
Labeled Graph Sketches
Chunyao Song

College of Computer & Control Engineering, Nankai University
Email: chunyao.song@nankai.edu.cn

Tingjian Ge
Computer Science, University of Massachusetts, Lowell

Email: ge@cs.uml.edu

Abstract—Nowadays, a graph serves as a fundamental data
structure for many applications. As graph edges stream in, users
are often only interested in the recent data. In data exploration,
how to store and process such massive amounts of graph stream
data becomes a significant problem. As vertex and edge attributes
are often referred to as labels, we propose a labeled graph
sketch that stores real-time graph structural information in sub-
linear space and supports queries of diverse types. This sketch
also supports sliding window queries. We conduct experiments
on three real-world datasets, comparing with a state-of-the-art
method to show the superiority of our sketch.

I. INTRODUCTION

A graph serves as a fundamental data structure for many
applications. Often, graph data is constantly produced at a
fast rate, in the form of a graph stream—a stream of edges.
Some examples include social networks such as Twitter and
Weibo, real-time road traffic, telephone call networks, and web
server requests. In these applications, vertices and edges are
often associated with a label/type. For data exploration, how
to store and process this huge amount of data becomes a major
problem. For example, in an email network, one may want to
know the email frequency between two people within a recent
period, or the number of emails a user sends on a certain topic.
We call such queries (label based) edge/vertex queries. Now
consider a road traffic network, where a user may be interested
in whether there is a path from s to t only through roads with
good traffic conditions. We call this a path query.

In all these applications, data are continuously produced
at a fast rate. It is reported that there are about 500 million
tweets per day and over 300 billion tweets in total as of 2013
[1]. Storing all needed data in memory for real-time queries
is infeasible. It is also well-known that fast but approximate
answers are often better than accurate but slow results in
data stream applications [2]. We propose a labeled graph
sketch which stores graph stream information in sublinear
space, while supporting many types of graph queries such as
those mentioned above. Our sketch structure also supports the
sliding window semantics, often needed in practice.

Related work. Some previous work on graph sketches
maintains a random linear projection that aims to infer relevant
properties of the input from the sketch and to retain the sketch
in a small space. [3] is an excellent survey for this line of
work. However, each of such work is only for a specific
problem, such as finding a spanning forest of a graph, testing
k-connectivity, min-cut, and sparsification. Thus, each of them
only needs to preserve few data features to solve a specific
problem. Moreover, they do not deal with labeled graphs.

Some other sketch work also applies linear projections of
data, but tries to preserve salient features of data using the
CountMin sketch [4]. A CountMin sketch is originally used
to summarize general data streams. The gSketch [5] extends it
to support graph streams. It first treats each edge as an element
with a unique identifier, and then uses CountMin. The gMatrix
[6] and TCM [7] are proposed which both use a 3-dimensional
sketch. Instead of treating the graph edge set as an element set
and mapping each edge into a one-dimensional space, gMatrix
and TCM apply hash functions which define a mapping of the
graph vertex set to an integer in 1...w. However, they do not
handle vertex/edge labels. Also, they do not handle automatic
edge expiration for a sliding window. TCM [7] is the state-of-
the-art method most related to our work. Thus, we compare
against TCM in experiments.

Other graph compression/summarization work includes [8],
where Fan et al. propose a query preserving graph compres-
sion, especially for path reachability queries and bounded
simulation pattern matching. However, it needs to know the
whole data graph in advance. Shah et al. propose TimeCrunch
[9] to summarize important temporal structures for dynamic
graphs and try to find patterns that agree with intuition. Their
target is different from ours. Some other work includes [10],
[11], [12]. As we will show in Sec. IV, our sketch can serve
as a black box for most of the above algorithms.

Our contributions. We formulate the problem (Sec. II) and
propose a CountMin based labeled graph sketch (LGS) which
stores the original data graph in only sublinear space while
maintaining the structural information and supporting many
types of graph queries (Sec. III). We then devise algorithms to
answer various types of queries (Sec. IV). Finally, we conduct
experiments on real-world datasets (Sec. V).

