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The peak structure and future changes of the
relationships between extreme precipitation
and temperature
GuilingWang1*, DagangWang1,2*, Kevin E. Trenberth3, Amir Erfanian1, Miao Yu1,4,
Michael G. Bosilovich5 and Dana T. Parr1

Theoretical models predict that, in the absence of moisture
limitation, extreme precipitation intensity could exponen-
tially increase with temperatures at a rate determined by
the Clausius–Clapeyron (C–C) relationship1,2. Climate models
project a continuous increase of precipitation extremes for the
twenty-first century over most of the globe3–5. However, some
station observations suggest a negative scaling of extreme
precipitation with very high temperatures6–9, raising doubts
about future increase of precipitation extremes. Here we
show for the present-day climate over most of the globe,
the curve relating daily precipitation extremes with local
temperatures has a peak structure, increasing as expected
at the low–medium range of temperature variations but
decreasing at high temperatures. However, this peak-shaped
relationship does not imply a potential upper limit for future
precipitation extremes. Climate models project both the peak
of extreme precipitation and the temperature at which it peaks
(Tpeak) will increase with warming; the two increases generally
conform to the C–C scaling rate in mid- and high-latitudes,
and to a super C–C scaling in most of the tropics. Because
projected increases of local mean temperature (Tmean) far
exceed projected increases of Tpeak over land, the conventional
approach of relating extreme precipitation to Tmean produces a
misleading sub-C–C scaling rate.

Among the warming-induced hydrological changes, one of
the most definitive and detectable changes is the increase of
precipitation intensity10. Increases in precipitation intensity and in
the frequency of heavy precipitation events have becomewidespread
according to observational data11,12. More rain has fallen in extreme
events13, leading to more days with heavy precipitation and a
disproportional amount of annual precipitation contributed by
extremes14. Global and regional climate models driven with future
scenarios of increasing CO2 concentrations produce an increase of
precipitation intensity and extremes as warming continues in the
future3–5. An increase of extreme precipitation often takes place at
the expense of light and moderate precipitation15, leading to longer
periods of continuous dry days and a generally higher fraction
of precipitation that runs off, which increases both drought and
flood risks16,17. It is therefore critical that we develop predictive
understanding of future changes of precipitation extremes to

inform and guide the development of long-term adaptation and
mitigation strategies.

The C–C scaling, which describes the increase of atmospheric
moisture holding capacity with temperature (at approximately 7%
per degree Celsius of warming near the surface), has been widely
considered as a guide for quantifying future increase of precipitation
extremes1,2. Precipitation intensity is proportional to the surface
atmospheric moisture content because it occurs mainly through
convergence of the low-level moisture by the responsible storm or
weather system. As precipitation extremes tend to take place when
the atmosphere is close to saturation, the intensity of extreme pre-
cipitation is often proportional to the surface air moisture holding
capacity too, which exponentially increases with temperature at the
C–C scaling rate. As other processes and factors come into play6,18,
significant deviations from the C–C scaling have been found in the
relationship between precipitation extremes and local temperature
based on observational data19–22. More importantly, at many mete-
orological stations, precipitation extremes were found to decrease
at the higher end of local temperature variations6–9. This apparent
negative scaling with local temperature and its implications are
poorly understood, and were considered ‘controversial’ in the In-
tergovernmental Panel for Climate Change (IPCC) 5th Assessment
Report (AR5)23. If not properly characterized, the observed decrease
of precipitation at the high temperature range could be misinter-
preted as a suggestion for the potential existence of an upper limit
for future precipitation extremes. Here we present a comprehensive
global analysis to characterize the relationship between precipitation
extremes and local temperatures, and how the relationship might
change in the future. This is done based onmultiple sources of grid-
ded observational and reanalysis (‘observational’ hereafter) data,
and output from the Representative Concentration Pathway 8.5
(RCP8.5) extended run (to 2300) of six global models participating
in the Coupled Model Inter-comparison Project phase 5 (CMIP5)
(see Methods).

