
Efficient Algorithms for Computing
a Minimal Homology Basis

Tamal K. Dey, Tianqi Li(B), and Yusu Wang

Department of Computer Science and Engineering,
The Ohio State University, Columbus, USA

{tamaldey,yusu}@cse.ohio-state.edu, li.6108@osu.edu

Abstract. Efficient computation of shortest cycles which form a homol-
ogy basis under Z2-additions in a given simplicial complex K has been
researched actively in recent years. When the complex K is a weighted
graph with n vertices and m edges, the problem of computing a shortest
(homology) cycle basis is known to be solvable in O(m2n/ log n + n2m)-
time. Several works [1,2] have addressed the case when the complex K
is a 2-manifold. The complexity of these algorithms depends on the rank
g of the one-dimensional homology group of K. This rank g has a lower
bound of Θ(n), where n denotes the number of simplices in K, giving
an O(n4) worst-case time complexity for the algorithms in [1,2]. This
worst-case complexity is improved in [3] to O(nω + n2gω−1) for general
simplicial complexes where ω < 2.3728639 [4] is the matrix multiplica-
tion exponent. Taking g = Θ(n), this provides an O(nω+1) worst-case
algorithm. In this paper, we improve this time complexity. Combining
the divide and conquer technique from [5] with the use of annotations
from [3], we present an algorithm that runs in O(nω + n2g) time giving
the first O(n3) worst-case algorithm for general complexes. If instead
of minimal basis, we settle for an approximate basis, we can improve
the running time even further. We show that a 2-approximate minimal
homology basis can be computed in O(nω√

n log n) expected time. We
also study more general measures for defining the minimal basis and
identify reasonable conditions on these measures that allow computing
a minimal basis efficiently.

1 Introduction

Many applications in science and engineering require computing “features” in a
shape that is finitely represented by a simplicial complex. These features some-
times include topological features such as “holes” and “tunnels” present in the
shape. A concise definition of these otherwise vague notions can be obtained
by considering homology groups and their representative cycles. In particular,
a one-dimensional homology basis, that is, a set of independent cycles in the
1-skeleton of the input simplicial complex whose homology classes form a basis
for the first homology group, can be taken as a representative of the “holes” and
“tunnels” present in the shape. However, instead of any basis, one would like to
c© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 376–398, 2018.
https://doi.org/10.1007/978-3-319-77404-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_28&domain=pdf

Efficient Algorithms for Computing a Minimal Homology Basis 377

have a homology basis whose representative cycles are small under some suitable
metric, thus bringing the ‘geometry’ into picture along with topology.

When the input complex is a graph with n vertices and m edges, the homology
basis coincides with what is called the cycle basis and its minimality is measured
with respect to the total weights of the cycles assuming non-negative weights on
the edges. A number of efficient algorithms have been designed to compute such
a minimal cycle basis for a weighted graph [1,5–8]. The best known algorithm
for this case runs in O(m2n/ log n + n2m) [8].

When the input is a simplicial complex, one dimensional homology basis is
determined by the simplices of dimension up to 2. Thus, without loss of gen-
erality, we can assume that the complex has dimension at most 2, that is, it
consists of vertices, edges, and triangles. The 1-skeleton of the complex is a
graph (weighted if the edges are). Therefore, one can consider a minimal cycle
basis in the 1-skeleton. However, the presence of triangles makes some of these
basis elements to be trivial in the homology basis. Therefore, the computation
of the minimal homology basis in a simplicial complex differs from the minimal
cycle basis in a graph. In this paper, we show that the efficient algorithms of [5]
for computing a minimal cycle basis can be adapted to computing a minimal
homology basis in a simplicial complex (by combining with an algorithm [3] to
compute the so-called annotations). In the process we improve the current best
time complexity bound for computing a minimal homology basis and also extend
these results to more generalized measures.

More specifically, for the special case of a combinatorial 2-manifold with
weights on the edges, Erickson and Whittlesey [2] gave an O(n2 log n+gn2+g3n)-
time algorithm to compute a minimal homology basis where n is the total number
of simplices and g is the rank of the first homology group. Dey et al. [9] and
Chen and Friedman [10] generalized the results above to arbitrary simplicial
complexes. Busaryev et al. [3] improved the running time of this generaliza-
tion from O(n4) [9] to O(nω + n2gω−1) where ω < 2.3728639 [4] is the matrix
multiplication exponent. This gives the best known O(n1+ω) worst-case time
algorithm when g = Θ(n). In Sect. 3, combining the divide and conquer app-
roach of [5] with the use of annotations [3], we develop an improved algorithm
to compute a minimal 1-dimensional homology basis for an arbitrary simplicial
complex in only O(n2g + nω) time. Considering g = Θ(n), this gives the first
O(n3) worst-case time algorithm for the problem.

We can further improve the time complexity if we allow for approximation.
An algorithm to compute a 2-approximate minimal homology basis is given in
Sect. 4 running in O(nω

√
n log n) expected time.

All of the above algorithms operate by computing a set of candidate cycles
that necessarily includes at least one minimal homology basis and then selecting
one of these minimal bases. The standard proof [2] of the fact that the candidate
set includes a minimal basis uses the specific distance function based on the
shortest path metric and a size function that assigns total weight of the edges in a
cycle as its size. In Sect. 5, we identify general conditions for the distance and size
function so that the divide and conquer algorithm still works without degrading

378 T. K. Dey et al.

in time complexity. This allows us to consider distance function beyond the
shortest path metric and the size function beyond the total weight of edges as
we illustrate with two examples. Specifically, we can now compute a minimal
homology basis whose size is induced by a general map F : K → Z for any
metric space Z.

2 Background and Notations

In this paper, we are interested in computing a minimal basis for the 1-
dimensional homology group of a simplicial complex over the field Z2. In this
section we briefly introduce some relevant concepts here; the details appear in
standard books on algebraic topology such as [11].

Homology. Let K be a connected simplicial complex. A d-chain c is a formal
sum, c =

∑
aiσi where the σis are the d-simplices of K and the ais are the

coefficients with ai ∈ Z2. We use Cd to denote the group of d-chains which is
formed by the set of d-chains together with the addition. Note that there is a
one-to-one correspondence between the chain group Cd and the family of subsets
of Kd where Kd is the set of all d-simplices. Thus Cd is isomorphic to the space
(Z2)nd where nd is the number of d-simplices in K. Naturally all d-simplices in
K form a basis of Cd in which the i-th bit of the coordinate vector of a d-chain
indicates whether the corresponding d-simplex appears in the chain.

The boundary of a d-simplex is the sum of all its (d − 1)-faces. This can be
interpreted and extended to a d-chain as a boundary map ∂d : Cd → Cd−1, where
the boundary of a chain is defined as the sum of the boundaries of its simplices.
A d-cycle c is a d-chain with empty boundary, ∂dc = 0. Since ∂d commutes with
addition, we have the group of d-cycles, Zd, which is the kernel of ∂d, Zd := ker∂d.
A d-boundary c is a d-chain that is the boundary of a (d + 1)-chain, c = ∂d+1b
for some b ∈ Cd+1. The group of d-boundaries Bd is the image of ∂d+1, that is,
Bd := im∂d+1. Notice that Bd is a subgroup of Zd. Hence we can consider the
quotient Zd/Bd which constitutes the d-dimensional homology group denoted
as Hd. Each element in Hd, called a homology class, is an equivalence class of
d-cycles whose difference is always in Bd. Two cycles are said to be homologous
if they are in the same homology class.

Under Z2 coefficients, the groups Cd, Zd, Bd and Hd are all vector spaces. A
basis of a vector space is a set of vectors of minimal cardinality that generates
the entire vector space. We are concerned with the homology bases of Hd and
particularly in H1 (more formally below). We use L = rank(Z1) to denote the
dimension of vector space Z1 and use g = rank(H1) to denote the 1-st Betti
number of K, which is the dimension of vector space H1.

– A set of cycles C1, · · · , CL, with L = rank(Z1), that generates the cycle space
Z1 is called its cycle basis.

– For any 1-cycle c, let [c] denote its homology class. A set of homology classes
{[C1], . . . , [Cg]} that constitutes a basis of H1 is called a homology basis. For
simplicity, we also say a set of cycles {C1, C2, · · · , Cg} is a homology basis

Efficient Algorithms for Computing a Minimal Homology Basis 379

if their corresponding homology classes [C1], [C2], · · · , [Cg] form a basis for
H1(K).