II. PRELIMINARIES

Graph Streams. A graph stream G is a sequence of
elements e = (A,B; t) where A is the identifier of e’s starting
vertex and is associated with a vertex label Lv(A), while
B is the identifier of e’s ending vertex with a vertex label
Lv(B). Vertex labels may be used for different vertex types.
Each edge e also has an edge label Le(e). A timestamp t
indicates the incoming time of edge e. Such a stream naturally
defines a graph G = (V,E) where V is a set of vertices as
{v1, v2, ..., vn} and E is a set of edges as {e1, e2, ..., em}.
Each vertex vi has a vertex label Lv(vi) from vertex label set
ΣN and each edge ei has an edge label Le(ei) from edge label
set ΣE . A graph stream G is sorted by their edge incoming

time, in non-decreasing order. We use the sliding window
model. Suppose the sliding window size is W time units
(e.g., seconds) and the current time is t; we will automatically
discard edges with incoming time older than t−W . Our work
applies to non-window settings too.

III. A LABELED GRAPH SKETCH

An edge e from vertex A to vertex B in a graph stream is
identified as (A,B,Lv(A), Lv(B), Le(e)). We consider three
factors including endpoints’ identifiers, endpoints’ labels and
edge labels for each incoming edge when encoding edges into
the sketch. We use hash functions from a pair-wise indepen-
dent hash family to process these three factors. Specifically,
we use two-level hashes for vertices’ labels, and a product of
prime numbers to encode edge labels. For sliding windows, we
need to handle item expiration. As a very fine time granularity
is typically unnecessary, we divide the whole window into k
sub-windows based on the application, and maintain a counter
for each sub-window. Moreover, we use v sketches to reduce
errors. Algorithm 1 builds the sketch online.

Algorithm 1: LABELEDGRAPHSKETCH

Input : A graph stream G, Window size W ,
Sub-window size Ws.

Output: Labeled Graph Sketch S

1 S ← an empty sketch
2 P ← a list of first c prime numbers
3 k ← W/Ws

4 for each new edge e = (A,B; t) in G do

5 m ← d ∗ (h(Lv(A)) mod w) + h(A) mod d
6 n ← d ∗ (h(Lv(B)) mod w) + h(B) mod d
7 E ← S[m][n]
8 if E[k].t+Ws equals t then

9 for i ← 2 to k do

10 E[i− 1] ← E[i]

11 E[k].t ← t

12 E[k].C ← E[k].C + 1
13 pe ← h(Le(e)) mod c
14 E[k].e ← E[k].e ∗ P [pe]
15 S[m][n] ← E

16 return S

Let S be a wd-by-wd matrix. Each matrix cell E maintains
two lists: one has an edge count for each sub-window, while
each entry in the other list contains a product of prime numbers
corresponding to the labels of edges in a sub-window. Lines 5-
7 are to locate the matrix cell according to the two endpoints’
identifiers and vertex labels of the incoming edge. Lines 8-
11 are to check whether we need to start a new sub-window.
If the starting time of the latest sub-window plus the size of
sub-window equals current time t, then we need to start a new
sub-window. Note that window sliding and item expirations are
handled in this way. We do not need to keep the starting time
of every sub-window but only need to keep the starting time of

the last sub-window. Lines 12-14 are to update the counter and
product fields of the sub-window. For sliding window queries,
the product of prime numbers typically does not get so large as
to exceed a word size (e.g., 64-bit). In case it does, especially
for non-sliding-window queries, we break down the product
into multiple words.

Furthermore, in order to distinguish collisions caused by
hash functions, we use v groups of hash functions to get
v sketches {S1, ...Sv}. Then our query answer results are
computed from these v sketches.

IV. ANSWERING QUERIES

Before we discuss in detail the queries that our sketch
supports, let us first introduce an auxiliary process which is
used to get the number of edges from a given vertex to another.
All edges with the same two endpoints will be hashed to
the same matrix cell. We use GETEDGECOUNT (shown in
Algorithm 2) to get the edge count in a matrix cell with or
without a particular edge label.

