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Abstract. We study the pricing and capacity allocation problem of a service provider who
serves two distinct customer classes. Customers in each class are inherently heterogeneous
in their willingness to pay for service, but their utilities are also affected by the presence
of other customers in the system. Specifically, customer utilities depend on how many
customers are in the system at the time of service as well as who these other customers
are. We find that if the service provider can price discriminate between customer classes,
pricing out a class, i.e., operating an exclusive system, can sometimes be optimal and
depends only on classes’ perceptions of each other. If the provider must charge a single
price, an exclusive system is even more likely. We extend our analysis to a service provider
who can prevent class interaction by allocating separate capacity segments to the two
customer classes. Under price discrimination, allocating capacity is optimal if the “net
appreciation” between classes, as defined in the paper, is negative. However, under a
single-price policy, allocating capacity can be optimal even if this net appreciation is
positive. We describe in detail how the nature of asymmetry in classes’ perception of each
other determines the optimal strategy.
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1. Introduction
In many service systems, service is simultaneously
delivered tomany customerswho share the same phys-
ical environment. For example, members of a gym
work out in the same space and share the equipment,
passengers on a cruise ship share the common areas on
the ship, and customers of a nightclub enjoy the dance-
floor together. In such facilities, an individual cus-
tomer’s perception of the service quality is highly influ-
enced by the composition of the clientele. For example,
some female gym members do not enjoy sharing the
same facility with males, and in nightclubs and bars,
males typically have strong preferences for other cus-
tomers being female (Skinner et al. 2005, Kubacki et al.
2007). Other service settings where customer satisfac-
tion is influenced by the others’ characteristics (such as
age, socioeconomic status, intellectual capabilities, etc.)
include social clubs, health clubs, schools (Buchanan
1965, Basu 1989, Sandler and Tschirhart 1997), beauty
salons (Moore et al. 2005), recreational parks, adven-
ture sports (Thakor et al. 2008), restaurants (Huang
2008), and professional conferences (Gruen et al. 2007).

Demand management for such service establish-
ments, where each customer’s satisfaction depends on
who the fellow customers are, can be particularly chal-
lenging. The service provider who is facing this chal-
lenge has two powerful tools, i.e., pricing and capac-
ity allocation, which, at its more extreme, might even

mean choosing to serve only certain segments of the
population. Restricting access to certain customer seg-
ments may seem like a radical solution, but in prac-
tice it is more prevalent than expected. Such restriction
could be direct or a result of a “forced” self-selection.
Gyms and health clubs use direct restriction when they
choose to become women-only establishments or allo-
cate certain times of the week for the exclusive use
of families with kids. On the other hand, some firms
design the service experience so as to appeal to a par-
ticular segment and let the customers self-select. This
is the idea behind theme cruises and nightclubs cater-
ing to different types of clientele on different floors of
the venue or at different nights of the week by care-
fully choosing the music and decoration. If such capac-
ity allocation or restriction options are not available,
or as a complementary tool, firms also use pricing
as a means to manage their capacity and composi-
tion of their clientele, and maximize profits. For exam-
ple, nightclubs use various pricing promotions (e.g.,
“ladies’ nights”) to attract the right mix of customers.

Such practices are prevalent but that does not mean
that they are devoid of controversy. “Ladies’ nights”
have long been criticized by some as being discrimi-
natory against men; this led to a number of lawsuits
being filed over the years (Rank 2011). Recently some
gyms have been the center of attention due to simi-
lar policies. In 2007, a complaint against the Las Vegas

230

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

52
.2

.2
30

.6
2]

 o
n 

22
 Ju

ne
 2

01
7,

 a
t 0

7:
29

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

http://pubsonline.informs.org/journal/msom/
mailto:vkostami@london.edu
mailto:dimitris.kostami@gmail.com
mailto:ziya@unc.edu
https://doi.org/10.1287/msom.2016.0606


Kostami, Kostamis, and Ziya: Pricing and Capacity Allocation for Shared Services
Manufacturing & Service Operations Management, 2017, vol. 19, no. 2, pp. 230–245, ©2017 INFORMS 231

Athletic Club (Friess 2007, 2008) led Nevada to pass a
law in 2011 making gender-based pricing legal when
used for promotional purposes (Schoenmann 2011).
A more recent controversy was caused by Fitness USA,
which abruptly decided to make two of its locations in
Michigan women-only. The company preferred to offer
its services exclusively to females and charge them
a higher price, even if that meant angering several,
male and female, customers (Komer 2013). In general,
even though women-only health clubs have occasion-
ally drawn ire, and some argue about their legality,
they are popular and common in and outside the
United States. Note that the revenues associated with
the leisure industry, where customer mix effects are
prominent, are quite high. In the United Kingdom, it
generates over £200 billion of revenue every year, pro-
vides 2.6 million jobs, and represents 9% of the work-
force (Oliver Wyman 2012). Similarly, in the United
States, the health club industry has annual revenues
of $27 billion (IBISWorld 2014b); the nightlife indus-
try has revenues of $24 billion (IBISWorld 2014a). All
these figures point to the importance of investigating
the optimal pricing and capacity allocation strategies
in these contexts.
In the establishments described above, the two fun-

damental questions the service provider needs to
answer, given the available capacity, are the following:
What is the “optimal” customer mix? How should this
mix be achieved? The objective of this paper is to pro-
vide insights into these two questions, which are inex-
tricably linked. The optimal mix could be so that the
system is exclusive , where service is offered to one seg-
ment of the population or an inclusive system, where
customers from different segments interact. Alterna-
tively, the provider may choose to allocate capacity for
the exclusive use of each segment. Another interest-
ing dimension is whether and how firm’s pricing pol-
icy affects such decisions. Our analysis sheds light on
these questions, helps identify conditions that would
lead firms to choose one strategy over the other, and
explains some of the existing practices we observe in
the service industry.

The main challenge in investigating these questions
is that no prior work can serve as the foundation for
our modeling effort. Despite the fact that the oper-
ations management literature is rich in articles that
address pricing, demand management, and capacity
control in the context of service operations, the focus is
not on the service process itself. Specifically, the service
experience in these articles is typically not influenced
by the characteristics of the others with whom they
share the service experience (or service is simply not
a shared experience), whereas delays in access to ser-
vice are the important dimension of the problem. As
a consequence, most papers consider queueing-based
formulations. By contrast, for the service settings on

which we focus, capturing delivery of the service pro-
cess (specifically, who the other customers are and how
many of them there are), as opposed to delays in access
to service, is far more important. Thus, one of the main
contributions of this paper is the development of a
novel stylized formulation that permits detailed analy-
sis of pricing and capacity allocation decisions for such
settings.

Our model assumes that the service provider serves
two classes of customers. Customers of one class have
stochastically larger intrinsic valuations for the re-
ceived service. Each customer knows the distribution
of service valuations for both customer classes and uses
this information alongwith the price to decidewhether
to purchase service. We focus first on the pricing deci-
sion and assume that the provider does not have the
option to allocate different capacity segments to differ-
ent customer classes, but can deny service to one of the
two classes altogether. We consider two different set-
tings; in Section 4.1, the firmhas the flexibility to charge
different prices to different classes, and in Section 4.2,
the firm has to charge everyone the same price. When
price discrimination is allowed, the firm might choose
to exclude a particular class from service only due to
the classes’ perceptions of each other, i.e., the customer
mix effects. Additionally, increasing the capacity might
increase utilization. This surprising phenomenon is
observedwhen customers are symmetric in their inher-
ent willingness-to-pay for service and the customer
mix effects are mild but disappear as the asymmetry
increases. When the firm is forced to choose a single
price, a strong asymmetry in the feelings of the two
classes about each other urges the provider to restrict
access to a single class to be profitable. (Interestingly,
this is not true when there is mutual dislike.) This
suggests that attempts to achieve price fairness by dis-
allowing price discrimination might lead the service
provider to deny service to one class.