– Let μ : Z1 → R
+ ∪ {0} be a size function that assigns a non-negative weight

to each cycle C ∈ Z1. A cycle or homology basis C1, · · · , Cl is called minimal
if

∑l
i=1 μ(Ci) is minimal among all bases of Z1 (l = L) or H1(K) (l = g)

respectively.

Annotation. To compute a minimal homology basis of a simplicial complex K,
it is necessary to have a way to represent and distinguish homology classes of
cycles. Annotated simplices have been used for this purpose in earlier works:
For example, Erickson and Wittlesey [2] and Borradaile et al. [1] used them for
computing optimal homology cycles in surface embedded graphs. Here we use a
version termed as annotation from [3] which gives an algorithm to compute them
in matrix multiplication time for general simplicial complexes. An annotation for
a d-simplex is a g-bit binary vector, where g = rank(Hd(K)). The annotation
of a cycle z, which is the sum of annotations of all simplices in z, provides the
coordinate vector of the homology class of z in a pre-determined homology basis.
More formally,

Definition 2.1 (Annotation). Let K be a simplicial complex and Kd be the set
of d-simplices in K. An annotation for d-simplices is a function a : Kd → (Z2)g

with the following property: any two d-cycles z and z′ are homologous if and
only if

∑

σ∈z

a(σ) =
∑

σ∈z′
a(σ)

Given an annotation a, the annotation of any d-cycle z is defined by a(z) =∑
σ∈z a(σ).

Proposition 2.1 ([3]). There is an algorithm that annotates the d-simplices in
a simplicial complex with n simplices in O(nω) time.

3 Minimal Homology Basis

In this section, we describe an efficient algorithm to compute a minimal homology
basis of the 1-dimensional homology group H1(K). The algorithm uses the divide
and conquer technique from [5] where they compute a minimal cycle basis in a
weighted graph. The authors in [1] adapted it for computing optimal homology
basis in surface embedded graphs. We adapt it here to simplicial complexes using
edge annotations [3].

More specifically, let K be a simplicial complex with n simplices – Since
we are only interested in 1-dimensional homology basis, it is sufficient to con-
sider all simplices with dimension up to 2, namely vertices, edges, and triangles.
Hence we assume that K contains only simplices of dimension at most 2. Assume
that the edges in K are weighted with non-negative weights. Given any homol-
ogy basis {C1, . . . , Cg} where g = rank(H1(K)), we define the size μ(C) of a

380 T. K. Dey et al.

cycle C ∈ Z1(K) as the total weights of its edges. As defined in Sect. 2, the
problem of computing a minimal homology basis of H1 is now to find a basis
C = {C1, C2, · · · , Cg} such that the sum of

∑g
i=1 μ(Ci) is the smallest.

The high-level algorithm to compute such a minimal homology basis of H1

group proceeds as follows. First, we need to annotate all 1-simplices implemented
by the algorithm of [3]. Then we compute a candidate set of cycles which includes
a minimal homology basis. At last, we extract such a minimal homology basis
from the candidate set.

Candidate set. We now describe the step to compute a candidate set G of cycles
that contains a minimal homology basis. We use the shortest path tree app-
roach which dates back to Horton’s algorithm for a minimal cycle basis of a
graph [7]. It was also applied in other earlier works, e.g. [2,9]. We first gener-
ate a candidate set G(p) for every vertex p ∈ vert(K), where vert(K) is the
set of vertices of K. Then we take the union of all G(p) and denote as G, i.e.
G = ∪p∈vert(K)G(p). To compute G(p), first we construct a shortest path tree Tp

rooted at p. Let Πp(u, v) denote the unique path connecting two vertices u and v
in Tp. Then each nontree edge e = (u, v) generates a cycle C(p, e) = e◦Πp(u, v).
The union of all such cycles constitutes the candidate set of the vertex p, i.e.
G(p) = ∪e∈edge(K)\Ep

C(p, e) where Ep is the set of tree edges in Tp. Note that
the number of cycles in G(p) is O(n) for each vertex p ∈ vert(K). Hence there
are O(n2) candidate cycles in G in total. They, together with their sizes, can be
computed in O(n2 log n) time.

Proposition 3.1 ([2,9]). The candidate set G has O(n2) cycles and admits a
minimal homology basis.

3.1 Computing a Minimal Homology Basis

What remains is to compute a minimal homology basis from the candidate set
G. To achieve it, we modify the divide and conquer approach from [5] which
improved the algorithm of [6] for computing a minimal cycle basis of a graph
with non-negative weights.

This approach uses an auxiliary set of support vectors [5] that helps select a
minimal homology basis from a larger set containing at least one minimal basis;
in our case, this larger set is G.

A support vector S is a vector in the space of g-dimensional binary vectors
S = {0, 1}g. The use of support vectors along with annotations requires us to
perform more operations without increasing the complexity of the divide and
conquer approach. Let a(C) denote the annotation of a cycle C. First, we define
the function:

m : S × G → {0, 1} with m(S,C) = 〈S, a(C)〉
where 〈·, ·〉 is the inner product over Z2.

We say a cycle C is orthogonal to a support vector Si if m(Si, C) = 0 and is
non-orthogonal if m(Si, C) = 1. We would choose cycles C1, · · · , Cg iteratively

Efficient Algorithms for Computing a Minimal Homology Basis 381

from a set guaranteed to contain a minimal homology basis and add them to the
minimal homology basis. During the procedure, the algorithm always maintains
a set of support vectors S1, S2, · · · , Sg with the following properties:

(1) S1, S2, · · · , Sg form a basis of {0, 1}g.
(2) If C1, C2, · · · , Ci−1 have already been computed, m(Si, Cj) = 0, j < i.

Suppose that in addition to properties (1) and (2), we have the following
additional condition to choose Cis, then the set C1, C2, . . . , Cg constitutes a
minimal homology basis.

(3) If C1, C2, · · · , Ci−1 have already been computed, Ci is chosen so that Ci is
the shortest cycle with m(Si, Ci) = 1.

If we keep the same support vectors, after we select a new cycle Ci,
m(Si+1, Ci) = 0 may not hold which means the property (2) may not hold.
Therefore, we update the support vectors Si+1, · · · , Sg after computing Ci so
that the orthogonality condition (2) holds. If chosen with condition (3), the
cycle Ci becomes independent of the cycles previously chosen as stated below:

Claim 3.1. For any i ≤ g, if property (1) and (2) hold, then for any cycle C
with m(Si, C) = 1, [C] is independent of [C1], [C2], · · · , [Ci−1].

Proof. By property (2), ∀j < i,m(Si, Cj) = 0. If [C] is not independent of
[C1], [C2], · · · , [Ci−1], then the annotation a(C) of the cycle C can be written as
a(C) =

∑
j<i αja(Cj), where αj ∈ {0, 1} and at least one αj = 1, j < i. Since

m(Si, Ci) = 1, we have
∑

j<i αjm(Si, Cj) = 1. It follows that there exists at
least one Cj , j < i, with m(Si, Cj) = 1, which contradicts with property (2).
Therefore, [C] is independent of [C1], [C2], · · · , [Ci−1]. ��
The following theorem guarantees that the above three conditions suffice for
a minimal homology basis. Its proof is almost the same as the proof of
[5, Theorem 1] (which draws upon the idea of [6]).

Theorem 3.1. The set {C1, C2, · · · , Cg} computed by maintaining properties
(1), (2) and (3) is a minimal homology basis.

Taking advantage of the above theorem, we aim to compute a homology basis
iteratively while maintaining conditions (1), (2), and (3).

Maintaining support vectors and computing shortest cycles. Now we
describe the algorithm CycleBasis(G) (given in Algorithm 1) that computes a
minimal homology basis. In this algorithm, we first initialize each support vector
Si so that only the i-th bit is set to 1. Then the main computation is done by
calling the procedure ExtendBasis(1, g).

Here the procedure ExtendBasis(i, k) (Algorithm 2) is recursive which
extends the current partial basis {C1, · · · , Ci−1} by adding k new cycles. It mod-
ifies a divide and conquer approach of [5] to maintain properties (1), (2), and (3).

382 T. K. Dey et al.

Algorithm 1. Computing a minimal Basis
1: procedure CycleBasis(G)
2: for i ← 1 to g do
3: Initialize Si ← {ei}, which means that the i-th bit of Si is 1 while others

are 0
4: end for
5: ExtendBasis(1, g) to get a minimal homology basis {C1, · · · , Cg}
6: end procedure

It calls a routine Update to maintain orthogonality using annotations. For
choosing the shortest cycle satisfying condition (3), it calls ShortestCycle(Si)
in the base case (k = 1)(See line 3 of Algorithm 2). We describe the recursion
and the base case below.

