [k2(1, D)agia1n + k2(1, 2)azra12 + ka(2, 1)agann + k2(2, 2)azear2]
+ k1(2,2) [k2(1, 1)az1ag1 + k2(1,2)az1a22 + ka(2, 1)agzan: + k2(2, 2)azazs)]
= (a% —2a11a12 + a12) + (a21 — 2az1a22 + a22) —2 (a11a21 — a11a22 — a12a21 + a12022)
(a11—a12)? (a21—az2)? (a11—-a12)(a21 —az2)
= (a11 — a12 — az1 + az)*. (15)

Solving (14) and (15) yields
a11 +a =0 and a2+ a9 =0. (16)
Step 2. Any P € MT(DCI x Xz) can be parametrized as
2 2
P= Z Pijdij), Pij =0,V (i,j) and Z pij = 1. (17)
i,j=1 i,j=1

Let F=P-P,QP; = ijzl a;j0; j); for illustration see Table 1. It follows from step 1 that
[F satisfying (16) is equivalent to satisfying (13). Therefore, for the choice of F := P—P; @Py,
we obtain

p11 — (P11 + p12) (P11 + p21) + P22 — (P21 + p22) (P12 + p22) =0, (18)

13



S7ZABO AND SRIPERUMBUDUR

P: y\z ‘ 1 2 ‘ Py
1 P11 P21 q1 = p11 +p21
2 P12 D22 q2 = p12 + P22

Py |pi=pu+p2 p2=pa+p2|

F:=P-P®P, | 1 2

1
2

ai1 = pi1 — (p11 +p12)(p11 +p21) a2 = p21 — (p21 + p22) (P11 + p21)
ai2 = p12 — (p11 +p12) (P12 + p22) a2 = paz — (p21 + p22) (P12 + P22)

Table 1: Joint (IP), joint minus product of the marginals (P — P; @ Py).

P: y\x ‘ 1 2 ‘ Py
1 P11 = 7a[1;$;b)] par=a | q=35
b[1—(a+b
2 prp = HL=(adb)] a(f:; I pp=b |g= =2

P ‘plzl—(a—l—b) p2=a+b‘

Table 2: Family of probability distributions solving (17)—(19).

P12 — (P11 + p12) (P12 + p22) + p21 — (P21 + p22) (P11 + p21) =0, (19)
where (pij); je[z) satisfy (17). Solving (17)-(19), we obtain

all — (a+b)] b1 — (a+b)]

= =a and =b
a+b , P12 a—l—b , P21 D22 )

P11 =

with 0 < a,b < 1, a+b < 1 and (a,b) # 0. The resulting distribution family with its
marginals is summarized in Table 2. It can be seen that each member of this family (any
a, b in the constraint set) factorizes: P = P; ® Py. In other words, F =P — P; ® Py = 0;
hence k1 ® ko is Z-characteristic.

Remark. We would like to mention that while k1 and ko are characteristic, they are
not universal. Since X is finite, the usual notion of universality (also called c-universality)
matches with co-universality. Therefore, from (10), we have [, [\ k(z,2") dF(z)dF(z) =
(a1 — az)? where F = a161 + a2dy for some a1,as € R\{0}. Clearly, the choice of a; = as
establishes that there exists F € My(X)\{0} such that [, [, k(z,2") dF(z) dF(z) = 0. Hence
k is not universal. Note that the constraint in (9), which is needed to verify the characteristic
property of k is not needed to verify its universality.

5.3 Proof of Theorem 3
Define 3., := Iy, .

14
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(7) Suppose ki and ko are characteristic and that for some F =P —P; @ Py € Z,

(k1®k2)(-,a:)dlﬁ‘(a:)—/ Fa(21) © ko ) dF(z) = 0, (20)

Hi®H2 > /
DC1><C>C2

xl XXQ

where © = (21,22). We want to show that F = 0. By the second-countability of X,,-s,
the product o-field, i.e., ®2 _;B(X,,) generated by the cylinder sets By x Xo and X; x By
(Bm € B(X,,), m = 1,2), coincides with the Borel o-field B(X; x X2) on the product space
(Dudley, 2004, Lemma 4.1.7):

®2,_1B (Xm) = B (X1 x Xa).