In the context of climate variability, the decrease of daily precipi-
tation extremes when local temperature exceeds a certain threshold
is a robust characteristic across climate regimes, across different
data sets, and across different climate models. As examples, Fig. 1
plots the daily precipitation extremes against the corresponding
daily local temperature for eight sample areas that span different
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Figure 1 | Daily precipitation extremes varying with local temperature, estimated based on di�erent sources of data, including observation-based and
reanalysis data (black with symbols) as well as six global models (thick coloured lines) for eight sample areas. a, Amazon Basin (60◦W, 0◦). b, Congo
Basin (22◦ E, 4◦ S). c, Tropical Pacific (150◦ E, 0◦). d, Indian monsoon region (80◦ E, 20◦ N). e, US Midwest (90◦W, 37◦ N). f, Central Europe (22◦ E, 47◦ N).
g, North China Plain (117◦ E, 36◦ N). h, Australia (131◦ E, 20◦ S). Each sample area is made up of the nine grid points of the four grid cells surrounding the
identified point (in parentheses). Note that the vertical axes have a logarithmic scale.

continents and climate regimes, including mid-latitude, tropical,
monsoon, and non-monsoon climate. Over all sample areas, all
observational data agree on a decrease of precipitation extremes
with temperature at the high range of local temperature variation,
and this decrease can occur without a decrease of specific humid-
ity (Supplementary Fig. 1). The threshold temperature at which
precipitation extreme peaks (Tpeak) varies from region to region;
an increasing branch of the curve at lower temperature may or
may not be present, and would be absent if local temperature
is always warmer than the threshold (for example, in Fig. 1a–c).
When local temperature exceeds the threshold, precipitation ext-
remes follow an approximately exponential decrease. Over most
of the eight sample areas, all six models reproduce the general
features of the extreme precipitation–temperature relationship, and

the observational ensemble and the six-model ensemble overlap.
One exception is the area in tropical Pacific, where all observa-
tional data produce a sharp decrease of precipitation extremes with
temperature (that is, without an increasing branch), a feature well
captured by CCSM4 and HadGEM2-ES whereas the other four
models simulate an increase before it plateaus/decreases.

For all observational data examined, the decrease of precipitation
extremes at relatively high local temperature is detected at all
grid points over land and most grid points over oceans (Fig. 2a
and Supplementary Fig. 2), with exceptions over scattered areas
of tropical and extratropical oceans. The rate of decrease ranges
from less than 10% per ◦C in mid- and high-latitudes over land
to more than 50% per ◦C over some oceanic areas, and shows a
distinct spatial pattern: faster over the tropics than extratropics

2

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange

http://dx.doi.org/10.1038/nclimate3239
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3239 LETTERS

60° S 40° S 20° S 0°0° 20° N60° E
60° S

30° S

0°

30° N

60° N

90° N
a

120° E
Longitude

La
tit

ud
e

Zo
na

l a
ve

ra
ge

s 
fo

r a
−c

 (%
 p

er
 °

C)

180° 120° W 60° W

0° 0°60° E
60° S

30° S

0°

30° N

60° N

90° N

120° E
Longitude

La
tit

ud
e

180° 120° W 60° W

0° 0°60° E
60° S

30° S

0°

30° N

60° N

90° N

120° E
Longitude

10 20 30
Decrease of extreme daily precipitation

with temperature (% per °C)

40

La
tit

ud
e

180° 120° W 60° W

0° 0°60° E
60° S

30° S

0°

30° N

60° N

90° N

120° E
Longitude

La
tit

ud
e

180° 120° W 60° W

0° 0°60° E
60° S

30° S

0°

30° N

60° N

90° N

120° E
Longitude

La
tit

ud
e

180° 120° W 60° W

Latitude
40° N 60° N 80° N

5

10

15

20

25

30

35

40
TRMM and ERA−Interim

2006−2030, CCSM4 2276−2300, CCSM4

2006−2030, HadGEM2−ES 2276−2300, HadGEM2−ES

Land (a)
Ocean (a)
Land (b)
Ocean (b)
Land (c)
Ocean (c)