Algorithm 2: GETEDGECOUNT

Input : An edge label l (optional), A hash function h
(optional), A prime number list P (optional), A
specific matrix cell S[m][n].

Output: i: The number of edges with label l in S[m][n],
j: The number of edges in S[m][n] regardless
of edge labels

1 pe ← P [h(l) mod c] //get the prime number
representation of label l if it is provided

2 i ← 0 //number of edges with label l
3 j ← 0 //number of edges regardless of labels
4 currentE ← S[m][n]
5 for st ← 1 to k do

6 j ← j + currentE[st].C
7 while currentE[st].e mod pe = 0 do

8 i ← i+ 1
9 currentE[st].e ← currentE[st].e/pe

10 return i, j

The input to GETEDGECOUNT includes an optional edge
label l to match and the corresponding optional hash function
and the prime number list. Lines 1, 2 and 7-9 compute the
edge count in a matrix cell with an edge label if this optional
input is provided. The function returns two counts: the number
of edges in S[m][n] that match the input label, and the number
of all edges in S[m][n]. Lines 7-9 are due to the fact that each
edge with label l contributes a factor pe to the product.

Vertex Queries. Our sketch supports all kinds of aggregate
vertex queries, including edge label based or non-edge-label
based aggregate single vertex queries (e.g., the in-degree of a
certain vertex), as well as edge label based or non-edge-label
based aggregate queries on a certain label of vertices (e.g.,
the total out-degree of all vertices of a certain type). To get
a specific vertex’s incoming degree, we apply h twice to map

this vertex to a particular column. Then we sum up all the
cell values in this column. The cell value is computed from
GETEDGECOUNT either with or without an edge label. To
get a specific vertex’s out degree, we just need to sum up
the corresponding row values. Note that we use v groups of
hash functions to distinguish collisions. The final value is the
minimum one we find among all these v sketches. Since we
group the vertices of the same type together, we also support
aggregate vertex queries for different vertices with the same
label. In that case, we only need to sum up the corresponding
rows/columns together.

The accuracy guarantee follows the one for CMS [4]. For
non-edge-label based aggregate vertex queries on a given
vertex, the estimated aggreagate edge count âi has the fol-
lowing guarantees: ai ≤ âi, and with probability at least
1 − δ, âi ≤ ai + εEw, where the number of sketches is
v = �ln 1

δ �, and the vertex identifier hash value range size
d is � e

ε �; ai is the ground truth answer and Ew is the
total number of edges within the sliding window W . The
time complexity of answering non-edge-label/edge-label-based
aggregate vertex queries on a given vertex, and non-edge-
label/edge-label-based aggregate vertex queries on a certain
vertex label are O(w · d · k), O(w · d · k + i), O(w2d) and
O(w2d+ i), respectively, where i is the query result.

Edge Queries. Our sketch supports various kinds of ag-
gregate edge queries, including the following: aggregate edge
queries between two vertices, with or without a required edge
label; aggregate edge queries between a vertex and vertices
of a certain label, with or without a required edge label; and
aggregated edge queries between vertices of two types, with
or without a required edge label.

For all the query types above, we just need to locate the
corresponding matrix cells from the sketch and retrieve the
required information using GETEDGECOUNT. The final result
is the minimum value among all v sketches.

The accuracy guarantee also follows the one for CMS [4].
In addition, it is easy to see that the time complexity of
aggregate edge queries between two vertices without an edge
label constraint is O(k), for summing up the k sub-windows
in a matrix cell. The time complexity for answering edge-
label-based aggregate edge queries between two vertices, non-
edge-label/edge-label-based aggregate edge queries between
a vertex and a vertex type, non-edge-label/edge-label-based
aggregate edge queries between two vertex types are O(k+i),
O(d · k), O(d · k + i), O(d2k) and O(d2k + i) respectively,
where i is the query result.