In Sections 4.3 and 4.4, assuming that the firm
can allocate capacity to different customer classes, we
study the optimal allocation and pricing policy. In Sec-
tion 5, we compare the different strategies to shed
light into the design of such a service system. We find
that if the firm can price discriminate, whether the
firm chooses to allocate capacity purely depends on
classes’ perceptions of each other, not on any potential
willingness-to-pay asymmetry between classes. How-
ever, this choice is more complicated if the firm has to
charge the same price to both classes. In most cases,
a firm that cannot price discriminate is more likely to
prefer capacity allocation; however, this is not always
true if customer classes are asymmetric in their inher-
ent willingness-to-pay for service. In Section 6, we gain
further insights via numerical examples and discuss
the robustness of our results through a sensitivity
analysis.
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2. Literature Review
Prior work in the operations management literature
has mostly investigated questions related to pricing
and capacity control in service establishments where
queueing before service is a critical aspect of the service
experience. Thus, this body of work typically consid-
ers models that capture congestion effects and delay-
sensitive customers (e.g., Naor 1969, Mendelson 1985,
Mendelson and Whang 1990, Afèche 2013, Afèche and
Pavlin 2016) and/or queue lengths provide signals of
the service quality (e.g., see Debo and Veeraraghavan
2009, Veeraraghavan andDebo 2009, 2011). By contrast,
our formulation captures the service process during
delivery but not the delays in access to service. Specif-
ically, we focus on the consumption of a service good
where class heterogeneity and the total number of cus-
tomers has an impact on the customers’ utility. To our
knowledge, the effects of these customer-to-customer
interactions (CCIs) and their influence on the firms’
pricing and capacity allocation decisions have not been
analytically studied before.
One paper that is relatively close to our work

is Johari and Kumar (2010), which considers positive-
only network effects together with congestion effects.
The study is motivated by online services and the two
effects are formulated in a way that is more general
than our approach in that the effects not only depend
on the number of active users in the system but also
on the load these users generate. Unlike the case in
our model, Johari and Kumar ignore possible asym-
metry in how customers from different segments feel
about each other. Moreover, Johari and Kumar do not
address pricing and capacity allocation decisions for a
profit-maximizing firm, but rather focus on the optimal
number of users from the users’ and themanager’s per-
spectives. We discuss the gap between the two optima
along with its implications.

In the economics literature, there are some articles
related to our paper. A significant portion of these
articles belong to a stream of work on “club the-
ory,” which originated from seminal papers by Tiebout
(1956) and Buchanan (1965). (For an extensive review
of this literature, see Cornes and Sandler 1996 and
Sandler and Tschirhart 1997.) However, this litera-
ture typically investigates questions that are different
from those we address here. Specifically, except for a
few papers (Hearne 1988, Basu 1989) that we discuss
below, the traditional club theory has not focused on
the pricing and/or capacity allocation considerations
of a profit-maximizing firm. Moreover, again except
for a few papers (e.g., Basu 1989, Brueckner and Lee
1989, Scotchmer 1997, Becker and Murphy 2000), the
club theory literature has typically assumed that cus-
tomers are homogeneous and that their utilities do not
depend on the characteristics of the other customers in
the facility.

Hearne (1988) focuses on the optimal pricing mech-
anisms of a monopolistic club. Apart from the focus,
the paper is different from ours in that the customers
are assumed to be homogeneous. Basu (1989) is gener-
ally interested in contexts wherein recipients of a ser-
vice are automatically associated with a certain status.
In the schools’ context, for instance, rich students are
willing to pay more than poor students and (rich or
poor) students’ willingness to pay depends on what
fraction of the school population is clever. This work
focuses on whether the schools should be allowed to
charge different prices. Similarly, Brueckner and Lee
(1989) are motivated by schools with two groups in
the population. The paper characterizes the Pareto-
efficient club configurations and carries out an equi-
librium analysis for a competition model. Scotchmer
(1997) defines a new notion of approximate competi-
tive equilibrium in a setting where the utility of each
customer type depends on the number of customers
from each type. She shows that there exists such an
equilibrium when the economy is sufficiently large.
Note that none of these papers Basu (1989), Brueckner
and Lee (1989) and Scotchmer (1997) develop insights
into the optimal pricing and capacity allocation deci-
sions from an individual club’s perspective. The model
of Chapter 5 in Becker and Murphy (2000) is the most
relevant to our work because it also assumes that the
utility of a customer depends on the ratio of customers
from one class. Despite this similarity, however, they
assume that prices are determined through a com-
petitive bidding process and there exists no service
provider who sets prices to maximize profits.

Beyond the club theory literature, another stream of
articles in the economics literature addresses systems
where customers experience positive network effects.
Armstrong (2006) and Rochet and Tirole (2003) study
two-sided markets where the two groups of agents
interact via a, not necessarily physical, platform. The
focus is pricing mechanisms to attract the right mix
of agents from both groups and achieve a good bal-
ance. Because the focus is not restricted to physical
platforms, there is no consideration of capacity allo-
cation or crowding effects; the primary attention is
given to mechanisms to gain market share in a com-
petitive environment. There is also some literature that
refers to the “network effect” as the effect that other
users in the network have on the utility of an individ-
ual user. For example, see Oren and Smith (1981), and
more recently Candogan et al. (2012). These articles do
not address the possibility that network effects across
different groups in the population could be different.
To our knowledge, the only exception to this is Katz
and Spiegel (1996) who use a similar demand formu-
lation but with no capacity considerations. There is
also a large body of work that focuses on congestion
effects leaving out positive network externalities. For
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examples of such work, see MacKie-Mason and Varian
(1995), Wang and Schulzrinne (2006), and references
therein.
Finally, there are many articles in the marketing lit-

erature that investigate CCIs in services (see Nicholls
2010 for an extensive review). A number of articles
empirically study CCI in various service environments
including nightclubs (Skinner et al. 2005, Kubacki et al.
2007), professional conferences (Gruen et al. 2007),
adventure sports (Thakor et al. 2008), beauty salons
(Moore et al. 2005), cruise ships (Huang andHsu 2010),
and organized tours (Wu 2007), and find that cus-
tomers can have strong preferences about those with
whom they share their service experience. Moreover,
some articles discuss the importance of CCI manage-
ment in the service industry and point to various strate-
gies the providers might use. Among these, Martin
(1996) and Grove and Fisk (1997) discuss operational
issues including the effective use of capacity, which we
also address in this paper. In particular, Martin (1996)
investigates customers’ perceptions of and reactions
to the others’ behavior. He suggests improving ser-
vice experience through capacity allocation via physi-
cal separation or time allocation for the use of different
segments who might not enjoy the interaction. This is
a practice widely used and we also investigate it. In the
same spirit, Grove and Fisk (1997) establish condi-
tions under which the system’s capacity is fully used
or underused due to the presence or behavior of others
and call for more research into identifying the optimal
capacity for systems that simultaneously serve many
customers.

3. Model
We consider a service system associated with a leisure
facility with capacity K > 0 and which serves two dis-
tinct customer classes, each one of the same finite
size Λ > 0. We later consider different class sizes in
a numerical study. Class membership of a customer
is observable to the service provider and to all the
other customers. Customers enjoy the leisure facility
and their utilities consist of three different components.
In the absence of other customers, the service value of
class-1 customers is uniformly distributed on the line
segment [0, 1]. Likewise, the service value of class-2
customers is uniformly distributed on the line segment
[a , 1 + a], a ≥ 0. Thus, on average, class-2 customers
have the same or larger inherent willingness-to-pay for
service as class-1 customers. In the presence of other
customers, however, there are two components that
may affect customer utility and which depend on λ1
and λ2, the number of customers in the system belong-
ing to class 1 and 2, respectively. To facilitate game
theoretic treatment we treat customers as non-atomic
(infinitesimal) and therefore, λ1 and λ2 as continuous
parameters. Customers of a particular class might like

or dislike sharing the same service environment with
the other class. Moreover, their satisfaction can depend
on the overall crowd size. In mathematical terms, the
gross utilities U1 and U2 of a customer x in class 1
and 2, respectively, are given by

U1(x , λ1 , λ2) � x + b1λ2/(λ1 +λ2)+ c((λ1 +λ2)/K),
0≤ x ≤ 1,

U2(x , λ2 , λ1) � x + b2λ1/(λ1 +λ2)+ c((λ1 +λ2)/K),
a ≤ x ≤ 1+ a.

(1)

The terms b1λ2/(λ1 + λ2) and b2λ1/(λ1 + λ2) in (1) cap-
ture the customer-mix effect on class-1 and class-2 cus-
tomer utilities, respectively. We assume that customers
of each class are homogenous in their perception of
the customer mix; this is represented by the parame-
ters b1 and b2. If b1 > 0 (b1 < 0), customers of class 1
prefer a customer mix with more (fewer) class-2 cus-
tomers and if b2 > 0 (b2 < 0), customers of class 2 prefer
a customer mix with more (fewer) class-2 customers.
We also define b ≡ b1 + b2 as the “net appreciation”
between the two customer classes; this will be useful in
presenting our results. Note that this net appreciation
term has a very specific meaning in our stylized for-
mulation; one should be careful when interpreting the
practical implications of our results particularly with
regard to how customers’ perceptions of each other
affect the optimal policy decisions.