b

c

d

e

f

Figure 2 | Rate of decrease of extreme daily precipitation with local temperature at the high temperature range. a, Based on precipitation from TRMM
3B42 and near-surface air temperature from the ERA-Interim data over 50◦ S–50◦ N, and based on ERA-Interim precipitation and temperature data over
higher latitudes. b,c,e,f, Based on output from the RCP8.5 runs of CCSM4 and HadGEM2-ES for the periods 2006–2030 and 2276–2300, respectively.
d, Zonal average over land and ocean for a–c. Over the unshaded areas, a decrease of extreme precipitation at high temperature was not detected.

and faster over tropical oceans than tropical land (Fig. 2d). Both
the land–ocean contrast and the tropics–extratropics contrast are
captured by most of the models (Fig. 2 and Supplementary Fig. 3).
The magnitude and spatial pattern of the decreasing rate of daily
extremes estimated for the present climate of the six models span a
similar range of variations to those of the observational data. The
only difference that stands out is that climate models collectively
overestimate the portion of tropical oceans where a decrease of
precipitation extremes at high temperature is not detected for the
present climate. The peak value of precipitation extremes (Ppeak)
varies substantially among the different data sets and different
models; however, for all data and all models, the threshold
temperature (Tpeak) at which the daily precipitation extreme peaks
is highly zonally symmetric, approximately in the range of 25–30 ◦C
over tropical oceans, 20–25 ◦C over tropical land, and 10–20 ◦C over
most mid- and high-latitudes (Supplementary Figs 4 and 5).

Clearly, the concurrence of relatively high (low) precipitation
extremes and relatively low (high) local temperature is a globally rel-
evant phenomenon that is robust across different data sets and well
captured by climate models. It can result from several mechanisms

working together, of which the primary two are moisture limitation
for precipitation at high temperature, and temperature response to
precipitation (rather than the other way around). In the first case,
very high temperature may mean a large saturation deficit, which
may inhibit the development of deep convection and therefore
extreme precipitation. In this situation, low or lack of precipitation
is a result of high temperature with insufficient moisture. This
can arise over land, for instance, if the primary moisture source is
the ocean (where temperature is typically lower than land during
warm seasons, leading to a drop of relative humidity over land). In
the second case, in anticyclonic or ‘settled’ conditions, convective
clouds and precipitation are suppressed, leading to more sunshine,
lighter winds and smaller surface evaporative fluxes, and thus higher
surface temperatures; on the other hand, in cases of extreme pre-
cipitation events, the cloud radiative effect, strong latent heat fluxes
and, in the case of the ocean, strongmixing, all contribute to surface
cooling. In these situations, temperature variations result from the
presence or absence of precipitation. Both mechanisms are impor-
tant in shaping the documented relationship between precipitation
extremes and temperature, as analysis based on temporally shifted
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Figure 3 | Similar to Fig. 1, but based on output from six global models’ RCP8.5 future run for the period 2276–2300 (thin coloured lines with plus
symbols), in comparison with the period 2006–2030 (thick coloured lines). The black dashed lines plot the C–C scaling curves as a reference. Note that
the vertical axes have a logarithmic scale and di�er between panels.

data in both directions (with temperature leading or lagging pre-
cipitation by one day) produced qualitatively similar results. These
processes/mechanisms discussed here are simulated in the CMIP5
RCP8.5 runs; in the reanalysis systems, the effects of precipitation
causing temperature variations are not completely captured over the
ocean due to the use of prescribed sea surface temperature.