Algorithm 2. Extend the Basis by k elements
1: procedure ExtendBasis(i, k)
2: if k = 1 then
3: Call ShortestCycle(Si) to compute the shortest cycle Ci which is non-

orthogonal to Si

4: else
5: Call ExtendBasis(i, �k/2�) to extend the homology basis by �k/2� ele-

ments. After calling, Si, . . . , Si+�k/2�−1 will be updated.
6: Call Update(i, k) to update the support vectors {Si+�k/2�, . . . , Si+k−1}

using {Si, . . . , Si+�k/2�−1} and update the value m(Sj , e) for i+�k/2� ≤ j ≤ i+k−1
and every edge e.

7: Call ExtendBasis(i + �k/2�, �k/2�) to extend the cycle basis by �k/2�
elements

8: end if
9: end procedure

Recursion. At the high level, the procedure ExtendBasis(i, k) recurses on k
by first calling itself to obtain the next
k/2� cycles in the minimal homol-
ogy basis in which the support vectors Si, Si+1, · · · , Si+�k/2�−1 are updated.
Then it calls the procedure Update(i, k) to maintain the orthogonality prop-
erty (2). It uses the already updated support vectors Si, · · · , Si+�k/2�−1 to
update {Si+�k/2�, . . . , Si+k−1} so that m(Sl, Cj) = 0,∀j < i +
k/2�, i +

k/2� ≤ l ≤ i + k − 1. At last the procedure ExtendBasis(i, k) calls itself
ExtendBasis(i +
k/2�, �k/2�) to extend the basis by �k/2� elements.

We describe Update(i, k) and spare giving its pseudocode. Let
{Ŝi+�k/2�, . . . , Ŝi+k−1} denote the desired output vectors after the update. To
ensure the property (1) and (2), we will enforce that the vector Ŝj is of the
form Ŝj = Sj +

∑�k/2�
t=1 αjtSi+t−1 where i +
k/2� ≤ j ≤ i + k − 1. We just

need to determine the coefficients αj1, . . . , αj�k/2� so that m(Ŝj , Ct) = 0 where
i+
k/2� ≤ j ≤ i+k−1 and i ≤ t ≤ i+
k/2�−1. We will also compute m(Sj , e)

Efficient Algorithms for Computing a Minimal Homology Basis 383

for i +
k/2� ≤ j ≤ i + k − 1 and every edge e where m(Sj , e) is defined as the
standard inner product of Sj and a(e) under Z2, which is important later when
we compute the shortest cycle orthogonal to a support vector S in the procedure
ShortestCycle(S).

Now let

X =

⎛

⎜
⎜
⎜
⎝

Si

Si+1

...
Si+�k/2�−1

⎞

⎟
⎟
⎟
⎠

· (
a(Ci)T a(Ci+1)T · · · a(Ci+�k/2�−1)T

)

Y =

⎛

⎜
⎜
⎜
⎝

Si+�k/2�
Si+�k/2�+1

...
Si+k−1

⎞

⎟
⎟
⎟
⎠

· (
a(Ci)T a(Ci+1)T · · · a(Ci+�k/2�−1)T

)
,

where recall that g-bit vector a(C) is the annotation of a cycle C.
Let A denote a �k/2� ×
k/2� matrix where row j contains the bit
αj+i+�k/2�−1,1, · · · , αj+i+�k/2�−1,�k/2�. It is not difficult to see that AX +Y = 0,
and that X is invertible, which means that A = −Y X−1 = Y X−1 since the
computations are under Z2.

The next step is to update the value m(Sj , e) to m(Ŝj , e) for every edge e in
K, and i+
k/2� ≤ j ≤ i+k−1. Note that the coefficients αjt are now known and
the updated vectors are Ŝj = Sj +

∑�k/2�
t=1 αjtSi+t−1, i +
k/2� ≤ j ≤ i + k − 1.

Thus for every edge e, m(Ŝj , e) = m(Sj +
∑�k/2�

t=1 αjtSi+t−1, e) = m(Sj , e) +
∑�k/2�

t=1 αjtm(Si+t−1, e), i+
k/2� ≤ j ≤ i+k−1. Let n1 be the number of edges
in K and U be the �k/2�×n1 matrix where its (t, j) entry is m(Ŝi+�k/2�+t−1, ej).
Set W = [A|I] where I is the �k/2� × �k/2� identity matrix. Let Z be a k × n1

matrix whose (s, t) entry is m(Si+s−1, et). Thus we have U = WZ. Since the
�k/2� × k matrix W and k × n1 matrix Z are already known, the matrix U
can be computed in O(nkω−1) time by chopping Z to n1/k number of k × k
submatrices and performing O(n1/k) matrix multiplications of two O(k)×O(k)
size matrices. After that, m(Ŝj , e) can be easily retrieved from the matrix U in
constant time.

Base case for selecting a shortest cycle. We now implement the procedure
ShortestCycle(Si) for the base case to compute the shortest cycle Ci non-
orthogonal to Si, i.e. the shortest cycle Ci satisfying m(Si, Ci) = 1. We assign a
label lp(u) to each vertex u and p. Labeling has been used to solve many graph
related problems previously [2,3,8].

Given a vertex p and the shortest path tree Tp rooted at p, let Πp(u) for any
vertex u ∈ vert(K) denote the unique tree path in Tp from p to u, and let lp(u)
denote the value m(Si,Πp(u)). Let w denote the parent of u in tree Tp and euw

denote the edge between u and w. Then lp(u) = lp(w) + m(Si, euw). Thus for a
fixed p ∈ vert(K), we can traverse the tree Tp from the root to the leaves and

384 T. K. Dey et al.

compute the label lp(u) for all vertices u in O(n) time as m(Si, e) for every edge
is already precomputed earlier in the procedure Update and can be queried in
O(1) time. Thus the total time to compute labels lp(u) for all p, u ∈ vert(K) is
O(n2).

Now given a fixed vertex p and the shortest path tree Tp, we consider every
cycle C(p, e), where e = (u, v) is a non-tree edge. We partition the cycle into
three parts: the tree path Πp(u), the tree path Πp(v) and the edge e. Thus
m(Si, C(p, e)) = m(Si,Πp(u)) + m(Si,Πp(v))) + m(Si, e) = lp(u) + lp(v) +
m(Si, e), which can be computed in O(1) time as all labels are precomputed.
Note that there are O(n2) cycles in the candidate set G to be computed. It
results that in O(n2) total time, one can compute m(Si, C) for all cycles C ∈ G
and find the smallest one.

3.2 Correctness and Time Complexity

To prove the correctness of Algorithm 1, it is crucial to guarantee that the sup-
port vectors Sis and the cycles Cis satisfy the desirable properties. First, the set
of support vectors {S1, S2, · · · , Sg} is a basis of {0, 1}g because of the construc-
tion of Ŝis in the procedure Update. The property that ∀j < i, m(Si, Cj) = 0
holds, because the procedure Update ensures that Si is taken as a non-trivial
solution to a set of linear equations m(x,Cj) = 0, 1 ≤ j ≤ i − 1, which always
admits at least one solution. Similarly, for any i ≤ g, there exists at least one
cycle C such that the equation m(Si, C) = 1 holds since both S1, . . . , Si and
C1, . . . , Ci−1 at this point only form partial basis of a space with dimension g.
In the base case, ShortestCycle computes this cycle C satisfying exactly this
property. Then, Theorem 3.1 ensures the correctness of the algorithm.

The total running time of our algorithm is O(n2g+nω) and the analysis is as
follows. The time to annotate edges and construct the candidate set is O(nω +
n2 log n) = O(nω) from Propositions 2.1 and 3.1. When computing the basis, the
time of the procedure CycleBasis is dominated by the time of ExtendBasis.
For each i ≤ g, the time complexity of ExtendBasis(i, k) is bounded by the
following recurrence:

T (i, k) =
{

the time of ShortestCycle(Si) k = 1
2T (·, k/2) + O(kω−1n) k > 1

Note that in the recursion, only the second parameter k counts for the time
complexity. Actually for each i ≤ g, the time complexity of ShortestCycle(Si)
in the base case is only O(n2) as we argued earlier, that is, T (·, 1) = O(n2).
Then the recurrence solves to T (·, k) = O(k(n2) + kω−1n). It follows that
T (1, g) = O(n2g + gω−1n). Combined with the time for computing annotations
and constructing the candidate set, the time complexity is O(n2g + nω).