Customers’ experience might also be affected by the
crowding level, which is defined as (λ1+λ2)/K. Depend-
ing on the leisure activity, an undercrowded system
or/and an overcrowded system might not be desirable
for an enjoyable experience, which in turn reduces cus-
tomer utility. The continuously differentiable function
c: [0, 1] → � in (1) captures these effects on customer
utilities. We assume that c′′( · ) < 0, thereby guarantee-
ing a uniquely optimal crowding level for an arbitrary
customer. To avoid an empty system in equilibrium, we
also assume that c(0)>−1. Note that we impose no fur-
ther restrictions on c( · ); it can take positive or negative
values, it can be monotone or unimodal. In fact, there
are some service experiences where the overall crowd-
ing level in the system may not influence customers’
utilities, i.e., c≡0, or service experienceswhere the cus-
tomers’ utilities are affected only for certain crowding
levels. In both cases, our results still hold. However, we
assume that whatever the crowding effects, they are
symmetric across classes.

We consider a game in which the leisure facility first
simultaneously chooses the prices (p1 , p2) and commits
to them. The customers arrive to the service facility,
observe the price pi , if from the class i, and decide
whether to join the system. A customer with service
value xi has a strategy space si(xi) � 1 (customer joins
the system) or si(xi) � 0 (customer does not join the
system). A Nash equilibrium (NE) (s1(x1), s2(x2)) of
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this game will be such that s1(x1) � 1 if and only if
U1(x1 ,Λ ∫1

0 s1(y)dy ,Λ ∫1+a
a s2(y) dy) ≥ p1 and s2(x2) � 1

if and only if U2(x2 ,Λ ∫1+a
a s2(y) dy ,Λ ∫1

0 s1(y) dy) ≥ p2
using (1).

Proposition 1. For a continuously differentiable function
c: [0, 1] → � such that c′′(·) < 0, there exists a unique NE
such that a customer xi from class i will pay pi and join the
system, if xi ≥ x∗i , i � 1, 2 where x∗1 , x

∗
2 satisfy

x∗1 + b1
a + 1− x∗2

a + 2− x∗1 − x∗2
+ c

(
Λ(a + 2− x∗1 − x∗2)

K

)
� p1 ,

x∗2 + b2
1− x∗1

a + 2− x∗1 − x∗2
+ c

(
Λ(a + 2− x∗1 − x∗2)

K

)
� p2.

Since there is a unique mapping between the NE
(x∗1 , x∗2)and (λ1 , λ2),withλ1 �Λ ∫1

x∗1
s1(x1) dx1 �Λ(1−x∗1),

λ2 �Λ ∫ a+1
x∗2

s2(x2) dx2 �Λ(a+1−x∗2), theNEcanbeequiv-
alently expressed in terms of (λ1 , λ2) and the equilib-
rium prices will be derived as follows:

p1(λ1 , λ2) � 1− λ1/Λ+ b1λ2/(λ1 + λ2)
+ c((λ1 + λ2)/K), (2)

p2(λ2 , λ1) � 1+ a − λ2/Λ+ b2λ1/(λ1 + λ2)
+ c((λ1 + λ2)/K). (3)

The structure of the solution is provided separately for
the different cases in the next sections. Because cus-
tomer utilities depend on λ1 and λ2, which are equi-
librium quantities, potential customers must construct
beliefs about their equilibrium values when deciding
to join the system. In turn, these beliefs must be con-
firmed in equilibrium, that is, customers should act
rationally with respect to information and correctly
predict the equilibrium values, as a result. As in all def-
initions of equilibrium, customers’ choices and beliefs
are simultaneously determined.
Before moving on to the analysis, we briefly com-

ment on the case in which classes are identical and cus-
tomer-mix effects do not exist or are ignored, i.e., a � 0
and b1 � b2 � 0. In that case, it is easy to show that the
service provider (1) always prefers to have both classes
in the system to sustain higher prices; and (2) charges
both classes the same price even when price discrim-
ination is allowed. Therefore, if classes are identical
and the customermix does not affect customer utilities,
neither capacity allocation nor price discrimination is
of any value to a service provider. As we demonstrate
here, asymmetry in the willingness-to-pay for service
and/or customer-mix effects make both price discrim-
ination and capacity allocation effective tools for the
service providers, and explain, to a great extent, what
is observed in practice.
To help with the exposition in the rest of the paper,

we introduce the following terminology; we call a sys-
tem exclusive if no interaction between the two classes

is allowed and inclusive otherwise. Exclusivity can be a
result of restricting access to a single class or allocating
capacity for the exclusive use of each class. We call a
system full if its crowding level is equal to one; we call
a system not full if its crowding level is strictly less than
one. Also, we refer to the case a � 0 as symmetric and
to the case a > 0 as asymmetric with classes described
as being symmetric and asymmetric, respectively. Note
in Equation (1) that the two customer classes are pos-
sibly different in two dimensions, i.e., their feelings
about each other and their (inherent) willingness-to-
pay for service. Therefore, our definition of symmetry
is a slight abuse of the terminology.1

4. Optimal Pricing and Capacity
Allocation Decisions

We start our analysis in Section 4.1 with a leisure facil-
ity where the two classes share the whole capacity
and the service provider is allowed to charge them
differently. We call this scenario price discrimination
without capacity allocation (CS-DP). We continue in Sec-
tion 4.2 with the more restrictive pricing policy, where
the provider must charge the same price to all cus-
tomers; we call this scenario single price without capacity
allocation (CS-SP). In CS-DP and CS-SP, however, the
provider can choose to restrict access to one class only,
i.e., run an exclusive system.

If the service provider is better off running an exclu-
sive system, she might choose to allocate separate ca-
pacity segments for the exclusive use of each customer
class. The service providermight then divert customers
to the right location depending on their class identi-
ties or she can design the service and the service envi-
ronment for different segments to induce customers to
self-select. In a nightclub, this usually happens by host-
ing theme nights on different days of the week so as
to appeal to customers with particular tastes. Night-
clubs with adequate space might also provide a private
area for members who are willing to pay a premium
so as not to socialize with the rest of the clientele. In
Section 4.3, we study the service provider’s problem
under the assumption that she exercises her option to
allocate capacity to each customer class and price dis-
criminate; we call this scenario price discrimination with
capacity allocation (CA-DP). We then restrict the prob-
lem to the single price case in Section 4.4 and we call
this scenario single price with capacity allocation (CA-SP).
We use (P1), (P2), (P3), and (P4) to represent the math-
ematical formulations of the optimization problems
that correspond to CS-DP, CS-SP, CA-DP, and CA-SP,
respectively.

4.1. Price Discrimination Without
Capacity Allocation

We start our analysis with a leisure facility, a night-
club for instance, where the two classes, the male and
the female customers, share the whole capacity and

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

52
.2

.2
30

.6
2]

 o
n 

22
 Ju

ne
 2

01
7,

 a
t 0

7:
29

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Kostami, Kostamis, and Ziya: Pricing and Capacity Allocation for Shared Services
Manufacturing & Service Operations Management, 2017, vol. 19, no. 2, pp. 230–245, ©2017 INFORMS 235

the service provider is allowed to charge them dif-
ferently. In that setting, typically male customers are
willing to pay more, not for the service per se, but
because they are considered to gain more from interac-
tion with female customers, than female customers do
(Armstrong 2006). The service provider’s objective is to
charge prices so as to maximize the total profit. Hence,
an individually rational provider who can charge a dif-
ferent price to each class maximizes revenue by solving
the following problem:

maximize
λ1 , λ2

R(λ1 , λ2)�λ1p1(λ1 , λ2)+λ2p2(λ2 , λ1)

s.t. λ1 +λ2 ≤K, 0≤ λ1 ≤Λ, 0≤ λ2 ≤Λ.
(P1)

We first establish some basic properties of the optimal
solution (λ∗1 , λ∗2) to problem (P1).