The negative scaling at high temperatures does not refute the
relevance of the C–C scaling. As ametric for precipitation intensity–
temperature relationship, C–C scaling is applicable only when
there is no moisture limitation (for example, when air is close to
saturation) or when relative humidity is constant, which is not the

case at the high range of temperature variation. Instead, based on
both observational data and global models used in this study, the
highest level of relative humidity tends to coincide with the peak
of extreme precipitation intensity (and therefore takes place at the
lower or medium range of temperature variation). As temperatures
further increase, the increase of specific humidity with temperature
slows down or plateaus, and hence relative humidity decreases
(Supplementary Fig. 1). The condition at the peak of extreme
precipitation is the closest for the C–C scaling to be applicable, and
should be the object of analysis when characterizing the water cycle
in a warming climate with reference to the C–C scaling rate.
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Figure 4 | The scaling rate of the peak of daily precipitation extreme (Ppeak) with temperature at which it peaks (Tpeak). a–f, Based on changes between
2006–2030 and 2276–2300 from each of the six models’ RCP8.5 runs. g,h, Zonal averages of the scaling rate (% per ◦C) for each model and for the
multi-model ensemble average (MME), plotted against the C–C scaling rate as a reference, over land and ocean, respectively. Over the unshaded areas in
a–f, the peak of extreme precipitation is projected to decrease.

Comparison between present and future climates of the six mod-
els reveals several noticeable changes. In the future climate, the
negative scaling rate of precipitation extremes with temperature
would increase in magnitude over most of the tropical oceans, and
the oceanic areas where negative scaling can be detected would
expand, especially in CCSM4, HadGEM-ESM, CSIRO-MK3.6.0
and IPSL-CM5A-LR models (Fig. 2 and Supplementary Fig. 3).

Qualitatively, the tropics–extratropics contrast and land–ocean con-
trast of the negative scaling rate in the future would remain similar
to the present climate. However, over most of the globe, both the
peak of precipitation extremes (Ppeak) and the temperature at which
it peaks (Tpeak) would significantly increase (Supplementary Fig. 6);
exceptions are found primarily in the subtropics, where extreme
precipitation is projected to decrease due to circulation changes24.
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Details of the relationship in the future climate and how it
compares with the present climate are shown in Fig. 3 using the
same eight sample areas as in Fig. 1. In all models and for all eight
sample areas, the peak of precipitation extremes would increase in
magnitude and occur under higher temperature in the future. For
most areas in most models, regardless of the slope of the curve’s
increasing branch (if one exists), the present and future peaks tend
to fall on the same C–C line and therefore scale approximately at the
C–C rate. If the increasing branch is roughly along the C–C scaling
line (for example, in the US Midwest and North China Plains),
it would extend to the right in the future; and if the increasing
branch has a steeper slope than the C–C scaling line (for example,
in the Indian monsoon and Australian areas), it would shift to the
right in the future, which adds to the emerging evidence that future
changes cannot simply be extrapolated from present-day scaling25,26.
For most areas and most models, the decreasing branch in future
and present climates are roughly parallel. Exceptions are found for
the tropical Pacific area, where some models simulate a primarily
increasing branch for the present climate and a primarily decreasing
branch for the future climate.

Despite the remarkable cross-model similarity in the spatial
patterns of Ppeak and Tpeak in present climate, the projected future
changes bear little similarity among the models (Supplementary
Fig. 6), reflecting the high degree of model-related uncertainty
in projecting future climate changes27. However, combining the
projected changes of the two variables, the rate of Ppeak increasing
withTpeak varieswithin a rather narrow range and shows inter-model
similarity in the spatial pattern (Fig. 4). The scaling of Ppeak with
Tpeak based on the multi-model ensemble average is in the range
of 5–10% per ◦C (close to the C–C rate) in most of the mid- and
high-latitudes over both land and ocean, but reflects a super C–C
rate of more than 10% per ◦C (with stronger model dependence)
in most of the tropics and over the ocean near Antarctica (Fig. 4).
This tropics–extratropics contrast is similar to findings from
previous studies18,28.