Path Queries. Since our sketch maintains all structural
information, it can be used as a black box for any existing path
reachability algorithms. Here we use the classical depth-first
search (DFS) for an illustration. We can use GETEDGECOUNT
to check whether there are (required labeled) edges between
two vertices, then run DFS to check if there is a path from
vertex A to vertex B. Note there is no false negative and only
false positive, i.e., if B is not reachable from A returned by
the algorithm, then B is indeed not reachable from A. On the
other hand, if B is reachable from A returned by the algorithm,

it is possible that B is not indeed reachable from A.
We run the algorithm for all v sketches. A vertex is

reachable from another vertex only if there is a path between
these two vertices returned by all v sketches. If there indeed is
a path from vertex A to vertex B, because of the existence of
each connecting edge, the corresponding hash cell value would
be greater than or equal to 1, so the sketch can also find it as
a path. On the other hand, If vertex B is not reachable from
vertex A in the graph stream window, it is possible that the
sketch might find a false path from A to B.

Suppose our algorithm finds a path (i.e., sequence) P of
l positive edges in the sketch. In a hypothesis testing setup,
let the null hypothesis be that no path in the graph stream
corresponds to P . Then the false positive rate of our algorithm
is no more than 1−e−

Ewl

d2w2 , where Ew is the number of edges
within the current window, and d and w are vertex identifier
and vertex label hash value range size, respectively.

This gives the result for one sketch. When there are v
sketches, they may return different paths (of different lengths)
in their sketches. Given that no path exists from A to B in the
graph stream window, the null hypothesis is true for each of
the v sketches. The overall error probability is the product of
those from each sketch since the v sketches are independent.

Discussions. Our sketch encodes a broad range of infor-
mation from the graph stream, including not only edge and
vertex connection information, but also edge and vertex label
information. Thus our sketch can be used as a black box for
many existing graph algorithms. For example, this sketch may
be applied to subgraph pattern matching, where it is used as
a pre-filter. Only if all edges in the query pattern have their
mapping edges in the sketch, do we do the verification.

In our scheme, sub-windows are used to handle the sliding
window scenario. It is also possible to handle non-sliding
window situation without the use of sub-windows. In that case,
an update includes both insertion and deletion, and deletion is
just the reverse operation of insertion. Without sub-windows,
each matrix cell only maintains a single counter for the non-
edge-label case and a prime number product list for the edge
label case. The prime number product list is only in use when
the product is too large, and we need to break it into pieces.
Otherwise, we can use a single number to hold the product.
Overall, for this non-sliding window case, and for the same
raw data size, we could use less storage space to achieve the
same accuracy bound compared to the sliding window case.
Also, when answering queries, the time complexity is also less
since we do not need to multiply the sub-window number k.
This is because we no longer need to sum up all counters
in the counter list for both the non-edge-label case and the
edge-label case. The numbers we need to compute are also
obviously less than in the sliding window case.

V. EXPERIMENTS

We use three real world datasets, Phone data [13], Enron

data [14] and Twitter data in our experiments. For the last
one, we use the Twitter Stream API to retrieve the messages
with hashtags and resulting in a total size of about 36GB. We

Fig.1. LGS Throughput Fig.2. Vertex Queries(varying Fig.3. Edge Queries (varying Fig.4. Path Queries (varying
v) Enron dataset v) Phone dataset v) Phone & Enron datasets

compare with the most related state-of-the-art approach TCM
[7]. All experiments are performed on a machine with an Intel
Core i7 3.40 GHz processor and a 16GB memory.

We first examine the efficiency of LGS. The processing
time of an edge insertion is only related to the number of
sketches v, since v affects the number of times we need to
insert the incoming edge into our sketches. Fig. 1 shows the
throughput for LGS under the streaming scenario, varying
v. The result is computed as the number of edges of the
dataset divided by the time needed to process that dataset.
The processing times for v from 1 to 9 on the Phone data are
less than 0.1s. The dataset processing time includes not only
the insertion time for each edge, but also some initialization
work. The initialization of the Phone dataset spans most of
the data processing time, which is why the throughput of this
dataset has little variation. The Enron and Twitter datasets are
sufficiently large to overcome the influence of the initialization
cost. We can see that the throughput decreases slightly as v
increases, but the throughputs are all greater than 3∗105 edges
per second. LGS is able to handle very high rate graph streams.