Hence, it is sufficient to prove that F (By x Bg) =0, V B, € B(X,,,), m = 1,2. To this end,
it follows from (20) that for all hy € Ho,

J—Cl 9/35 . kl(-,l‘l)hg(l‘Q) dF(.T) = /x kl(',l’l) dV(l‘l) = O, (21)
where

(By) = th(Bl):/x ey (@)ha(e) dF(@). By € BOX),

Since kj is characteristic, (21) implies v = 0, provided that |v|(X;1) < oo and v(X;) = 0.
These two requirements hold:

V(1) :/x  aa)dF(@) = [ ha(en) d[Pa— Pal(a) = 0.

V](X) < / ho(z2)| [P+ Py @ Py (a1, 2)
X1><:>C2 N

‘(h27k2(~7x2)>9{2 ‘

< |lh2lly, Vka(22,22) d[P + Py ® Po) (1, 22)

DC1 X:X:Q

<2 Hh2”g{2/x \/k‘g((L‘Q,.’L’Q) dIPQ(l‘Q) < 00,
2

where the last inequality follows from the boundedness of k3. The established v = 0 implies
that for VB € B(DCl) and YV hy € Ho,

0=wv(B1) = <h2’/xlxx2 XB: (ﬂfl)kz(‘a$2)dF($)> ;

FHo

and hence
0:/ XB, (x1)ka(-, x2) dF(z) Z/ ka(-, x2) dOp, (22), (22)
DC1><3C2 x2

where

0, (Ba) = /x (o) () dF(@). Ba € B(La).

15
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Using the characteristic property of kg, it follows from (22) that 6, = 0 for VB; € B(X;),
ie.,

0= 931 (Bg) = F(Bl X BQ), VB e B(Xl), V By e B(:X:Q)

provided that 0p,(X2) = 0 and |fp, |(X2) < co. Indeed, both these conditions hold:

0, (Xz) = /x Xy () dF(@) = /x x5, (1) [Py — P1](z1) =0,

10, (Xz) < / d[P + P, ® Py)(x) = 2.
JC1><DC2

(ii) Assume w.l.0.g. that k; is not characteristic. This means there exists P; # P} € M (X;)
such that pg, (P1) = g, (P;). Our goal is to construct an F € M (xM_,X,,) such that

peM_ g, (F— QN Fp,) = /M Mk (- 2m) d[F — @M_ F,,] =0, but F # @5 F,,.

><m:l

Define I :=F — ®£\n/[:11[?m € Z. In other words we want to get a witness I € Z proving that
@M_ ky, is not I-characteristic. Let us take z # 2’ € Xy, which is possible since [Xa| > 2.
Let us define F as®

_Pigse (OM_.Qum) + Py ® 0y @ (9M_3Qp)

F 5 e Mf (X2 %n)
It is easy to verify that
Fy = Plgpﬁ,m:@;‘sz’ and Fr, = Qn,  (m=3,..., M),
where Qs, ..., Qs are arbitrary probability measures on X3, ..., X, respectively. First we

check that I # 0. Indeed it is the case since
e 2 # 2 and Xy is a Hausdorff space, there exists By € B(X2) such that z € By, 2/ & Bs.
o Py £, Pi(B1) # P|(By) for some By € B(Xy).

Let S = By x By x (X%:39Cm), and compare its measure under F and ®%:1[Fm:

=1(2€B2) =1 =0 (2'¢B2) =1
—— M T , — ey T
F(s) = P18 9:(B2) Tl Qn(Xm) +F1(B1) 0= (B2) [l Qm(Xm)
2
_ Pi(By)
=5
=1 =0
y sl BL(By) + By (By) 5.(By) + 5.(Ba) 1 ——

6. The F construction specializes to that of Lyons (2013, Proposition 3.15) in the M = 2 case; Lyons used
it for distance covariances, which is known to be equivalent to HSIC (Sejdinovic et al., 2013b).