Lemma 1. (i) If a�0, thenλ∗1λ∗2>0 if and only ifλ∗1�λ∗2.
(ii) If a �0, a feasible solution to (P1) at which λ1 �λ > 0,

λ2 � 0, is revenue-equivalent to a feasible solution to (P1) at
which λ1 � 0, λ2 � λ > 0.
(iii) If a > 0, then λ∗2 > λ∗1.

The properties described in Lemma 1 suggest that
the customer mix effects play no role. According to
the lemma, even if class-1 customers are very fond of
class-2 customers but the latter despise the former, the
provider will admit the same number of customers
from each class if a � 0, and will admit more cus-
tomers from class 2 if a > 0. This may seem to suggest
that when it comes to the customer mix in equilib-
rium, the customer-mix effects are irrelevant. However,
the customer mix effects implicitly play a role when
the provider has to determine if she will operate an
exclusive or an inclusive leisure facility (λ∗1λ∗2 > 0 or
λ∗1λ

∗
2 � 0), as we will see in Proposition 2 below. Nev-

ertheless, it is true that if it is optimal for the provider
to admit both classes, most customers will be from
the class with the higher willingness-to-pay for ser-
vice regardless of any asymmetry in how classes feel
about being around each other. This result is due to the
provider’s ability to internalize any asymmetry in the
linear customer-mix effects by charging different prices.
For example, the male customers of a nightclub might
end up paying a much higher price than the female
customers; in fact, the price differential will be so large
that the same number of customers from both classes
will eventually choose to join the system.
The next proposition characterizes the general struc-

ture of the NE, i.e., the structure of the optimal solution
to (P1).

Proposition 2. If customers from different classes are al-
lowed to share the same space and the service provider can
price discriminate, the optimal solution to the revenue max-
imization problem has the following properties:
(i) There exists threshold b∗(K) such that λ∗1 � 0, λ∗2 > 0

if b ≤ b∗(K), and λ∗2 ≥ λ∗1 > 0 if b > b∗(K).

(ii) If K ≤min{Λ(1+ a + c(1))/2, 2(1+ c(1))Λ/3}, then
λ∗1 + λ

∗
2 � K.

(iii) If K is sufficiently large, then λ∗1 + λ∗2 < K.
(iv) If b is sufficiently positive so that λ∗1 > 0 ∀K, or if b

is sufficiently negative so that λ∗1 � 0 ∀K, then there exists
K∗(b) such that λ∗1 + λ∗2 � K if K ≤ K∗(b), and λ∗1 + λ∗2 < K
if K > K∗(b).

Before we discuss the implications of Proposition 2
in detail, we should highlight an important point. Note
that the structural properties as stated in the propo-
sition depend on b1 and b2 only through the term
b � b1 + b2. This is not surprising as one can show
that the optimization problem (P1) can equivalently be
expressed in terms of b alone. Aswewill see later, how-
ever, this is not the case when the service provider can-
not price discriminate and thus the optimal solution
has a more complex relationship with the interaction
terms b1 and b2.
Proposition 2 characterizes the basic structure of the

NE and provides insights into the two key decisions
the service provider needs to make. First, she needs to
decide whether to admit customers from both classes
(inclusive system) or to restrict access to the customers
with higher willingness-to-pay (exclusive system). Sec-
ond, she needs to decide whether the existing capacity
should be fully used or intentionally kept underused at
profit-maximizing prices. Figure 1 illustrates the differ-
ent system types that arise in equilibrium if classes are
symmetric (a) or asymmetric (b). Next we first discuss
the most important insights in the case of symmetric
classes and then we highlight the differences that arise
if classes are asymmetric. To follow this discussion,
the reader may find it helpful to refer to the graphs
in Figure 1. In symmetric classes, Proposition 2(i) states
that although the system capacity is a factor in decid-
ing whether the system should be inclusive or exclu-
sive, only the net appreciation term b is relevant. More
specifically, if the net appreciation between classes is
sufficiently negative, the provider is better off leaving
one class out of the system. Although it is possible that
one class likes the other (e.g., b1 > 0), if the feelings
of the other class are opposite and much more intense
(i.e., b2�−b1), then an exclusive system helps prevent
customer-mix effects from hurting revenues. For exam-
ple, some female gym and health club customers are
unwilling to shareworkout spacewithmale customers.
If this disutility of female customers is strong, the ser-
vice provider might find it more profitable to run an
exclusive system. This might be the motivation behind
Fitness USA’s decision to become women-only.

Parts (ii)–(iv) of Proposition 2 characterize how the
choice of the number of customers in the system should
be made to fill in the capacity. Not surprisingly, if the
capacity is sufficiently small, there are enough cus-
tomers who would be willing to pay a high price and
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Figure 1. Structure of the Optimal Policy Under Price Discrimination Without Capacity Allocation When Λ� 100
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the system will be fully used regardless of its exclusiv-
ity or inclusivity. On the other hand, if capacity is very
large, running a full system is suboptimal as it would
necessitate charging unjustifiably low prices or would
be impossible.
Part (iv) of Proposition 2 further strengthens these

structural properties. When customer-mix effects are
so powerful that a system is always inclusive or always
exclusive regardless of its capacity, then progressively
larger capacities can only imply transitions from full to
not full systems. However, if the customer-mix effects
are relatively weak, possibly the most common sce-
nario in a leisure facility, then we find some inter-
esting and unexpected changes in the preference for
exclusivity and crowding level (Figure 1(a)). We use a
numerical example to illustrate this. Consider a small
absolute value of the net appreciation effect, b � −1.1,
and Λ � 100, a � 0. We will consider three different ca-
pacity levels of K � 45, 50, 60. (See the dashed line and
squares on Figure 1(a) to follow the rest of the para-
graph.) If K � 45, the system is in the regime of part (ii)
of Proposition 2, i.e., a full exclusive system is optimal
and the corresponding revenue is R(0, 45) � 24.75. On
the other hand, the highest revenue an inclusive system
could yield is R(22.5, 22.5) � 22.5. In this case, the lim-
ited capacity does not allow the provider to adequately
counter the negative customer-mix effects by admit-
ting more customers from both classes. Suppose that
capacity increases to K � 51. Now, the most profitable
system is still exclusive but not full, with 50 customers
and revenue R(0, 50)� 25, whereas the highest revenue
an inclusive system could yield is R(25.5, 25.5)� 23.97.
In this case, again, capacity is not sufficient to result
in enough revenue for an inclusive system to be opti-
mal. Finally, suppose that capacity increases even fur-
ther to K � 60. The optimal system now is full and

inclusive, with 30 customers from each class and rev-
enue R(30, 30) � 25.5. On the other hand, the highest
revenue an exclusive system could yield remains at
R(0, 50) � 25. At this capacity level, the provider can
admit enough customers from both classes to make up
for the revenue she loses due to negative customer-mix
effects. It is the negative customer interaction effects
that hurt revenues of inclusive systems, thus making
it difficult to make a general statement about the effect
of capacity changes based on intuition alone. In the
absence of such effects, admitting customers from both
classes would raise the average price customers pay
compared to an exclusive system with the same num-
ber of customers.

In asymmetric classes, the asymmetry in the willing-
ness to pay for service does not substantially change
the structure of the equilibrium (Figure 1(b)). How-
ever, there are two noteworthy differences. First, the
net appreciation between classes needs to be higher
for inclusivity to be the optimal choice because the
provider can simply find more customers in class-2
than in class-1 to pay a good price for service. Second,
when the two classes are strongly asymmetric, as in
the case of Figure 1(b), an increase in system capacity
can never result in the optimal crowding level chang-
ing from “not full” to “full.” This is in contrast to the
symmetric and weakly asymmetric cases (Figure 1(a)),
where a capacity increase can switch the optimal policy
from “exclusive, not full” to “inclusive, full.” This dif-
ference is because class-1 customers’ low willingness-
to-pay combined with sufficiently strong negative cus-
tomer effects between the two classes does not justify
admitting class-1 customers in the more asymmetric
cases. Thus, the system remains exclusive as capacity
increases and operating a full system does not become
a better alternative.
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We conclude this section with a comparison of the
prices that classes pay when they coexist. The revenue
achieved by the service provider depends on the over-
all asymmetry of the classes (b, a) that determines the
proportion of the customers that will join the facil-
ity (λ1, λ2). She uses her extra flexibility by charging
prices that reflect the classes’ feelings; higher bi implies
higher pi . Equations (2) and (3) imply that p∗2 − p∗1 � a +
(λ∗1−λ∗2)/Λ+ (b2λ

∗
1− b1λ

∗
2)/(λ∗1+λ∗2). Thus, if classes are

symmetric and the provider runs an inclusive system,
the class that likes (dislikes) the other the most (the
least) pays a higher price for service and in particular,
p∗2 − p∗1 � (b2 − b1)/2. This might explain why “ladies”
are offered discounts to compensate for their weaker
utility of having “gentlemen” around in nightclubs or
why some colleges offer reduced tuition to students of
high caliber.
With asymmetric classes (a > 0), the price compar-

ison is not straightforward. In this case, λ∗1 < λ∗2 and
class-2 customers might end up paying less than class-1
customers, although they can afford a higher price for
service. The reason is that if class-1 customers value the
presence of class 2 much more than class-2 customers
value them in return (b1� b2), the former will end up
paying more than the latter although they are not as
wealthy on average. This result partially explains why
famous and wealthy individuals enjoy a free ride at
certain social events; the strong desire of less wealthy
and less famous people to be around them might give
rise to this phenomenon.