The scaling rate found in this study is substantially higher than
those found in conventional studies linking unconditional precip-
itation extremes (Pextreme, defined with no regard to temperature,
see Methods) with local mean temperature (Tmean) (for example,
refs 18,28,29 and the references therein). In the present climate,
Tpeak is higher than Tmean over the mid- and high-latitudes, and
lower than Tmean over most tropical and subtropical land; for future
changes, the projected increase of Tpeak is significantly slower than
that of Tmean across the global land and over part of tropical oceans
in all six models (Fig. 5 and Supplementary Figs 7 and 8). On the
other hand, the projected relative increases of Pextreme are similar
to or smaller than those of Ppeak. Therefore, linking Pextreme with
Tmean yields a spuriously low scaling rate (2–5% per ◦C over land,

Supplementary Figs 8 and 9) that is not directly related to any
specific process or to C–C scaling. Both the slower warming of
Tpeak than Tmean over land and the low Pextreme-versus-Tmean scaling
rate are reflections of a general decrease of relative humidity over
land as the Earth warms, a result of ocean being the primary
moisture source and enhanced mean warming over land compared
to oceans29,30.

In conclusion, the C–C scaling rate is found to be a highly
relevant constraint on precipitation extremes in a warming cli-
mate. Multiple mechanisms contribute to shape the peak-shaped
precipitation–temperature relationship, and which one is dominant
is likely to be region-specific. Although the decrease of precipitation
extremes at high range of local temperature variation does not seem
to have direct implication for future precipitation changes, under-
standing its causes will help tackle why models differ so much in
their capability to reproduce this phenomenon over tropical oceans
and may lead to new ways to improve climate model performance.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Three gridded observational/reanalysis data sets are used: the European Centre for
Medium-Range Weather Forecasts (ECMWF) Re-analysis-Interim data
(ERA-Interim)31, at approximately 0.7◦ (lat)× 0.7◦ (lon) resolution globally; the
NASAModern Era Reanalysis for Research and Applications version 2 data
(MERRA-2)32, at 0.5◦ (lat)× 0.625◦ (lon) resolution globally; and the Tropical
Rainfall Measuring Mission (TRMM) 3B42 precipitation data (version 7), which is
a TRMM- and raingauge-adjusted multi-satellite precipitation rate product,
available at 0.25◦ (lat)× 0.25◦ (lon) resolution covering the latitude band
50◦ S–50◦ N. Note that precipitation from ERA-Interim is model-simulated;
MERRA-2 provides two estimates of precipitation, one simulated by the model in
the reanalysis system (Pmodel) and one with the model biases corrected based on
both gauge and satellite remote sensing data (Pcorr)33. These data sets support five
combinations of past data, including two that pair ERA-Interim 2-m surface air
temperature with ERA-Interim precipitation and with TRMM 3B42 precipitation,
respectively, and three that pair the MERRA-2 lowest model level atmospheric
temperature with MERRA-2 Pmodel, MERRA-2 Pcorr, and TRMM 3B42 precipitation,
respectively. The lowest model level temperature fromMERRA-2 is chosen over
2-m temperature because MERRA-2 does not assimilate 2-m air temperature
whereas ERA-Interim does. From the two reanalysis products, 25 years of data for
the period 1991–2015 were used. Because the TRMM 3B42 precipitation data are
available only from 1998 on, analyses involving TRMM 3B42 data were conducted
over the period 1998–2015. In the global analysis of this study, to overcome the
computer memory constraint and to achieve a spatial resolution similar to the
climate models used, the reanalysis data were resampled to a coarser resolution by
skipping every other grid point in each direction, leading to a resolution of roughly
1.40◦ (lat)× 1.40◦ (lon) used for the ERA-Interim data and 1.0◦ (lat)× 1.25◦ (lon)
used for the MERRA-2 data; and the TRMM 3B42 precipitation data were
resampled to match the grid system used for each reanalysis product. This
resampling has negligible impact on the results of the analysis. To preserve the
characteristics of precipitation extremes, no spatial interpolation is conducted, and
resampling takes the raw data from the closest grid point.