4 An Approximate Minimal Homology Basis of H1(K)

In this section, we present an algorithm to compute an approximate minimal
1-dimensional homology basis, where the approximation is defined as follows.

Efficient Algorithms for Computing a Minimal Homology Basis 385

Definition 4.1 (Approximate minimal homology basis). Suppose C∗ is
a minimal homology basis for H1(K), and let �∗

1 ≤ �∗
2 ≤ · · · ≤ �∗

g denote the
sequence of sizes of cycles in C∗ sorted in non-decreasing order. A set of g cycles
C′ is a c-approximate minimal homology basis for H1(K) if (i) {[C], C ∈ C′}
form a basis for H1(K); and (ii) let �1, . . . , �g denote the sequence of sizes of
cycles in C′ in non-decreasing order, then for any i ∈ [1, g], �∗

i ≤ �i ≤ c · �∗
i .

In what follows, we provide a 2-approximation algorithm running in
O(nω

√
n log n) time. At the high level, we first compute a candidate set G′ of

cycles that guarantees to contain a 2-approximate minimal homology basis. We
then extract a 2-approximate basis from the candidate set G′.

First, we explain the construction of a candidate set of cycles. Recall that
in Sect. 3.1, we compute O(n2) candidate cycles, each of which has the form
C(p, e), formed by e together with the two tree-paths from root p to each of
the endpoint of e within the shortest path tree Tp. We now apply the algo-
rithm by Kavitha et al. [12] which can compute a smaller candidate set G′ of
O(n

√
n log n) cycles which is guaranteed to contain a 2-approximate minimal

cycle basis (not homology basis) for graph K(1) (i.e., 1-skeleton of the complex
K) in O(n

√
n log3/2 n) expected time. Here, a cycle basis Γ = {γ1, . . . , γL} of the

graph G = K(1) where L = rank(Z1) is simply a set of cycles such that any other
cycle from G can be represented uniquely as a linear combination of cycles in
Γ . A minimal cycle basis is a cycle basis Γ ∗ whose total weight

∑
γ∈Γ ∗ μ(γ) is

smallest among all cycle basis. A cycle basis Γ is a c-approximate minimal cycle
basis if its total weight is at most c times that of the minimal cycle basis, i.e.,
at most c · ∑γ∈Γ ∗ μ(γ).

Now let the size μ(γ) of a cycle be the total weight of all edges in γ. Then, it
turns out that, G′ not only contains a 2-approximate minimal cycle basis w.r.t.
this size, it also satisfies the following stronger property as proven in [12].

Proposition 4.1 ([12, Lemma 6.3]). There exists a minimal cycle basis Γ ∗ =
{γ∗

1 , . . . , γ∗
L} such that, for any 1 ≤ i ≤ L, there is a subset Γi ⊆ G′ of the

computed candidate set G′ so that (i) γ∗
i =

∑
γ∈Γi

γ and (ii) each cycle in Γi has
size at most 2μ(γ∗

i).

Next, we prove that a candidate set G′ satisfying conditions in Proposition 4.1
is guaranteed to also contain a 2-approximate minimal homology basis. We
remark that if Proposition 4.1 does not hold, then the sole condition that G′

contains a c-approximate minimal cycle basis is not sufficient to guarantee that
it also contains a c-approximate minimal homology basis for any constant c. A
counter-example is given at the end of this section.

Lemma 4.1. Given a set G′ of cycles satisfying Proposition 4.1, there exists
a minimal homology basis C∗ = {C∗

1 , . . . , C∗
g } such that G′ contains g cycles

A1, · · · , Ag with (i) [A1], · · · , [Ag] form a homology basis, and (ii) μ(Ai) ≤
2μ(C∗

i), for i = 1, · · · , g.

Proof. Let Γ ∗ be a minimal homology basis which satisfies Proposition 4.1. It
is known that it contains a minimal homology basis, which we set as C∗ =

386 T. K. Dey et al.

{C∗
1 , . . . , C∗

g }. Now by Proposition 4.1, for each C∗
i , there exists a subset Γi ⊆ G′

such that C∗
i =

∑
γ∈Γi

γ and μ(γ) ≤ 2μ(C∗
i), ∀γ ∈ Γi. Assume w.l.o.g. that

cycles in C∗ are in non-decreasing order of their sizes. We now prove the lemma
inductively. In particular,

Claim-A: For any k, we show that there exists A1, . . . , Ak ∈ ⋃
r≤k Γr such

that for each i ∈ [1, k], (Cond-1) μ(Ai) ≤ 2μ(C∗
i); and (Cond-2) [A1], . . . , [Ak]

are independent.
The base case is straightforward: We can simply take A1 as any cycle from

Γ1 that is not null-homologous (which must exist as C∗
1 =

∑
γ∈Γ1

γ is not null-
homologous).

Now suppose the claim holds for k. Consider the case for k +1. By induction
hypothesis, there exists A1, . . . Ak ∈ ⋃

r≤k Γr such that (Cond-1) and (Cond-2)
hold. Now consider cycles in

⋃
r≤k+1 Γr. Let Hk+1 denote the subgroup of H1(K)

generated by the homology classes of all cycles in
⋃

r≤k+1 Γr. Note that Hk+1

spans {[C∗
1], . . . , [C∗

k+1]}, then the rank of Hk+1 is at least k + 1, which means
there always exists a cycle Ak+1 ∈ ⋃

r≤k+1 Γr such that [Ak+1] is independent of
[A1], . . . [Ak]. By definition of

⋃
r≤k+1 Γr, there is an index j ≤ k + 1 such that

μ(Ak+1) ≤ μ(C∗
j) ≤ μ(C∗

k+1) which satisfies both (Cond-1) and (Cond-2). Thus
Claim-A holds for k + 1 as well.

The lemma then follows when k = g. ��
So far we have proved that the new candidate set G′ always contains a 2-
approximate minimal homology basis. What remains is to describe how to
compute such an approximate basis from the candidate set G′. First, we com-
pute the annotation of all edges in O(nω) time. Let a(e) denote the annota-
tion of an edge e ∈ K(1) in the complex K; recall that a(e) is a g-bit vec-
tor with g = rank(H1(K)). Also recall that given a cycle γ, its annotation
a(γ) =

∑
e∈γ a(e) represents the homology class of this cycle, and two cycles

are homologous if and only if they have the same annotation vectors.
Now order the cycles in G′ = {γ1, . . . , γm}, where m = |G′| = O(n

√
n log n),

in non-decreasing order of their sizes. We will compute the annotation of all
cycles in G′ and put them in the g × m matrix M , whose i-th column M [i]
represents the annotation vector for the cycle γi. Since G′ contains a homology
basis of H1(K) (Lemma 4.1), rank(M) = g.

First, we explain how to compute annotation matrix M efficiently. Let
edge(K) = {e1, . . . , eL} denote all edges from K. Let A denote the L×m matrix
where γi =

∑
j∈[1,L] A[i][j]ej ; that is, non-zero entries of the i-th column A[i]

encode all edges in the cycle γi. Let B denote the g×L matrix where the i-th col-
umn B[i] encodes the annotation of edge ei. It is easy to see that M = AT · BT .
Instead of computing the multiplication directly, we partition the matrix AT

top-down into m/L submatrices each of size at most L × L. For each of this
submatrix, its multiplication with BT can be done in O(Lω) matrix multipli-
cation time. Thus the total time to compute the multiplication M = AT · BT

takes O(m
L Lω) = O(mnω−1) time as L ≤ n. In other words, we can compute the

annotation matrix M in O(nω
√

n log n) as m = O(n
√

n log n).

Efficient Algorithms for Computing a Minimal Homology Basis 387

We now compute a 2-approximate minimal homology basis from G′. Here we
use so-called earliest basis. Specifically, in general, given a matrix D with rank
r, the set of column vectors {D[i1], · · · ,D[ir]} is called an earliest basis for
the vector space spanned by all columns in D (or simply, for D), if the column
indices {i1, . . . , ir} are the lexicographically smallest index set such that the
corresponding columns of D have full rank.

Proposition 4.2 ([3]). Let D be an m×n matrix of rank r with entries over Z2

where n ≤ m, then there is an O(mnω−1) time algorithm to compute the earliest
basis of D.