4.2. Single Price Without Capacity Allocation
As discussed in Section 1, price discrimination is a sen-
sitive issue and can be illegal, or unethical, when it is
based on a demographic factor. Whether it is imple-
mented depends on a combination of factors including
laws about the practice, whether the law is enforced,
customers’ attitude, and the provider’s ability to man-
age customer perceptions. When the manager is con-
strained to charging a single price, she has to charge
the optimal unique price to both classes or she may
offer the service to only one of the two classes.
Using (2) and (3), the constraint p1 � p2 implies

[b1/(λ1 +λ2)+1/Λ]λ2 � [b2/(λ1 +λ2)+1/Λ]λ1 + a. (4)

Because a ≥ 0, a NE in which the provider charges a
single price and λ∗1λ∗2 > 0 is possible only if b1 < 0 and
b2 <−a, or if b2 >−K/Λ and b1 > a−K/Λ. Hence, with-
out proof, the following lemma:

Lemma 2. The service provider can charge a single price in
a NE in which λ∗1λ∗2 > 0 only if b1 < 0 and b2 < −a, or if
b2 > −K/Λ and b1 > a −K/Λ.
The necessary conditions of Lemma 2 essentially say

that there is a limit to how differently the two cus-
tomer classes can feel about each other and still allow a

profitable single-price policy that admits both classes.
Interestingly, if the dislike between customer classes is
mutual, this is not sufficient for the provider to deny
service to one of the classes. In that case, there are
always customers who are willing to pay the asking
price and bear with the customers from the other class
due to the inherent heterogeneity in customer classes.
The intensity of customer feelings determines the ratio
of the two classes in the facility. As a result, when there
is strong asymmetry in the two classes’ mutual appre-
ciation, it is not profitable tomaintain an inclusive facil-
ity using a single price. Although Lemma 2 identifies
conditions under which an inclusive system with sin-
gle price might be profitable, the provider might be
better off running an exclusive system (Figure 2).

To solve the optimization problem (P2), the service
provider first solves the following problem (P2′), which
enforces the single-price constraint and ignores the
possibility that the service can be limited to only one
class. Problem (P2′) is essentially problem (P1) with the
addition of the single-price constraint (4).

maximize
λ1 , λ2

R(λ1 , λ2)�λ1p1(λ1 , λ2)+λ2p2(λ2 , λ1)

s.t. λ1 +λ2 ≤K
[b1/(λ1 +λ2)+1/Λ]λ2

� [b2/(λ1 +λ2)+1/Λ]λ1 + a
0≤ λ1 ≤Λ, 0≤ λ2 ≤Λ.

(P2′)

The solution to (P2) is then obtained by comparing
the optimal solution to (P2′) with the optimal solution
under which the service is restricted to class-2 cus-
tomers. (There is no need to consider the case where
service is restricted to class-1 customers because such
a solution is guaranteed not to lead to higher revenue.
Restriction to either class leads to the same revenue
only if a � 0.)

We first establish some basic properties of the opti-
mal solution (λ∗1 , λ∗2) to problem (P2).
Lemma 3. (i) If a �0 and b1 ≥ b2, then λ∗1λ∗2 �0 or λ∗1 ≥ λ∗2.
Similarly, if a � 0 and b2 ≥ b1, then λ∗1λ∗2 � 0 or λ∗2 ≥ λ∗1.

(ii) If a �0, a feasible solution to (P2) at which λ1 �λ > 0,
λ2 � 0, is revenue-equivalent to a feasible solution to (P2) at
which λ1 � 0, λ2 � λ > 0.

According to Lemma 3, if classes are symmetric, the
provider admits only one customer class, or she runs
an inclusive system with more customers from the
class that likes (dislikes) the other more (less). Because
the classes are not truly symmetric, when a � 0 but
b1 , b2, the single-price constraint does not permit a
customermix with an equal number of customers from
both classes. For example, if b1 > b2 and the provider
charges a single price, there will be more class-1 than
class-2 customers who are willing to pay that price
and the optimal customer mix will have more class-1
customers.
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Figure 2. Structure of the Optimal Policy Under Single-Price Policy Without Capacity Allocation When Λ� 100, b2 � 0
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The next proposition characterizes the overall struc-
ture of the NE in the case of single price, i.e., the struc-
ture of the optimal solution to (P2). (We slightly abuse
notation by using the same symbols, b∗(K) and K∗(b),
in both propositions, although they might correspond
to different values.)

Proposition 3. If customers from both classes are allowed
to share the same space and the service provider cannot price
discriminate, the optimal solution has the following proper-
ties, where we let ∆b ≡ |b1 − b2 |.
(i) There exists a threshold b∗(K) such that λ∗1 � 0 if

b ≤ b∗(K), and λ∗1 > 0 if b > b∗(K). Furthermore, if a � 0
and there exists a net appreciation value b̃ such that b1 +

b2 � b̃ and λ∗1λ∗2 > 0 if ∆b̃ � 0, then there exists threshold
∆b∗(K) > 0 such that λ∗1λ∗2 > 0 if∆b ≤∆b∗(K), and λ∗1λ∗2 �0
if ∆b > ∆b∗(K).
(ii) If K ≤min{Λ(1+a+ c(1))/2,Λ(1+ c(1))}, then λ∗1+

λ∗2 � K.
(iii) If K is sufficiently large, then λ∗1 + λ∗2 < K.
(iv) If b is sufficiently positive so that λ∗1 > 0 ∀K, or if b

is sufficiently negative so that λ∗1 � 0 ∀K, then there exists
K∗(b) such that λ∗1 + λ∗2 � K if K ≤ K∗(b), and λ∗1 + λ∗2 < K
if K > K∗(b).

A quick read of Proposition 3 reveals that each of
its statements corresponds to an analogous statement
in Proposition 2, which is also evident by comparing
Figures 1 and 2. There is, however, one important dif-
ference. The second part of Proposition 3(i) states that,
for a given net appreciation term, unless the two indi-
vidual terms b1 and b2 are sufficiently close to each
other, service will be restricted to one class. In other
words, a single-price policy leads to an exclusive sys-
tem when this asymmetry is sufficiently large unlike
in the price discrimination case where the asymmetric
customer-mix effects are absorbed by the differential

pricing (Figures 1 and 2). The revenue is tightly con-
strained by the single-price condition. As explained
in the discussion of Lemma 2, this condition critically
depends on how different terms b1 and b2 are from
each other. Thus, when the provider charges a sin-
gle price, not only the net appreciation term but also
the individual terms b1 and b2 are important. In other
words, the customer-mix effects on revenue, which are
symmetric across classes under price discrimination,
become asymmetric under the single-price clause. This
result practically implies that when regulators attempt
to achieve “price fairness” by disallowing price dis-
crimination, they might inadvertently be forcing the
service provider to exclude an entire class of customers
from service if that is practically feasible. Although
there is no evidence to conclude that this is the reason
that gyms such as Fitness USA convert some of their
locations to women-only establishments, they are very
likely to be affected by similar underlying dynamics.
By restricting access to females, these gyms not only
become more appealing to women and increase their
willingness-to-pay for the experience, but also bypass
any possible restriction (legal or otherwise) to charge
the same price to men and women. Note also that,
due to this phenomenon, the optimal price may have a
non-monotonic relationship with the capacity. Specif-
ically, one might expect that the optimal price would
decrease with an increase in system capacity; yet as it
turns out, a larger capacity might mean the optimality
of an inclusive system with a higher price.