16
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_ Py (B1) —le-}P’/l(Bl) y

P (Bh1)
2 Y

where the last equality holds since Py(B;) # P} (B;). This shows that I = F — @M_,F,, # 0
since I(.S) # 0.
Next we prove that MMk, (IF — ®%:1Fm) = 0. Indeed,

M®%=lkm (]I) = /NI X ®n]\{:1km('7 xm) d [IF - ®%:1Fm] (33]_, cey IM)
Xm:l m
(P1®6,+Pi®d6, P1+P; 6, +0d.
xM_ %, 2 2 2

© (©44Qn)) (@1, o)
[P1(z1) ® 0.(x2) + P (21) @ 0 (22)

:/ ®7]\r/{:1km('v$m)d(
xM_ %, L 2

" Pi(z1) ® 6;(x2) + Pi(x1) ® 0, (x2)
4

_Pi(z1) ® 8. (22) Z P (z1) ® 52/(@)] ® (®%:3@m(xm))>

) [”kl (Py) ® k(- 2) + piy (P1) ® k(- 2)
2
_Mkl (Pl) X kQ(" Z) + 122 (Pl) @ kQ('v Z/)
4
! (]P)/l) ® ka(-, 2) + Hky (]P)/l) ® ka(:, Z/)
4

= 0 ®[®nsr, (Qu)] =0,

€ }Ck1®k2

—
*

] ® [@m—3 b (Qum)]

where we used pg, (P1) = pg, (P}) in (x).

5.4 Proof of Example 2

Let M =3, xM_, %, = {(i1,i2,13) : iy € {1,2}, m € [3]}, km(z,2') = 20, »» — 1. Our goal
is to show that ®2,_,ky, is not Z-characteristic. The structure of the proof is as follows:
1. First we describe the equations of the non-characteristic property of ®73;1:1km with
a general finite signed measure F = thimgzl Qi in i3 O(iy in,iz) O1 x3 _1X,, where
Ay ig g cR (Vil,iQ,ig).
2. Next, we apply the F = P — @3 _ P, parameterization and show that there exists P
that satisfies the equations of step 1 to conclude that ®§n:1km is not Z-characteristic.

11,12,

The details are as follows.

Step 1. The equations of non-characteristic property in terms of A = [ail,i%is]( B e €

im
R2X2X2 are

F e M, (x3,_1%n) \{0} & A #0,

17
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2
0= F(X?nzlxm) = 0= Z LURPRER (23)
11,i2,83=1
0= [ [ (@i (i), 5, 8)) dB (i) B )
X =1 Xm X5 Xom g

| | A (A7)

2 2 3
= Z Z H km (Zm, i{rn)aihi%i:‘sai'l,ié,ig . (24)

i1,i2,03=1 ) iy if,=1m=1
Solving (23) and (24) yields
a1 + a2 +azi2+az1 =0 and ay12+ai21+ai1+azge =0.

Step 2. The equations of non Z-characteristic property can be obtained from step 1 by
choosing F = P — @M _,P,,, where

2
2X2%X2
P= Z pi17i27i35(i1,i2,i3) and P = [pihiz,is](im)fn:le[z]ii € R¥*“x2,

11,82,43=1

In other words, it is sufficient to obtain a P that solves the following system of equations
for which A = A(P) # 0:

2
Z Dininis = 1y (25)

i1,iz,ig=1
Pivsinis > 0, ¥V (i1, 42, 3) € [2]°, (26)
a111 +ai22+az12+ a1 =0, (27)
a1,12 +ai1+az1,1 +az22 =0, (28)
where
iy igis = Diyjinyis — Pl,iyP2,i2P3is (29)
and

2 2 2
PLis = Y Divisiss D2iz = 9 Divisisr D3z = D Disinsia- (30)
inyiz=1 i,iz=1 i,i2=1
One can get an analytical description for the solution of (25)—(30), where the solution P(z)
is parameterized by z = (zo,...,25) € R. For explicit expressions, we refer the reader to
Appendix A. In the following, we present two examples of P that satisfy (25)—(30) such
that A # 0, thereby establishing the non Z-characteristic property of ®3 _;ky,.