Let {i1, . . . , ig} be the indices of columns in the earliest basis of M . This can
be done in O(mgω−1) = O(n

√
n log n · gω−1) time by the above proposition as

m = O(n
√

n log n). The cycles corresponding to these columns form a homology
basis by the properties of annotations [3].

Finally, we note that the earliest basis of M has the smallest (lexicograph-
ically) sequence of size sequence. Hence its total size is at most the size of the
2-approximate minimal homology basis A1, . . . , Ag as specified in Lemma 4.1.
Hence putting everything together, we conclude with the following theorem.

Theorem 4.1. The algorithm above computes a 2-approximate minimal homol-
ogy basis of the 1-dimensional homology group H1(K) of a simplicial complex
with non-negative weights in O(nω

√
n log n) expected time.

Remark. Since an approximate minimal homology basis still forms a basis for
H1(K), it means that computing it is at least as hard as computing the rank
of H1(K). Currently the best algorithm for the rank computation for general
simplicial complex K is O(nω) (the matrix multiplication time). Hence the best
we can expect for computing an approximate minimal homology basis is perhaps
O(nω) (versus the O(n2g + nω) time complexity of the exact algorithm from
Sect. 3.1). We remark that we can also develop an algorithm that computes a
(2k − 1)-approximate minimal homology basis in time O(kn1+1/kg polylog n +
nω), where k ≥ 1 is an integer – indeed, as the approximation factor reaches
log n, the time complexity becomes O(nω) (which is the best time known for
rank computation). The framework of this algorithm follows closely from an
approach by Kavitha et al. in [12], and we thus omit the details here.

A counter-example. Figure 1 gives an example which shows that, with-
out Proposition 4.1, it is not guaranteed that a candidate set containing a c-
approximate minimal cycle basis includes a 2-approximate minimal homology
basis. Let the size of a 1-cycle in K shown in the figure be the sum of all
edges in the cycle. There is only one minimal cycle basis in this figure, namely
C1, C2, C3 and C4, as shown in Fig. 1b. The minimal homology basis of K should
be {C1, C2, C3}. However, consider the candidate set G which contains 4 cycles
as shown in Fig. 1c: C2, C3, C4 and C ′

4 = C1 + C2 + C3. It is easy to check
that these 4 cycles in G form a 2-approximate minimal cycle basis. However, the

388 T. K. Dey et al.

smallest homology basis contained in G, namely C2, C3, C
′
4(= C1 + C2 + C3) is

not a 2-approximate minimal homology basis.
We can make this example into a counter-example for any constant factor

approximation, by adding more C ′
i’s (triangles) to the sequence, each of which

is larger than the previous one and is also filled in. In other words, the optimal
homology basis remains {C1, C2, C3}, while the smallest-size homology basis
from the c-approximate minimal cycle basis is {C2, C3,

∑
i>1 Ci}.

Fig. 1. An example where an approximate minimal cycle basis does not contain an
approximate minimal homology basis.

5 Generalizing the Size Measure

The 1-skeleton K(1) of the simplicial complex K is the set of vertices and edges
in K. If there are non-negative weights defined on edges in K(1), it is natural
to use the induced shortest path distance in K(1) (viewed as a weighted graph)
as a metric for vertices V in K. One can then measure the “size” of a cycle
to be the sum of edge weights. Indeed, this is the distance and the size mea-
sure considered in Sects. 3 and 4. In this section, we show that the algorithmic
framework in Algorithm1 can in fact be applied to a more general family of
size measures. Specifically, first, we introduce what we call the path-dominated
distance between vertices of K (which is not necessarily a metric). Based on such
distance function, we then define a family of “size-functions” under which mea-
sure we can always compute a minimal homology basis using Algorithm1. The
shortest-path distance/size measure used in Sect. 3, and the geodesic ball-based
measure proposed in [10] are both special cases of our more general concepts.
We also present another natural path-dominated distance function induced by
a (potentially complex) map F : vert(K) → Z defined on the vertex set vert(K)
of K (where Z is another metric space, say R

d). As a result, we can use Algo-
rithm1 to compute the shortest 1-st homology basis of K induced by a map
F : vert(K) → Z.

Efficient Algorithms for Computing a Minimal Homology Basis 389

5.1 Path-Dominated Distance

Given a connected simplicial complex K, suppose we are given a distance func-
tion d : vert(K) × vert(K) → R

+ ∪ {0}. We now introduce the following path-
dominated distance function.

Definition 5.1 (Path-dominated distance). A function d : vert(K) ×
vert(K) → R

+ ∪ {0} is a path-dominated distance function (w.r.t. (K)) if

(i) d(x, y) ≥ 0 and d(x, x) = 0 for any x, y ∈ vert(K);
(ii) given any two vertices x, y ∈ vert(K), there exists a path π∗ connecting x to

y in the 1-skeleton K(1) such that d(x, y) = maxu∈vert(π∗) d(x, u).

If edges in the 1-skeleton K(1) have positive weights, then, it is easy to verify
that the standard shortest path distance metric induced by K(1) (viewed as
a weighted graph) is path-dominated. However, note that a path-dominated
distance may not be a metric. Indeed, we will shortly present a function-induced
distance which is not symmetric.

We now define “shortest path” in K(1) induced by a path-dominated distance
function.

Definition 5.2 (Path-dominated shortest path). Given any x, y ∈
vert(K), a path π∗ = 〈u0 = x, u1, . . . , uk = y connecting x to y via edges in
K is a path-dominated shortest path in K if for each i ∈ [1, k], d(x, ui) =
maxj≤i d(x, uj).

Note that this implies that any prefix of a path-dominated shortest path is
also a path-dominated shortest path. The proof of the following statement is
reasonably simple and can be found in AppendixB.

Claim 5.1. A path-dominated shortest path always exists for any two vertices
x, y ∈ vert(K).

Fig. 2. The left is the original simplicial
complex. There are two paths, π1 and π2,
connecting vertices x and y. The right figure
is their image under the map F with Z =
R

2 (i.e., dZ(·, ·) = ‖ · − · ‖). The path π2 is
a path-dominated shortest path from x to
y.

Function-induced distance. Very often,
the domain K may come with addi-
tional data modeled by a function
F : vert(K) → Z defined on vertices
of K, where the co-domain (Z, dZ) is
a metric space. For example, imagine
that K represents the triangulation of
a region on earth, and at each vertex,
we have collected d sensor measure-
ments (e.g. temperature, wind speed,
sun-light strength, etc.), which can be
modeled by a function F : vert(K) →
R

d. It is then natural to define a dis-
tance, as well as a size measure later, that depends on this function F . We
introduce the following function-induced distance dF : vert(K) × vert(K) → R:

390 T. K. Dey et al.

Definition 5.3. Given any function F : vert(K) → Z, we define the F -induced
distance dF (x, y) as follows:

dF (x, y) = min
path π(x,y)⊆K(1)

max
u∈π(x,y)

dZ(F (x), F (u)), (1)

where the minimum ranges over all path π(x, y) from K(1) connecting x to y.

Intuitively, given a path π from x to y, maxu∈π dZ(F (x), F (u)) measures the
maximum distance in terms of the function value F between the starting point
x to any point in the path π, i.e., the maximum function distortion from x to π.
dF (x, y) is the smallest function distortion (w.r.t. x) needed to connect from x to
y. For example, in Fig. 2, the path π2 is a path-dominated shortest path from x
to y, as its image F (π2) has a smaller maximum distance (in terms of dZ = ‖ · ‖)
than the image of F (π1). By the definition of function-induced distance, we have:

Claim 5.2. Given F : vert(K) → Z, the F -induced distance dF is path-
dominated.

5.2 Size-Measure for 1-Cycles

Previously, the most popular way to measure the “size” of a 1-cycle is the sum
of weights of edges in the cycle. Another natural measure formulated by Chen
and Freedman [10] uses the minimum radius of any metric ball (centered at some
vertex in K) containing a cycle as its size. Intuitively, given a homology class,
a smallest cycle of this class under this radius-measure corresponds to a cycle
which is most “localized” (contained within a smallest possible metric ball).
Using the shortest-path metric induced by weights on edges in K, Chen and
Freedman showed that a minimal homology basis under this radius-measure can
be computed in polynomial time for any fixed-dimensional homology group. In
what follows, we introduce a family size measures, which we refer to as tight-size
functions, which generalize the radius-measure of Chen and Freedman as well
as the general sum-of-weights measure. We then show that the algorithm from
Sect. 3 can be used to compute a minimal homology basis for H1(K) w.r.t. such
tight-size functions.