4.3. Price Discrimination with Capacity Allocation
Capacity allocation with or without price discrimina-
tion is a prevalent practice. For example, theme cruises
typically occupy part of a cruise ship while the rest is
filledwith passengers on a regular tour. Similarly, some

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

52
.2

.2
30

.6
2]

 o
n 

22
 Ju

ne
 2

01
7,

 a
t 0

7:
29

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Kostami, Kostamis, and Ziya: Pricing and Capacity Allocation for Shared Services
Manufacturing & Service Operations Management, 2017, vol. 19, no. 2, pp. 230–245, ©2017 INFORMS 239

health clubs or public swimming pools allocate their
capacity to different customer classes through space
separation or time allocation.
If the service provider can allocate capacity, she

needs to decide the capacity to allocate to each class
as well as the optimal number of customers to admit.
In the analysis below, (1 − x)K denotes the fraction of
capacity allocated to class-1 customers and xK denotes
the fraction of capacity allocated to class-2 customers.
The equilibrium prices are modified as follows:

p1(λ1) � 1− λ1/Λ+ c(λ1/((1− x)K)), (5)
p2(λ2) � 1− λ2/Λ+ a + c(λ2/(xK)), (6)

where the customer-mix effects disappear since the two
classes do not coexist. As previously, we study first the
CA-DP and in Section 4.4, we focus on the CA-SP.

Given the choices of capacity allocation and price
discrimination, the service provider is faced with the
following revenue maximization problem:

maximize
λ1 , λ2 , x

R(λ1 , λ2 , x)� λ1p1(λ1)+ λ2p2(λ2)

s.t. 0 ≤ λ1 ≤ (1− x)K, 0 ≤ λ2 ≤ xK
0 ≤ x ≤ 1.

(P3)

We first establish the uniqueness of the optimal solu-
tion to problem (P3), as well as some important prop-
erties of x∗, the optimal fraction of capacity allocated to
class 2.

Lemma 4. (i) There exists a unique optimal solution
to (P3).
(ii) If λ∗1λ∗2 > 0, crowding levels are the same in both

capacity segments, i.e., λ∗1/((1− x∗)K)� λ∗2/(x∗K).
(iii) The optimal allocation fraction for class 2, x∗, equals

λ∗2/(λ∗1 + λ∗2).
(iv) If a � 0, x∗ � 1/2. In addition, x∗ is increasing in a.

Lemma 4 is a key result for the remainder of our
analysis. The fact that the classes are identical in their
sensitivity towards crowding and that the crowding
disutility function c is (strictly) concave explains the
identical crowding levels in both segments. Further-
more, they are inextricably linked to each other because
the two capacity segments share the same total capac-
ity. Hence, there is a unique capacity allocation that
results in equal crowding levels in the two segments. In
the absence of customer-mix effects, the capacity will
be equally split when the two classes are symmetric but
in the asymmetric case, more capacity will be allocated
to the class that values the service more.

4.4. Single Price with Capacity Allocation
In this section, we describe the optimization problem
of the service provider when capacity allocation is an
option but prices need to be the same for both classes.
First, note that the single-price constraint is relevant

only when 0 < x < 1. In that case, enforcing p1 � p2 in
(5) and (6) yields,

λ2/Λ− c(λ2/(xK))� λ1/Λ− c(λ1/((1− x)K))+ a. (7)

As in the case of capacity sharing with single-price
restriction, the single-price constraint disappears when
x � 0 or x � 1, and the problem is solved in two stages.
First, the service provider solves the following opti-
mization problem:

maximize
λ1 , λ2 , x

R(λ1 , λ2 , x)� λ1p1(λ1)+ λ2p2(λ2)

s.t. 0 ≤ λ1 ≤ (1− x)K, 0 ≤ λ2 ≤ xK
0 < x < 1
λ2/Λ− c(λ2/(xK))
� λ1/Λ− c(λ1/[(1− x)K])+ a.

(P4′)

The solution to optimization problem (P4) is then ob-
tained by comparing the optimal solution to (P4′) with
the optimal solution under which the whole capacity
is reserved for class-2 customers. In Section 5, we use
the optimization problem (P4) to prove a number of
results on how the policies compare with each other
with respect to their optimal revenues.

5. Policy Comparison
In this section, we focus on the most important aspect
of the service provider’s decision, i.e., the policy to
adopt depending on the attributes of the customer
base. We compare the revenues under the different sce-
narios and provide valuable analytical results for such
a service system design.
We start with the case where the manager has the

flexibility to charge different prices to the two customer
classes. In the next corollary, we establish a useful link
between the optimal solution to problem (P1) and the
optimal solution to problem (P3).

Corollary 1. If the service provider can price discriminate
and b � 0, the optimal revenue and customer mix are the
same with or without capacity allocation.

Corollary 1 essentially says that if the net appre-
ciation term is zero, the ability to allocate capacity
does not change anything: The provider makes the
same revenue with or without capacity allocation,
and the resulting customer mix is the same. The lin-
ear customer-mix effects allow the provider to absorb
any significant asymmetry in how the two classes feel
about each other (e.g., b1 � 0 and b2 � 0) through
price discrimination. If these asymmetric customer-
mix effects are roughly the same in absolute value,
then there is little to gain from separation. Corollary 1
might leave the impression that prices with and with-
out capacity allocation are the same. In general, that
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Table 1. Optimal Revenue (Evaluated at the Optimal Arrival Rates) and Prices Under Capacity Allocation and Capacity
Sharing Under the Price Discrimination and the Single Price Policy for Three Different Scenarios (S1–S3) with Zero Net
Appreciation When Λ� 100,K � 80, a � 0.5

S1: b1 � b2 � 0 S2: b1 � 0.3, b2 �−0.3 S3: b1 � 0.6, b2 �−0.6

Capacity Capacity Capacity Capacity Capacity Capacity
allocation sharing allocation sharing allocation sharing

Double price p∗1 � 0.73 p∗1 � 0.73 p∗1 � 0.92 p∗1 � 0.73 p∗1 � 1.12
p∗2 � 0.98 p∗2 � 0.98 p∗2 � 0.87 p∗2 � 0.98 p∗2 � 0.77

R(27.5, 52.5)� 71.125
Single price p∗ � 0.85 p∗ � 0.85 p∗ � 0.89 p∗ � 0.85 p∗ � 0.81

R(15, 65)� 68 R(15, 65)� 68 R(30, 50)� 71 R(15, 65)� 68 R(45, 35)� 65

not true. Unless b1 � b2 � 0, a simple pairwise com-
parison of Equations (2)–(3) and (5)–(6) reveals that
the provider charges different prices when she allo-
cates capacity and when she does not. For example,
if b1 > 0, b2 < 0, b1 + b2 � 0, class-1 customers pay a
lower price when the provider allocates capacity than
when she does not because they lose the benefit of
interacting with class-2 customers whom they like. The
opposite is true for class-2 customers. This price dif-
ference leaves the net customer utility unaffected but
points to an important implication of an operational
decision: depending on whether the service provider
uses capacity allocation, customers from both classes
can end up enjoying different service values and pay-
ing significantly different prices without affecting the
service provider’s revenue. We illustrate this in detail
in Table 1.
In general, when b , 0, the service provider has to

choose between capacity allocation and sharing. The
next theorem provides sufficient conditions for the
optimality of each strategy.2

Theorem 1. If the service provider can allocate capacity
and price discriminate, the capacity allocation decision is as
follows:
(i) If b ≤ 0, it is optimal to allocate capacity.
(ii) If b ≥ 0, it is optimal to not allocate capacity.

Theorem 1 confirms the reality of many service
systems in which providers allocate capacity to miti-
gate negative interactions between different customer
classes. An interesting observation in Theorem 1 is that
any asymmetry in the classes’ willingness-to-pay for
service (i.e., the value of a) does not affect the sufficient
conditions. Although onemight expect larger asymme-
try to favor capacity allocation, the capacity allocation
only aims to prevent customer interactions that hurt
the overall customer experience and has nothing to do
with customers’ willingness-to-pay. The provider takes
into account any asymmetry in the willingness-to-pay
for service by letting more class-2 customers in the
optimal customer mix through pricing or by allocat-
ing more capacity to them (when classes use different

capacity segments). The flexibility of charging differ-
ent prices allows the service provider to address the
asymmetry in the willingness-to-pay through pricing.
As a result, parameter a plays no role in the service
provider’s decision on capacity allocation. This is not
the case when both classes must be charged the same
price; as a result the asymmetry parameter a becomes
a significant factor, as the following theorem indicates.