1. P:

_ 1 _ 1 _ 1 _ 1
P111 = 5 P112 = 10’ P121 = 10’ P122 = 10’

_ 1 _ 1 _ 1 _ 1
pP211 = 5 D212 = 10’ D221 = 10’ D2,22 = 10’

18
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and A:
1 1 1 B (31)
a1 = 50 a2 = 50’ a12,1 = 50’ 122 = 50
1 1 1 1
02,11 = 55 as,12 50’ a2,2,1 50’ a222 = £5 (32)
2. P:
_0 1 1 1
pP111 =Y, P112 = 10 P121 = 10’ P122 = 10’
_1 _1 _3 _1
D211 = 10° P2,12 = 10’ D221 = 10° P2,22 = 5
and A:
9 11 1 1
1,1,1 200 112 = 5900 1,2,1 200 1,2,2 200"
1 1 1 9
21,1 = 200 12 = 200" 221 = 200 222 = 200"

5.5 Proof of Theorem 4

It follows from (8) and Remark 2(iii) that (v) = (iii) = (ii) < (7). It also follows from (8)
and Theorem 3(ii) that (v) = (iv) = (i). We now show that (i) = (v) which establishes
the equivalence of (i)—(v). Suppose (i) holds. Then by Bochner’s theorem (Wendland, 2005,
Theorem 6.6), we have that for all m € [M],

K (Zon, Ym) = e~V —Hwm . zm—ym) AAn (W), T, Ym € Rdm7
Rdm
where (A,,)M_, are finite non-negative Borel measures on (R%")M_  respectively. This
implies
®%:1km(wm,ym) — ®%:1 ) e*\/jl(wm,xm*ym) dAm(wm) — , e*\/jﬂw,sz dA(w)7
Rdm R

where = (x1,...,23) € RY vy = (y1,...,ym) € RY, w = (wi,...,wy) € RY, d =
Zn]\le dm and A := @M_, A,,. Sriperumbudur et al. (2010, Theorem 9) showed that ky,
is characteristic iff supp (A,,) = R%, where supp(-) denotes the support of its argument.
Since supp(A) = supp (®M_ A,) = xM_ supp (Ap) = xM_ R = R?, it follows that
@M_, k,y, is characteristic.

5.6 Proof of Theorem 5

The co-kernel property of ky,-s (m = 1,..., M) implies that of ®%:1krm. Moreover, X,,-s

are LCP spaces, hence x nf‘{:lxm is also LCP.
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(<) Assume that ®_, kp, is co-universal. Since @M_ M, (X;,) € My, (x2_%X,,,), we have
that for all F = @M_ F,, € @M_ M, (X,,)\{0},

0< / / (@M_ k) (2,2") dF(z) dF ()
X1 Xom S XN X

~
%:1 km (Tm,z1,)

M
— H / km (Tm, x),) AFp (2,) AF, (x;n) ,
m—=1 " Xm XX
where z = (z1,...,z)) and &’ = (21,...,2,). The above inequality implies

/ ko (@, ) APy (@) dFy (2,) > 0, V€ [M].
X X Xom

Since F € @M_, My, (X,,,) \{0} iff F,, € Mp(X,,)\{0} for all m € [M], the result follows.

(=) Assume that ky,-s are co-universal. By the note above ®%[:1k:m is co-kernel; its co-
universality is equivalent to the injectivity of u = HeM_ ,, On My (x%zlfxm). In other
words, we want to prove that p(F) = 0 implies F = 0, where F € M, (x%zlxm). We will
use the shorthand I, = Hj, below.