We then examine the vertex queries. For aggregate vertex
queries on a given vertex, we first evaluate the query accuracy
for both LGS and TCM without an edge label constraint.
Fig. 2 shows the result from Enron dataset. We compute the
theoretical error and vary the number of sketches v from 1
to 9; thus the probabilities that query answer error is less
than the theoretical error is increased from 0.632 to 0.9998.
Suppose the query answer returned by the sketch is âi (either
by LGS or TCM), and the true answer is ai, then the error is
computed as âi−ai

||a||1 , where ||a||1 is the number of total edges.
We see from Fig. 2 that our method, LGS, is very accurate.
The reason is that the vertex identifier of Enron dataset are all
email addresses and there are 11 vertex types. When there are
various vertex labels, and vertex identifiers all occupy similar
characteristics (all names, all email addresses, all numbers,
etc.), LGS tends to have a high accuracy.

Next, we evaluate the performance of aggregate edge
queries between two vertices on LGS and TCM. Fig. 3 shows
the result of the Phone dataset. We vary the number of sketches
v in this set of experiments. The accuracy from LGS is better
than that of TCM. Moreover, the error converges faster with
LGS than TCM. We also perform edge queries between two
vertices with edge label constraints on LGS under the stream

scenario. As expected, as v grows, the accuracy increases and
it shows a similar trend as in Fig. 3; we omit it from the figure
for clarity.

Next, we perform evaluations on the path (reachability)
queries. In this set of experiments, for each dataset, we
randomly pick 100 pairs of vertices, and the accuracy is
measured by the results from these 100 pairs of vertices. A
“right answer” from a sketch is when it returns the same
answer (“reachable” or “not reachable”) as the ground truth for
a pair of vertices. The accuracy is the number of right answers
divided by 100 and falls in [0,1]. We show the comparison
results between LGS and TCM on Phone and Enron datasets
in Fig. 4. It shows that LGS obtains better accuracy than TCM
as in previous experiments.

Acknowledgement. Chunyao Song was supported by the
NSFC under the grants 61702285 and 61772289 and the NSF
of Tianjin under the grants 17JCQNJC00200. Tingjian Ge was
supported by NSF grants IIS-1149417 (CAREER award) and
IIS-1633271.

REFERENCES

[1] http://www.internetlivestats.com/twitter-statistics/.
[2] S. Muthukrishnan, “Data streams: Algorithms and applications,” Foun-

dations and Trends in Theoretical Computer Science, vol. Vol. 1, No. 2,
pp. 117–236, 2005.

[3] A. McGregor, “Graph stream algorithms: A survey,” SIGMOD Record,
vol. Vol. 43, No. 1, pp. 9–20, 2014.

[4] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, 2005.

[5] P. Zhao, C. C. Aggarwal, and M. Wang, “gsketch: On query estimation
in graph streams,” VLDB, 2011.

[6] A. Khan and C. Aggarwal, “Query-friendly compression of graph
streams,” ASONAM, 2016.

[7] N. Tang, Q. Chen, and P. Mitra, “Graph stream summarization: From
big bang to big crunch,” SIGMOD, 2016.

[8] W. Fan, J. Li, X. Wang, and Y. Wu, “Query preserving graph compres-
sion,” SIGMOD, 2012.

[9] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos, “Time-
crunch: Interpretable dynamic graph summarization,” KDD, 2015.

[10] S. Cebiric, F. Goasdoue, and I. Manolescu, “Query-oriented summariza-
tion of rdf graphs,” VLDB, 2015.

[11] L. Shi, S. Sun, Y. Xuan, Y. Su, H. Tong, S. Ma, and Y. Chen, “Topic:
Toward perfect influence graph summarization,” ICDE, 2016.

[12] S. Maneth and F. Peternek, “Compressing graphs by grammars,” ICDE,
2016.

[13] N. Eagle and A. Pentland. Crawdad dataset mit/reality (v. 2005-07-01),
downloaded from http://crawdad.org/mit/reality/20050701.

[14] A. H. Ruhe. http://www.ahschulz.de/enron-email-data/.