We use the concept of edge-short cycles introduced in e.g. [13], whose origin
traces back to [7].

Definition 5.4. A 1-cycle C in a complex K is called edge-short, if K contains
a vertex w, an edge e = (u, v), a shortest path from w to u and a shortest path
from w to v such that C is the edge disjoint union of e and the two paths.

In our case, instead of using the shortest path metric induced by weights
on the 1-skeleton K(1) of K, we use any path-dominated distance function d,
and the “shortest paths” in the above definition will be replaced by path-
dominated shortest paths in K w.r.t. d. To emphasize the dependency on the
path-dominated distance function d, we say that a cycle C is edge-short w.r.t.
d if the condition in Definition 5.4 holds w.r.t. path-dominated shortest paths
w.r.t. d.

Efficient Algorithms for Computing a Minimal Homology Basis 391

Definition 5.5 (Tight-size function). Suppose vert(K) is equipped with a
path-dominated distance function d. Let Z1(K) represent the 1-dimensional cycle
group of K. A function μ : Z1(K) → R is a tight-size function (w.r.t. d) if
under this function, there exists a minimal homology basis for H1(K) in which
all cycles are edge-short w.r.t. the path-dominated distance d.

We may omit the reference to the path-dominated distance d when its choice
is fixed or clear.

We now prove that if a function is a tight-size function, the Algorithm1
can be used to compute a minimal homology basis. First, observe the following,
which is implied by Theorem 3.1.

Claim 5.3. If the candidate set G contains a minimal homology basis, then the
framework Algorithm1 will compute a minimal homology basis from the candi-
date set.

What remains is to show how to compute a candidate set containing a mini-
mal homology basis. For simplicity, from now we fix a path-dominated distance
function d, and simply use shortest paths to refer to the path-dominated shortest
paths w.r.t. d. We assume that the shortest paths are unique – In AppendixC, we
describe how to guarantee this uniqueness condition (by assigning certain order
to the shortest paths), and show that the shortest path tree Tp encoding all
unique path-dominated shortest paths to any root p ∈ vert(K) can be computed
in O(n log n) time (with n = |K(1)|) by the standard approach.

We now construct a candidate set G in the same manner as in Sect. 3.
First for every vertex p, we build a candidate set Gp. Let Πp(u, v) denote
the unique tree path between two vertices u and v. For every nontree edge
e = (u, v), C(p, e) = e ◦ Πp(u, v) is a cycle. We add all such C(p, e) into Gp, i.e.
Gp = ∪e∈E\edge(Tp)C(p, e). Taking the union of all such candidate sets, G can be
constructed as G = ∪p∈vert(K)Gp.

Lemma 5.1. The candidate set G contains a minimal homology basis when the
size of a cycle is measured by a tight-size function w.r.t. some path-dominated
distance function d.

Proof. By results from AppendixC, we can assume that there is only a unique
path-dominated shortest path between any two vertices u, v ∈ vert(K), which
we denote as SP (u, v). Now take any edge-short cycle C. As it is edge-short, we
can find a vertex w and an edge e = (u, v) such that the cycle C is the disjoint
union of SP (w, u), SP (w, v) and e. On the other hand, the unique shortest paths
SP (w, u) and SP (w, v) are in the shortest path tree Tw. This means that e /∈ Tw.
Hence the cycle C is a candidate cycle C(w, e) from the set Gw. It then follows
that the collection G contains all edge-short cycles. The lemma then follows from
the definition of tight-size functions and Claim5.3. ��
Now that we have a candidate set that contains a minimal homology basis, we
can apply the divide and conquer algorithm (Algorithm1) from Sect. 3, and by
Claim 5.3, this will output a minimal homology basis. We conclude with the
following main result.

392 T. K. Dey et al.

Theorem 5.1. Suppose sizes of 1-cycles are measured by a tight-size function
w.r.t. a path-dominated distance function d. Then, we can compute a minimal
homology basis for H1(K) in O(nω + n2g) time, where n is the size of 2-skeleton
of K and g is rank(H1(K)).

5.3 Examples of Tight-Size Functions

Sum-of-weights size function. As mentioned earlier in Sect. 5.1, given a weight
function w : edge(K) → R

+, the shortest path distance dK induced by the 1-
skeleton K(1) (viewed as a weighted graph) is a path-dominated function. Now
given weights w : edge(K) → R

+, the size measure μw : Z1(K) → R
+ assign-

ing μw(C) =
∑

e∈C w(e) is a tight-size function w.r.t. the shortest path dis-
tance function dK. Hence we can obtain the main result of Sect. 3 by applying
Theorem 5.1 to the tight-size function μw.

Radius-size function. Alternatively, we now consider the radius-based size func-
tion used e.g. in [10,14,15]. More specifically, suppose we are given a simpli-
cial complex K, and a path-dominated distance function d (which may not
be a metric) on vert(K). Define the ball Br

p centered at p of radius r to be
Br

p = {σ ∈ K : ∀x ∈ vert(σ), d(p, x) ≤ r}. We can then define radius-size func-
tion μR : Z1(K) → R

+ such that μR(C) of a 1-cycle C is the smallest r such
that C ⊆ Br

p for some p ∈ vert(K).

Proposition 5.1. μR is a tight-size function w.r.t. any path-dominated distance
function d.

Proof. We need to prove that there exists a minimal homology basis where each
cycle inside is edge-short. Assume this is not the case. Then given any minimal
homology basis B, there exists a cycle C which is not edge-short. Suppose cycles
B = {C1, . . . , Cg} are sorted in nondecreasing order of their radius-size, and
Ci is the first cycle in B that is not edge-short. Let Br

p be the smallest ball
containing Ci with p ∈ vert(K); that is, μR(Ci) = r. Let Tp denote the shortest
path tree rooted at p, and Q denote the set of edges in Ci which are not in
Tp. Note that Q cannot be empty; otherwise, Ci cannot be a cycle as all edges
in it are tree edges. For every edge e = (u, v) in Q, we can construct a cycle
C(p, e) as SP (p, u) + SP (p, v) + e, where SP (x, y) denote the tree path in Tp

from x to y. It is easy to see that for each such cycle C(p, e) with e ∈ Q, its
radius-size μR(C(p, e)) ≤ r as it is completely contained within Br

p. Note that Ci

can be represented as the sum of all such C(p, e), i.e. Ci =
∑

e∈Q C(p, e). This
is because that Ci =

∑
e∈Ci

C(p, e). However, for an edge e ∈ Ci ∩ Tp, C(p, e) is
the empty set. Hence only edges from Ci \ Tp(= Q) contribute to this sum.

Now consider the set of cycles Q = {C(p, e) | e ∈ Q}. As Ci is in a minimal
homology basis B, its homology class [Ci] is independent of those generated
by cycles in B \ {Ci}. Hence there exists at least a cycle C ′ ∈ Q such that
[C ′] is independent of the homology class of all cycles in B \ {Ci}. Now let
B′ = B ∪ {C ′} \ {Ci} which is also a homology basis. Recall that any cycle in Q
has radius-size at most r. We have two cases: (i) If μR(C ′) < r(= μR(Ci), then

Efficient Algorithms for Computing a Minimal Homology Basis 393

B′ has a smaller size sequence than B, and thus B cannot be a minimal homology
basis. Thus we have a contradiction, meaning that all cycles in B must be edge-
short. (ii) If μR(C ′) = r, then B′ is also a minimal homology basis. If B′ contains
only edge-short cycles, then we are done. If not, then we identify the next cycle
that is not edge-short Cj , and it is necessary that j > i. We then repeat the
above argument with Cj . In the end, either we find a contradiction, meaning that
the edge-short cycle cannot exist in the basis we are inspecting, or we manage to
replace all non-edge-short cycles to be edge-short ones of equal size, and maintain
a homology basis. In the latter case, we construct a minimal homology basis with
only edge-short cycles. In either case, the proposition follows. ��
It then follows from the above proposition that Algorithm1 computes a min-
imal homology basis under the radius-size function w.r.t. any path-dominated
distances in time O(nω + n2g). In particular, combining with the two path-
dominated distance functions examples we have:

Example 1: d = dK, the shortest path distance induced by the weighted graph
K(1). Under this path-dominated distance, the minimal homology basis prob-
lem under the radius-size function w.r.t. dK is exactly the 1-dimensional case of
the problem studied in [10]. An O(n4g) time algorithm was presented to solve
this problem in any dimension in [10]. However, by Theorem 5.1, we can com-
pute a minimal homology basis of in O(nω + n2g) time, which is a significant
improvement when focusing on H1 group.