Theorem 2. Suppose that the service provider cannot dis-
criminate but has the flexibility to allocate capacity for the
exclusive use of each class. Then, there exists b∗(a) such
that

(i) If b1 ≤ 0, b2 ≤ 0, it is optimal to allocate capacity.
(ii) If b2 > 0 > b1, then
(a) If b1 ≤ a −K/Λ, it is optimal to allocate capacity.
(b) If b1 > a − K/Λ and b ≤ b∗(a) (with b∗(a) ≥ 0), it

is optimal to allocate capacity.
(c) If b1 > a − K/Λ and b ≥ b∗(a) (with b∗(a) ≥ 0), it

is optimal to not allocate capacity.
(iii) If b1 > 0 > b2, then
(a) If b2 ≤ −K/Λ, or b1 ≤ a −K/Λ and b2 > −K/Λ, it

is optimal to allocate capacity.
(b) If b1 > a −K/Λ, b2 > −K/Λ and λ∗1 � 0 in (P2), it

is optimal to allocate capacity.
(c) If b � 0, a/2≥ b1 > a−K/Λ, b2 ≥−a/2 and λ∗1 > 0

in (P2), it is optimal to not allocate capacity.
(iv) If b1 ≥ 0, b2 ≥ 0, it is optimal to not allocate capacity.

Furthermore, if b � b∗(a), allocating and not allocating
capacity yield the same revenue to the provider.

As Theorem 2 shows, the provider’s decision on ca-
pacity allocation ismore complicated if she cannot price
discriminate. There are two important observations we
can make by comparing Theorems 1 and 2. First, a
single-price policy leads to capacity allocation in more
cases than price discrimination. Second, when decid-
ing on the capacity allocation, the ability to price dis-
criminate allows the service provider to determine the
optimal choice with less information on customer-mix
effects. Nonetheless, note that parts (i) and (iv) of The-
orem 2 are analogous to parts (i) and (ii) of Theorem 1,
respectively. If classes dislike each other, it is better to
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separate them. If there ismutual appeal, it ismore prof-
itable to refrain from capacity allocation. Thus, if class
feelings are mutual, neither the pricing policy nor the
asymmetry in thewillingness-to-pay for servicehavean
impact on the capacity allocation decision.
The provider’s choice is less straightforward if class

perceptions go in opposite directions. When a � 0,
the two cases are completely symmetric and parts (ii)
and (iii) of Theorem 2 are identical. If b2 > 0 > b1, the
sufficient conditions of Theorem 2(ii) confirm that the
single-price constraint results in capacity allocation in
more cases than price discrimination. If b1 > 0> b2, and
classes’ feelings toward each other are so different that
the provider’s best choice without capacity allocation
is an exclusive system as outlined in Lemma 2, then
she is better off allocating capacity when there is such a
flexibility (parts (iii)a and (iii)b of Theorem 2). What is
more interesting is the case when conditions are such
that the provider’s optimal choice is to run an inclusive
system, i.e., not allocating capacity, and price discrim-
ination is not an option (Theorem 2(ii)c, 2(iii)c, and
2(iv)). We investigate this in more detail in Section 6
using some numerical examples.

6. Numerical Examples and
Sensitivity Analysis

In this section, we first expand on our discussion of
Theorems 1 and 2 via a numerical study. Then we
investigate the importance of the customer-mix effects
in service systems and the sensitivity of the different
policies to various parameters. Finally, we study the
validity of our results when we relax the same class
size assumption for the two customer classes.

Comparison of the Different Policies for
Asymmetric Classes
We use three different sets of parameters with zero
net appreciation (b � 0) to gain insights into how the
provider’s revenues change depending on the capacity
allocation decision and the pricing policy followed. We
setΛ� 100,K � 80 and a � 0.5. The optimal solutions are
provided inTable1.Asdiscussedearlier,when theman-
ager can price discriminate, she will attract the same
mix of customers, independent of the capacity decision,
by chargingdifferent prices, andyield the same revenue
(λ∗1 � 27.5, λ∗2 � 52.5 and R(27.5, 52.5) � 71.125). How-
ever, in the single-price policy, mixing the customers or
allocating capacity yields the same revenue only when
b1 � b2 � 0 (S1). The revenues might be the same, but
prices can be different for the two capacity allocation
decisions. Suppose now that b1 � 0.3 and b2 � −0.3 so
that b1 > 0 > b2. These changes do not affect the revenue
under capacity allocation (because different classes do
not interact), but they change the revenue of an inclu-
sive system. Specifically, the new solution yields higher
revenue than before, R(30, 50) � 71. Thus, operating an

inclusive system with both classes sharing the whole
capacity is strictly better than allocating capacity for the
exclusive use of each class. There are two interesting
points to highlight using this example. First, although
asymmetry in customer-mix effects hurts revenuewhen
classes are ex ante symmetric (a � 0), thatmaynot be the
case when classes are ex ante asymmetric (a > 0). Sec-
ond,whencustomersareno longer indifferent about the
presence of customers from the other class, it is strictly
preferable to have a systemwhere both classes share the
facility. As we explain below, both are consequences of
the same price constraint.

If classes are ex ante asymmetric and b1 � b2 � 0,
class 2 would pay more for service than class 1 if the
provider could price discriminate. However, the single-
price constraint requires that class-1(-2) customers pay
more(less) than they would have under price discrimi-
nation, thereby resulting in inefficient pricing. Suppose
now that b � 0 but b1 > 0 > b2. In that case, all else
being equal, class-1 customers are willing to pay more
than class-2 customers to be around customers of the
other type; in other words, the effect of the asymmetry
in class feelings is in line with the single-price man-
date. What does this mean for the revenue of an inclu-
sive system? Compared to the case where each class is
indifferent about the other’s presence (b1 � b2 � 0), it is
better to have a small asymmetry in perceptions, with
class-1 customers having a slight preference for having
class-2 customers around while class-2 customers have
a slight preference for not having class-1 customers
around. As a result, in S2, price discrimination has lit-
tle benefit. However, if this asymmetry in perceptions
is strong (S3), it becomes critical in implementing a
single-price policy and will force the provider to sep-
arate the classes or admit one class only. Also, if the
asymmetry is in the opposite direction, with class-2
customers enjoying the presence of class-1 customers,
class feelings are no longer in line with the single-price
mandate and an inclusive system is not the service
provider’s preferred choice.

Part (iii)c of Theorem 2 states some particularly in-
teresting conditions that guarantee the optimality of
capacity sharing; as long as the net appreciation term
is zero, a small asymmetry in classes’ feelings about
each other increases the revenue of a system when
classes are not separated. This can also be observed in
Table 1 (S2). Because it is strictly better to not separate
classes if b1 and b2 are sufficiently small in absolute
value and b � 0, the provider would also be better off
doing so for small yet negative values of b. This means
that, in some cases, a single-price policy makes capac-
ity allocation less likely than price discrimination. This
might appear to contradict one of the insights we have
obtained so far, i.e., that single-price policies lead to
more exclusivity. It is true that if the provider’s choice
is only between an inclusive but sharing system and
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an exclusive system with only one class admitted, then
a single-price mandate always leads to more exclusiv-
ity because that mandate disappears in an exclusive
system. However, exclusivity as a result of separating
the two customer classes by capacity allocation does
not make the single-price mandate disappear. In that
case, there might be some benefit from keeping ex ante
asymmetric classes together and mitigating the pric-
ing inefficiency that a single price causes, even if these
classes feel differently about being around each other
and their net appreciation is negative.

Value of Capturing Customer-Mix Effects
To further highlight the value of capturing the cus-
tomer-mix effects, we compare the optimal revenues
with the revenues we would have achieved had

Figure 3. (Color online) Comparison of the Revenues for the Four Different Policies: Capacity Allocation (CA) with Single
Price (SP) or Price Discrimination (DP) and Shared Capacity (CS) as the Capacity Increases for Different Values of the Net
Appreciation and a When Λ� 100
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we ignored the parameters b1 and b2 by assuming
b1 � b2 � 0. We will follow the examples in Table 1 to
make this comparison and use S1 as a benchmark.
In S2, when customers can share the service facility
and there is price discrimination (CS-DP), the revenue
would be R′(41.5, 36.5)�67.75 instead of R(27.5, 52.5)�
71.125. When both classes pay the same price (CS-SP),
i.e., p � 0.85, then the revenue would be R′(32.7, 47.3)�
68 instead of the optimal R(30, 50) � 71. Similarly, for
the set of parameters in S3, under price discrimina-
tion (CS-DP), the revenue would drop to R′(0, 52.5) �
51.19 compared to R(27.5, 52.5) � 71.125. In this case,
ignoring the customer-mix effects forces the system
to become exclusive due to the high price charged to
class-1 customers. For the single-price policy (CS-SP),
the revenue would be R′(40.4, 31.4) � 60.95 instead of
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R(45, 35) � 65. These examples are indicative of how
high the losses can be and also confirm the fact that
a suboptimal capacity allocation strategy might be
followed. Taking into consideration that these losses
become higher andmore discerniblewhen b,0 further
supports the operational importance of an appropriate
capacity allocation decision and pricing strategy.