Suppose there exists F € M, (X%zlxm) such that

[ = / . (@M _ k) (- x) dF(z) = 0 (€ @M_,3,). (33)

M
m=14+m ~~

®7{,\:{:1km(‘7xm)

Since X,,-s are LCP, @M_ B (X,,) = B (xn]‘lexm) (Steinwart and Christmann, 2008,
page 480). Hence, in order to get F = 0 it is sufficient to prove that

F(xM_B,) =0, VB, € B(Xn),me [M]
We will prove by induction that for m =0,..., M

m
(®5L,,013; 2) 0 = /M . [T xs, (@) @51 k(- 25) dF ()
Xj=147 j=1

=: O(Bl, ..., B, km—i—la ey k?M),VB] S B(DC]), JjE [m], (34)
which
() reduces to (33) when m = 0 by defining H?Zl xB; (7j) == 1;
(t) for m = M, @)_,, . Hym is defined to be equal to R and @3_, k(- 2m) == 1, in

which case o(B1,...,By) =F (Xj]\/i1Bj> =0 = F = 0, the result we want to prove.

From the above, it is clear that (34) holds for m = 0. Assuming (34) holds for some m,
we now prove that it holds for m + 1. To this end, it follows from (34) that VA2 €
g{m+2,...,VhM S g‘CM,

(J‘Cm_H 9)0 = O(Bl, .. .,Bm,km_H, .. .,]{ZM) (hm+2, Ce ,h]\/[)
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=177 ‘]71
m M
[ FwaCan) [ T] by de)
Xj=1X; j=1 j=m—+2
= / Emt1 (s m1) dv(Tm1),
xm+1
where
V(B) ‘= VBi,....Bm,hm+2,...hn (B)
m M
~ [ Tl | xaten) | TT hite)| dB@), B € B
Xi=Xi | =1 j=m—+2
By the cg-universality of k11,
VZOfOI‘th_:,_QG}fm_;,_g,...,VhMGfHM (35)

provided that v € My(X;,41), in other words if |v|(Xy,41) < oo. This condition is met:

M
@) < [ T [k | dBI(@)
Xj=1%5 j=m+2 ~
SWhgllge, v/ ki (25,25)
M
<Pl (1 Xm) [T Mhillye,  sup /i) < oo,
j=m+2 xexj',$ Ex]'

where we used the boundedness of ky,-s in the last inequality. (35) implies that for V B; €
B(Xl), ... ,VBm+1 S B(xm+1) and \V/herQ € Hmyo, ... NVhy € Hyy

m+1 M
0=v(Bm+1) = /M II xs @) | | TI hi(e;)| dF(x)
X5=1%5 | j=1 j=m+2
m+1
= <®JM=m+2hj7 /><M ' H XB; (‘T]) ®jj\im+2 kj('? $j) dF(x)> )
J=1"7 ]:1 ®J]\im+2%]
and therefore
m+1
O(Blv"'7Bﬂ’L+17km+27"'7kM>: Moy HXBJ<$3) ®jj‘im+2 k(,x])dIF(x)

Xj=1ti | j=1

=0 (€ ®5L,15%0)
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forVB; € B(Xy),...,V Bmt1 € B(Xppt1), i-e., (34) holds for m+1. Therefore, by induction,
(34) holds for m = M and the result follows from (}). To justify the convention in (t),
consider the case of m = M — 1 in which case (34) can be written as

/ ons (- ng) (@) = 0,
Xar

where
M—1

vB) = [ | T o) | xotean) dF(a). B € By,

j=1%3 | j=1
Then by the cg-universal property of kjs, since
o < [ 1dIFI@) = [F (L0) < o0
j=1"7

we obtain

M
/ [[ x5, (zj) dF(x) = F (x}L,B;) = 0,¥ By € B(X1), ...,V Bas € B(Xn).
X?iij j=1
5.7 Proof of Example 3

The proof follows by a simple modification of that of Example 2 (Section 5.4). The equations
of a witness A = [a4, izis](;,,)2 _ s (and corresponding P = [pi iy i5](5,,)3 _ c[3) for the
non-Z-characteristic property of ®3 _,k,, take the form:

A£0,
2
0= Z Qi in,izs (36)
11,2,i3=1

2 2 3
. ./
D DEED DR | R O A e

11,42,83=1 ] ,i} i, =1 m=1
= (a1,1,1 — a2,11)° + (a1,12 — az,12)” + (a1,21 — az2,1)” + (122 — az22)°, (37)
where (36) and (37) are equivalent to

2

0= E Qiyingss @1,1,1 = G2,1,1, 1,12 =A2,12, G121 =0221, G122 =0a222. (38)
11,82,i3=1

While (38) is more restrictive than (27) and (28) (hence its solution set might even be
empty), one can immediately see that the example of A # 0 given in (31) and (32) fulfills
(38) proving the non-Z-characteristic property of ®@3, _; k.
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Appendix A. Analytical Solution to (25)—(30) in Example 2

The solution of (25)—(30) takes the form

29+ 21+ 24+ 25 — 329021 — 42924 — 42124 — 2023 — 22920 — 22123 — 32925

— 22423 — 2120 — 32125 — 22420 — 42425 — 2320 — 2325 — 2025 + 222,2% + 22%21
+ Azozd + 22224 4 42125 + 22324 + 22520 + 22323 + 22222 + 22325 + 22223

+ 22128 4 22825 + 22320 + 22422 + 42325 — 25 — 22 — 325 4 225 — 22

+ 62902124 + 2292123 + 2202423 + 2292120 + 4292125 + 4202420 + 4212423

+ 6292425 + 2212420 + 6212425 + 2292320 + 2202325 + 2212320 + 2292025

+ 2212325 + 2242320 + 2242325 + 2212025 + 2242025

Prir=- 22921 — 21 — 224 — 23 — 20 — 225 — 29 + 22024 + 22124 + 22020 + 22123 + 22025
4+ 22423 + 22125 + 22420 + 42425 + 22320 + 22325 + 22025 + 225 + 2252)
P1,1,2 = 22,
P1,2,1 = 21,
P1,2,2 = 24,
24+ 23+ 20+ 25 — 2021 — 2024 — 2124 — 2923 — 22920 — 22123 — 22925
— 32423 — 2120 — 22125 — 32420 — 42425 — 32320 — 42325 — 42025 + 22223
+ 2zlz§ + 2,222? + 2Z4Z§ + 2,2223 + 2,212? + 2,242(2) + 2,2220 + 42’42’52) + 2ZZZ5
+ 2z;;z(2) + 2z§zo + 4Z3z§ + 2z§z5 + 4zoz§ + 2z(2)z5 — zi — 232, — z(Q) — 3z§
+ 22§’ + 2202123 + 2292423 + 2202120 + 2292125 + 2202420 + 2212423
+ 2z9z425 + 2212420 + 2212425 + 2292320 + 2292325 + 2212320 + 4202025
+ 4z1z325 + 4242320 + 6242325 + 2212025 + 6242025 + 6232025
P211=" 22921 — 21 — 224 — 23 — 20 — 225 — 29 + 22924 + 22124 + 22020 + 22123 + 22925
+ 22423 + 22125 + 22420 + 42425 + 22320 + 22325 + 22025 + 222 + 22?
P2.1,2 = 23,
b221 = =0,
P2,22 = 25,
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form, where z = (20, 21, . .., 25) € RS satisfies
9 ) ) )

0 < (22022 — 21 — 22 — 23 — 224 — 225 — 20 + 22023 + 22122 + 22024 + 22123 + 22025
422124 + 22125 + 22924 + 22925 + 22324 + 22325 + 42425 + 2zi + 2z§) X
(2023 — 23 — 24 — 25 — 2021 — 20 — 2122 + 2025 — 22124 — 2223 — 2125 — 22224 — 2225
+z325 + 22025 + 22125 + 22%22 + 22022 + 22%23 + 42123 + 22%24 + 2212§ + 42222
+227 25 + 22524 + 22023 + 22325 + 22525 + 22425 + A2 25 — 27 — 25 — 25 + 225 + 22
42202129 + 2202123 + 2202124 + 2202923 + 2202125 + 4202224 + 2212923 + 2202225
42202324 + 6212924 + 4212025 + 4212324 + 2202425 + 2212325 + 2202324 + 6212425