Example 2: Given a function F : vert(K) → Z defined on K, recall that the
F -induced distance dF as introduced in Sect. 5.1 is a path-dominated function.
Now set d = dF . Intuitively, the radius-size function μR(C) w.r.t. dF measures
the radius of the smallest metric ball in the co-domain Z that contains the
image F (C) of the cycle C under map F . That is, μR(C) measures the “size”
of C w.r.t. the variation in the function F . Hence we also refer to the radius-
size function w.r.t. dF as the F -induced radius-size function. We believe that
the F -induced distance function and F -induced radius-size function are useful
objects of independent interests. The minimal homology basis of K under such
a F -induced radius-size function can also be computed in O(nω + n2g) time.

6 Conclusions

In this paper we have given improved algorithms for computing a minimal homol-
ogy basis for 1-dimensional homology group of a simplicial complex. What about
higher dimensional homology? For high dimensions, it is known from [16] that
computing a minimum homology basis under volume measure is NP-hard. But
it follows from [10] that one can extend the radius-size measure (See Sect. 5.3)
to high dimensions under which an algorithm to compute a minimum homology
basis in polynomial time exists. It runs in time O(gn4) where g is the rank of
d-dimensional homology group Hd. We can improve this algorithm, using persis-
tence algorithm [17] as well as annotations for d-simplices [3], so that the time
complexity improves to O(nω+1) which is better when g = Θ(n). The details are
presented in the AppendixA.

394 T. K. Dey et al.

Acknowledgements. This works is partially supported by National Science Founda-
tion (NSF) under grants CCF-1526513, 1740761 and 1733798.

A Computing a Minimal Homology Basis for Hd(K)

Let K be a simplicial complex with n simplices and let g be the d-dimensional
Betti number, i.e. g = rank(Hd(K)). The discrete geodesic distance dp :
vert(K) → R from a vertex p is given by q �→ dist(p, q) where dist(p, q) is
the length of the shortest path from p to q. Extending this definition to general
simplices, we have ∀σ ∈ K, dp(σ) = maxq∈vert(σ)dp(q). Then the geodesic ball
Br

p of radius r centered at p is defined as Br
p = {σ ∈ K : dp(σ) ≤ r}. Clearly,

Br
p ⊆ K, and it is a subcomplex of K. This is because for all faces σ′ of σ,

dp(σ′) ≤ dp(σ), which implies that all faces of a simplex in Br
p are also in Br

p.
The size of a cycle C is defined as μ(C) = min{r : ∃p ∈ vert(K), s.t. C ⊂ Br

p}
[18]. In words, it is the radius of the smallest ball centered at some vertex p of
C, which contains C. The definition of a minimal homology basis becomes:

Definition A.1. Given a simplicial complex K, a set of cycles {C1, C2, · · · , Cg}
with g = rank(Hd(K)) is a d-dimensional minimal homology basis if (1) the
homology classes {[C1], [C2], · · · , [Cg]} constitute a homology basis and (2) the
sizes {μ(C1), μ(C2), . . . , μ(Cg)} are lexicographically smallest among all such
bases.

A.1 Algorithm

In this section, we describe an algorithm to compute a minimal d-dimensional
homology basis where d ≥ 1. There are two steps in the algorithm: First comput-
ing a candidate set which contains a minimal homology basis and then computing
a minimal homology basis from the candidate set. All computations are over Z2.

Computing a candidate set. We now describe how to compute a candidate set
of cycles including a minimal homology basis. We apply the persistent homology
algorithm to generate the candidate set C(p) for a vertex p with the following
filtration: Simplices are sequenced in non-decreasing order of geodesic distances
dp(·) while placing a simplex before all its cofaces that have the same geodesic
distance. We focus on the essential homology classes computed by persistent
algorithm. There are g of them. For each essential homology class h, we denote
its birth time as rp(h). For any vertex p, the number of candidate cycles in C(p)
is g. Thus, the number of cycles of the candidate set C is O(gn).

Claim A.1 The candidate set C includes a minimal homology basis.

Proof. Suppose not. Let B be any minimal homology basis and the elements
in B are sorted in nondecreasing order of their sizes. Let class Ci be the first
member in B which is not in the candidate set and let p be the vertex such

Efficient Algorithms for Computing a Minimal Homology Basis 395

that Ci ⊂ B
μ(Ci)
p where μ(Ci) is the size of the cycle Ci. First we claim that

there exists a d-simplex σ such that dp(σ) = μ(Ci) and σ is a creator of Ci. If
not, there is another cycle C ′ such that [C ′] = [Ci] and μ(C ′) < μ(Ci). Note
that the cycles generated by creators in B

μ(Ci)
p form a homology basis of B

μ(Ci)
p .

We prove that the geodesic ball B
μ(Ci)
p must include a cycle C∗ ∈ C such that

the following two conditions hold: (1) μ(C∗) ≤ μ(Ci). (2) B \ {Ci} ∪ {C∗} is a
homology basis. Condition (1) holds because μ(C) ≤ μ(Ci) for every cycle C in
B

μ(Ci)
p .

For (2), observe that there exists a homology class [C∗] generated by one
creator that is independent of homology classes generated by B \ {Ci}. If no
such cycle exists, any homology class generated by one creator of B

μ(Ci)
p can be

written as a linear combination of homology classes generated by B \ {Ci}. The
homology classes generated by creators form a homology basis of B

μ(Ci)
p and

Ci ∈ B
μ(Ci)
p . It means that [Ci] is not independent of B \{Ci}, contradicting the

assumption that B is a homology basis. Therefore, B\{Ci}∪{C∗} is a homology
basis.

Combining condition (1) with (2), the homology basis B′ = B \ {Ci} ∪ {C∗}
is a minimal homology basis. What is more, if we sort the cycles in B′ in non-
decreasing order of sizes, then the first i cycles in B′ are in the candidate set C.
This is because the cycle C∗ is generated by a creator of B

μ(Ci)
p , which means

that C∗ ∈ C. Therefore, we find a minimal homology basis all of whose cycles
are in the candidate set. ��

Computing a minimal homology basis. In this section we discuss an
algorithm to find a minimal homology basis from the candidate set. We use
annotation, denoted by a(·), to represent and distinguish each cycle. Recall
that annotation of a cycle is a g-bit vector where g = rank(Hd), and that
two cycles are homologous if and only if their annotations are equal. We first
compute the annotations for all d-simplices in K [3] and give them a fixed
order σ1, σ2, · · · , σnd

where nd is the number of d-simplices in K. Suppose we
sort the cycles in the candidate set in nondecreasing order of their sizes as
C1, C2, · · · , Cgn0 where n0 is the number of vertices in K. Then, every d-cycle
Ci in K can be denoted as Ci =

∑nd

j=1 γijσj where γij ∈ {0, 1} and 1 ≤ i ≤ gn0.
Thus, we have a(Ci) =

∑nd

j=1 γija(σj), 1 ≤ i ≤ gn0. We compute the annota-
tions a(C1), a(C2), · · · , a(Cgn0) for all cycles C1, C2, · · · , Cgn0 in the candidate
set simultaneously.

Let X = (a(C1)T , a(C2)T , · · · , a(Cgn0)
T)T and

Y = (a(σ1)T , a(σ2)T , · · · , a(σnd
)T)T . The goal is to compute X that satisfies

the following equation: X = ΓY where Γ = (γij)gn0×nd
. The computation of

the matrix X takes time O(nωg) using the fast matrix multiplication algorithm
where Γ is a gn0 × nd matrix and Y is an nd × g matrix.

Let X ′ be the transposed matrix of X. The problem of computing a minimal
homology basis from the candidate set C is equivalent to computing the earliest
basis of the matrix X ′ [3]. According to Proposition 4.2, computing the earliest

396 T. K. Dey et al.

basis of X ′ costs us O(ngω) time. Combining the time O(nω+1) in building the
candidate set C and the time O(nωg) in computing X, we conclude that the
total running time is O(nω+1).

Theorem A.1. Given a simplicial complex K with n simplices, there is an algo-
rithm to compute a minimal homology basis as defined in DefinitionA.1 in any
dimension in time O(nω+1).