Sensitivity Analysis with Respect to System
Capacity and the Strength of Customer Asymmetry
and Interaction Effects
We have also conducted numerical studies to under-
stand the impact of the parameters a , b , K on the rev-
enue under different policies. Some of the interesting
examples are shown in Figure 3. When the net appre-
ciation is negative, capacity allocation is superior to
mixing the customers and with higher a, chances are
higher to operate an exclusive system at least under
low capacity (a small facility can be filled with high-
paying customers). As b increases, mixing the cus-
tomers becomes more profitable with b � 0 making the
policies equivalent and b > 0 making capacity sharing
the preferred choice. Not surprisingly, price discrimi-
nation is at least as good as single-price policy. Thus,
the service provider has the incentive to price discrim-
inate, even when illegal, and incur a penalty up to a
certain level. Using an example from the figure with
a � 1 (when a � 0, the pricing strategy does not matter)
and b � −0.5, K � 150, the manager can achieve 25%
more revenue if she charges the two classes differently
(Figure 3(c)). Finally, as one can observe from Figure 3,
investing in capacity can benefit the facility but only up
to a point.

Different Class Sizes
Heretofore, we focused on leisure facilities that attract
two customer classes of the same size. Yet this might
not be always the case. One interesting fact we ob-
served from our numerical experiments is that for high
values of a the changes in the size of class 2 have a
higher impact on the revenue than changes in Λ1. This
is due to the asymmetry of the two classes in terms
of their willingness-to-pay for the service (Table 2).
Moreover, we observed that under price discrimina-
tion, as the size of one class increases, while the other
is constant or decreasing, the system tends to operate

Table 2. Optimal Revenue for the Different Policies as the Class Sizes Change
(K � 80, b � 0, a � 1)

Λ2 � 100 Λ1 � 100

Λ1 CA-SP CA-DP CS-DP CS-SP Λ2 CA-SP CA-DP CS-DP CS-SP

50 96 99 96 99 50 50 72.3 50 72.33
100 96 100.5 96 100.5 100 96 100.5 96 100.5
150 96 101.4 96 101.4 150 117.3 117.4 117.3 117.4

in an exclusive manner more often than before (b∗(K)
is higher). Yet if a is higher and class 2 is small, i.e., the
high value customers are few, then the facility is bet-
ter off admitting a mix of customers. In other words,
the manager has to exhaust her options of attracting
the high value customers but might be limited by their
class size. Note also that our numerical analysis sug-
gests that the results of Theorem 1 continue to hold.
Not surprisingly, however, the conditions of Theorem 2
must be modified to account for different class sizes.

7. Conclusions
This paper addresses a particular type of service set-
ting where service takes an extended period of time
and is shared by others so that what happens during
service or more specifically who else is there during
service is an important determinant of the customers’
utility. Despite the prevalence of such services in prac-
tice, these features are sometimes ignored by the ser-
vice managers and they have received limited attention
in the operations literature. One of the important con-
tributions of this paper is the development of a stylized
framework that can be helpful in building new models
to investigate various research questions (e.g., effects of
competition) about shared service systems.

We developed a framework to provide insights into
the use of pricing and capacity allocation as lever-
ages to control customer mix and crowding. Some of
our findings conform to what we observe in practice
and our intuition (for example, the use of discounts if
there is asymmetry between how different classes feel
about each other), whereas others are counterintuitive
or help us to gain a deeper understanding of some of
the issues for which intuition is nonexistent. For exam-
ple, we find that if the service provider is restricted
to charging the same price to two highly asymmetric
(with respect to mutual appreciation or willingness-
to-pay) customer classes, the service provider can be
profitable only by offering the service to only one class.
Interestingly, however, when there is mutual dislike
between the two classes, the facility can profitably
serve both. In short, when facedwith sufficiently asym-
metric customer classes, the best action for the service
provider is to restrict access to a particular class of cus-
tomers or to allocate different portions of its capacity
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for the exclusive use of different customer classes.
Thus, strong asymmetry requires some discrimination
or capacity allocation for the survival of the firm.
For a service provider who can use price discrim-

ination, the choice between allocating capacity for
the exclusive use of different classes and making
the whole capacity available to all its customers de-
pends purely on customer-mix effects, not on crowd-
ing effects, capacity or the degree of asymmetry in
the two customer classes’ willingness-to-pay. Specifi-
cally, capacity allocation is desirable if the net appre-
ciation is negative. If price discrimination is not an
option, capacity allocation could be desirable even if
the net appreciation is positive. Thus, in many cases,
disallowing price discrimination makes it more likely
for firms to separately serve the different customer
classes. It is, however, possible that restriction to a
single-price policy might lead the provider to switch
to an inclusive system with the whole capacity avail-
able to both classes. This can only happen if the class
with the lower willingness-to-pay for service likes the
other class, because only in this case inclusivity helps
reduce the gap between the willingness-to-pay of the
two classes.
Our results highlight the importance of a deeper

understanding of customer-mix effects on the utilities
of different customer classes because they are highly
relevant in choosing the pricing and capacity allocation
policies to be used. Many articles in the marketing lit-
erature have established the presence and importance
of these effects, but we are unaware of any work that
has aimed to quantify them. To take advantage of the
insights, a rough estimate of the parameters might
sometimes be sufficient to determine the right strat-
egy. However, some quantification of the customer-mix
effects, i.e., the sign of b and/or which effect is domi-
nant could be critical in maximizing profit. Thus, one
avenue for future research is to develop a framework
that can be used to empirically measure customer-mix
effects in different service settings. Capturing the valu-
ation for the service is also challenging, yet necessary,
to determine the optimal pricing policy. To this end,
economists and marketing researchers have used sur-
veys, experiments, and transaction data to infer cus-
tomers’ willingness-to-pay (Wertenbroch and Skiera
2002). Most of these methods can be used when esti-
mating customer-mix effects.
In some of the service settings we have discussed,

the service establishment can gain some pooling ben-
efit if it allows the two customer classes to share the
facility (or possibly incur a cost to separate the physical
space). Although we ignored this in our formulation, if
this benefit was considered , our results would change
accordingly; the threshold on the customer-mix effects
would be negative for the capacity allocation to be
optimal accounting for the pooling loss. As expected,

the new threshold would depend on actual cost sav-
ings from pooling resources; the higher the saving, the
lower the threshold. In other words, when the savings
from pooling are higher, the classes’ appreciation of
each other would need to be stronger in the negative
direction for capacity allocation to be optimal. In some
cases, changing the capacity allocation strategy might
be costly as it may require rebuilding the facility. In
that case, the problem is more complex and its anal-
ysis would require a formulation different from the
one considered in this paper. If rebuilding the facility
is an option, i.e., the provider is not restricted by the
actual size of the facility, then at the beginning of the
time horizon, she must take into consideration several
factors including the size of the investment, the com-
petition, the market targeted, etc., and investigate how
much profit the firm would make at different levels of
capacity investment to make an optimal decision.

Our model assumed that there is no demand uncer-
tainty and that customers simultaneously make their
joining decision knowing the behavior of all the other
customers. However, it would also be interesting to
consider a formulation with stochastic demand and
sequential arrivals, so that the manager can dynam-
ically adjust the admission price to control demand.
Another interesting research direction would be to
study multiple competing facilities, each offering dif-
ferent capacity arrangements to their customers.

Endnotes
1Classes are truly symmetric only if a � 0 and b1 � b2.
2 In the statements of Theorems 1–2, note that the optimality of not
allocating capacity does not necessarily imply an inclusive system; it
implies that the provider cannot achieve strictly higher revenue by
allocating capacity.
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