+2292325 + 6292425 + 2232425) ,

0 < (22022 — 21 — 29 — 23 — 224 — 225 — 2o + 22023 + 22122 + 22024 + 22123 + 22025
422124 + 22125 + 22924 + 22925 + 22324 + 22325 + 42425 + 222 + 22%) X
(2120 — 20 — 24 — 25 — 2021 — 2023 — 21 — 2024 — 22025 + 2124 — 2223 + 2224
—2324 — 22325 + 22322 + 2202§ + 22323 + 22022 + 221,2% + 22324 + 420252, + 22325
422128 4 22022 + 22323 + 22224 + dagat + 22325 + dzg2d 4 22525 — 28 — 22 + 23
—zg + 22? + 2202129 + 2202123 + 2202124 + 2202923 + 2202125 + 22029724 + 2212973
+4zgz925 + 4202324 + 6202325 + 2212925 + 2212324 + 6202425 + 4212325 + 2202324
+2212425 + 2292325 + 2292425 + 6232425) ,

22020 + 22023 + 22120 + 22024 + 22123 + 22025 + 22124 + 22125 + 22024 + 22025
4+ 22324 + 22325 + 42425 + QZZ + 2z§ # 20+ 21 + 20 + 23 + 224 + 225,

(220290 — 21 — 29 — 23 — 224 — 225 — 20 + 22023 + 22122 + 22024 + 22123 + 22025
422124 + 22125 + 22924 + 22925 + 22324 + 22325 + 42425 + 222 + 2252)) X
(21 + 22 + 24 + 25 — 2021 — 22022 — 2023 — 32122 — 22024 — 22123 — 2025 — 42124
—2923 — 32125 — 42924 — 32025 — 22324 — 2325 — 42425 + 2zoz% + 221,2% + 22522
422023 + 22225 4 42125 + 22324 + 2zlz§ + 42023 + 22225 + 22524 + 2222§
422325 4 22525 + 22428 + 42225 — 22 — 25 — 325 4 225 — 22 + 2202120
+22z02123 + 2202124 + 2202223 + 2202125 + 4202924 + 2212023 + 2202225
42202324 4+ 6212024 + 4212025 + 4212324 + 2202425 + 2212325 + 2292324 + 6212425

+ 2292325 + 6202425 + 2232425) < 0,

(22’022 — 21 — 2o — 23 — 224 — 225 — 20 + 22023 + 22120 + 22024 + 22123 + 22025
422124 + 22125 + 22024 + 22925 + 22324 + 22325 + 42425 + in + 2z§) X
(20 + 23+ 24 + 25 — 2021 — 22022 — 32023 — 2122 — 32024 — 22123 — 42025

—2124 — 2923 — 22125 — 2924 — 22925 — 32324 — 42325 — dz425 + 22(2)22
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+2z0z§ + 2z323 + 2z0z2 + 2z1z§ + 2z324 + 4z0z§ + 2z§Z5 + 2z1z§ + 2zzz§
122327 + 22524 + Az32d + 22525 + dagsd + 22525 — 22 — 2 — 25 — 322 + 223
42202129 + 2202123 + 2202124 + 2202023 + 2202125 + 2202224 + 2212923
+4zgzo25 + 4202324 + 6202325 + 2212925 + 2212324 + 6202425 + 4212325
+2292324 + 2212425 + 2292325 + 2202425 + 6232425) < 0,

and 0 < 29, 21, 22, 23, 24, 25 < 1.

The above analytic solution to (25)—(30) is obtained by symbolic math programming in
MATLAB.
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