B Proof of Claim 5.1

We prove this claim by induction. First, fix any source node x ∈ vert(K). We
sort all other vertices in vert(K) in non-decreasing order of d(x, y); that is,
d(x, y1) ≤ d(x, y2) ≤ . . . ,≤ d(x, ys) with s = |vert(K)| − 1. We carry out an
induction based on this order. For the base case, any path in (ii) of Definition 5.1
is necessarily a path-dominated shortest path from x to y1: Indeed, if there is
any other vertex y (other than x and y1) in such a path, it is necessary that
d(x, y) = d(x, y1) as d(x, y1) has the smallest distance to x.

Now suppose there exists a path-dominated shortest path from x to yi for 1 ≤
i ≤ s. Consider yi+1 and assume that there is no path-dominated shortest path
from x to yi+1. By Definition 5.1, there exists a path Π = (u0 = x, u1, . . . , uk =
yi+1) such that for every vertex ui ∈ Π, d(x, ui) ≤ d(x, yi+1). As this path
violates the conditions in Definition 5.2, there must exist a pair of vertices uj , ul ∈
Π with j < l such that d(x, yi+1) ≥ d(x, uj) > d(x, ul). Let l be the maximal
value with which such a pair (j, l) exists. It follows that we have d(x, ul) ≤
d(x, ul+1) ≤ . . . ≤ d(x, uk). By inductive hypothesis, we know that there is a
path-dominated shortest path Π∗ from x to ul since d(x, ul) < d(x, yi+1). Hence,
the path Π∗ concatenated with the sub-path of Π from ul to uk = yi+1 gives
a path-dominated shortest path from x to yi+1. The claim thus follows from
induction.

C Ensuring Uniqueness of Shortest Paths

a1
a4

a5a3

a2

Fig. 3. Path π1 = a1a4a5a3a4a2

and π2 = a1a4a3a5a2 are two
path-dominated shortest paths
from a1 to a2. Consider a
new path π = a1a4a2 which
is a path-dominated shortest
path from a1 and a2. However
len(π) = 2 < 5 = len(π1) =
len(π2).

In Sect. 5, we require that the path-dominated
shortest path (in this section, we use shortest
path for short) in K between any two vertices is
unique. Now we show how to avoid this restric-
tion using an idea from [19] (Fig. 3).

Lemma C.1. Let K be a simplicial complex
with a path-dominated distance d(·, ·). For every
pair of nodes, there exists a unique shortest path
π from u to v that satisfies exactly one of the
following two conditions w.r.t. any other path π′

from u to v:

(1) len(π) < len(π′)

Efficient Algorithms for Computing a Minimal Homology Basis 397

(2) len(π) = len(π′),min(vert(π) \ vert(π′)) < min(vert(π′) \ vert(π))

Here len(π) denotes the number of edges in a path π and min(U) denotes the
minimum index of the vertices in a subset U of vert(K). We say π < π′ if the
above two conditions hold (See Fig. 3).

The proof follows from [19, Proposition 4.1].
We now describe the algorithm to compute a shortest path tree Tp w.r.t. a

path-dominated distance d(·, ·) rooted at p under the uniqueness condition. Let
πp(q) be the tree path from p to q in the current partial tree. Let lenp(q) denote
the number of edges in the tree path from p to q, initially set to infinity except
lenp(p) = 0. Initially we set a priority queue Q the vertex set vert(K). Every time
we delete a vertex q in the queue Q with the least distance d(p, q), least value
lenp(q) and least index. We iterate for all neighbors w of q: If πp(q)◦e, e = (q, w),
is a shortest path from p to w, and is smaller than πp(w) as in Lemma C.1 we
will update the tree path πp(w) in Tp as πp(q) ◦ e and set lenp(w) = lenp(q)+1.
Note that those vertices not in Q will not be updated. Hence there are O(n)
iterations. What remains is to compute the minimum index of vert(π)\ vert(π′)
given two tree paths π and π′ from p to any vertex v. This can be achieved
in time O(log n) adapting the algorithm from [20] for path-dominated shortest
path.

Thus we conclude the above analysis with the following theorem.

Theorem C.1. The shortest path tree in a simplicial complex K can be com-
puted in O(n log n) time.

References

1. Borradaile, G., Chambers, E.W., Fox, K., Nayyeri, A.: Minimum cycle and homol-
ogy bases of surface-embedded graphs. J. Comput. Geom. 8(2), 58–79 (2017)

2. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators.
In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1038–1046. Society for Industrial and Applied Mathematics (2005)

3. Busaryev, O., Cabello, S., Chen, C., Dey, T.K., Wang, Y.: Annotating simplices
with a homology basis and its applications. In: Fomin, F.V., Kaski, P. (eds.) SWAT
2012. LNCS, vol. 7357, pp. 189–200. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31155-0 17

4. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation, pp.
296–303. ACM (2014)

5. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: A faster algorithm for minimum
cycle basis of graphs. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.)
ICALP 2004. LNCS, vol. 3142, pp. 846–857. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-27836-8 71

6. de Pina, J.C.: Applications of shortest path methods. Ph.D. thesis, University of
Amsterdam (1995)

7. Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a
graph. SIAM J. Comput. 16(2), 358–366 (1987)

https://doi.org/10.1007/978-3-642-31155-0_17
https://doi.org/10.1007/978-3-642-31155-0_17
https://doi.org/10.1007/978-3-540-27836-8_71
https://doi.org/10.1007/978-3-540-27836-8_71

398 T. K. Dey et al.

8. Mehlhorn, K., Michail, D.: Minimum cycle bases: faster and simpler. ACM Trans.
Algorithms (TALG) 6(1), 8 (2009)

9. Dey, T.K., Sun, J., Wang, Y.: Approximating loops in a shortest homology basis
from point data. In: Proceedings of the Twenty-Sixth Annual Symposium on Com-
putational Geometry, pp. 166–175. ACM (2010)

10. Chen, C., Freedman, D.: Measuring and computing natural generators for homol-
ogy groups. Comput. Geom. 43(2), 169–181 (2010)

11. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
12. Kavitha, T., Mehlhorn, K., Michail, D.: New approximation algorithms for mini-

mum cycle bases of graphs. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS,
vol. 4393, pp. 512–523. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-70918-3 44

13. Gleiss, P.M.: Short cycles: minimum cycle bases of graphs from chemistry and
biochemistry. Ph.D. thesis, Universität Wien, Austria (2001)

14. Guskov, I., Wood, Z.J.: Topological noise removal. In: 2001 Graphics Interface
Proceedings, Ottawa, Canada, p. 19 (2001)

15. Wood, Z., Hoppe, H., Desbrun, M., Schröder, P.: Removing excess topology from
isosurfaces. ACM Trans. Graph. (TOG) 23(2), 190–208 (2004)

16. Chen, C., Freedman, D.: Hardness results for homology localization. In: Proceed-
ings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1594–1604. Society for Industrial and Applied Mathematics (2010)

17. Edelsbrunner, H., Harer, J.: Persistent homology-a survey. Contemp. Math. 453,
257–282 (2008)

18. Chen, C., Freedman, D.: Quantifying homology classes. In: LIPIcs-Leibniz Inter-
national Proceedings in Informatics, vol. 1. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik (2008)

19. Hartvigsen, D., Mardon, R.: The all-pairs min cut problem and the minimum cycle
basis problem on planar graphs. SIAM J. Discret. Math. 7(3), 403–418 (1994)

20. Wulff-Nilsen, C.: Minimum cycle basis and all-pairs min cut of a planar graph in
subquadratic time. arXiv preprint arXiv:0912.1208 (2009)

https://doi.org/10.1007/978-3-540-70918-3_44
https://doi.org/10.1007/978-3-540-70918-3_44
http://arxiv.org/abs/0912.1208

	Efficient Algorithms for Computing a Minimal Homology Basis
	1 Introduction
	2 Background and Notations
	3 Minimal Homology Basis
	3.1 Computing a Minimal Homology Basis
	3.2 Correctness and Time Complexity

	4 An Approximate Minimal Homology Basis of H1(K)
	5 Generalizing the Size Measure
	5.1 Path-Dominated Distance
	5.2 Size-Measure for 1-Cycles
	5.3 Examples of Tight-Size Functions

	6 Conclusions
	A Computing a Minimal Homology Basis for Hd(K)
	A.1 Algorithm

	B Proof of Claim 5.1
	C Ensuring Uniqueness of Shortest Paths
	References