Output from six global models is used, including CCSM4, HadGEM2-ES,
MPI-ESM-LR, CSIRO-MK3.6.0, BCC-CSM1.1, and IPSL-CM5A-LR. These are the
complete set of the Coupled Model Inter-comparison Project phase 5 (CMIP5)
models for which the Representative Concentration Pathway 8.5 (RCP8.5) run was
extended to the year 2300 with daily temperature and precipitation data available.
The extended RCP8.5 run is necessary to ensure a meaningful signal on how the
extreme precipitation–temperature relationship might change in a warming
climate. Model output during the period 2006–2030 is used for the model present
climate, and the period 2276–2300 for the model future climate. With the exception
of the CCSM4 model, for which the output was resampled by skipping every other
grid point in each direction, for all others the native spatial resolution of each
model was used. Instead of limiting the analysis of the model and observational
data to the period of CMIP5 historical runs (that end in 2005), here the 2006–2030
RCP8.5 period is used to represent the model ‘present’ climate, for comparison
with the 1991–2015 observational period (1998–2015 for TRMM). This is desirable
because more (and presumably better quality) observational data from recent years
have been assimilated to the reanalysis systems (of both ERA-Interim and
MERRA-2). It is also desirable to extend the record to 25 years for statistical
robustness. The incomplete overlap between observational and model periods does
not pose a problem for their comparison because the extreme
precipitation–temperature relationship curve does not show detectable changes
over the course of one or two decades.

All analyses were conducted based on daily data. The definition of daily
precipitation extremes for each grid cell is conditional on local temperature. First,
all daily precipitation at four grid points of the same grid cell within the analysis
period are ‘binned’ according to the corresponding temperature at each grid point,
and a temperature bin size of 0.5 ◦C is used. Within each temperature bin that
contains more than 100 data points, daily precipitation data are then analysed to
estimate the 99th percentile, and those exceeding the 99th percentile are averaged
to define the daily extreme for each bin temperature; for bins with less than
100 data points (which occurs only at the lowest and highest ends of temperature
range), statistics for precipitation extreme are set to missing value. The resulting
daily extremes corresponding to different bin temperatures are then smoothed
using 3-bin moving-window averaging, and the resulting statistics are used to
characterize the scaling relationship, to define the peak of extreme precipitation
intensity (Ppeak) and the local temperature at which it peaks (Tpeak), and to estimate
the exponential decreasing rate if a decrease of precipitation extremes at high
temperature is detected. The exponential rate of decrease is calculated over the

temperature range between Tpeak and the temperature 1 ◦C below Tmax, where Tmax

is the highest bin temperature for which there is sufficient data to support the
definition of a precipitation extreme.

To estimate the exponential scaling rate (r) underlying a change of extreme
precipitation from Pa to Pb when temperature increases from Ta to Tb, two different
approaches can be used. One describes the relationship empirically as
Pb=Pa(1+ r1)(Tb−Ta) (ref. 7), and hence the scaling rate r1 can be estimated as:

r1=(e
lnPb− lnPa
Tb−Ta −1)×100% (1)

The other makes use of the approximate form of the Clausius–Clapeyron equation
and describes the relationship as Pb=Paer2(Tb−Ta) (ref. 34) and hence the scaling rate
r2 can be estimated as:

r2=
lnPb− lnPa

Tb−Ta
×100% (2)

Equation (2) would be more appropriate when it is assumed a priori that
thermodynamics (therefore C–C scaling) dominates the difference between Pa and
Pb, which is not necessarily the case here. Therefore, in this study, equation (1) is
used to estimate the scaling rate on the decreasing branch of the extreme
precipitation–temperature curve for the present-day climate, which is negative and
its absolute value is presented in Fig. 2 and Supplementary Figs 2 and 3.
Equation (1) is also used to estimate the rate of Ppeak scaling with Tpeak based on
their changes between present and future climates, which is mostly positive as
shown in Fig. 4. Note that r2= ln(1+ r 1) , and for |r1|<1, the Maclaurin series
ln(1+ r1)= r1−(r 21 /2)+(r 31 /3)−(r 41 /4)+ . . . . Within the typical range of the C–C
scaling rate (5–10% per ◦C)23, higher-order terms are small and first-order
approximation leads to r1≈ r2. Therefore the two approaches produce largely
similar results.

The extreme precipitation analysis described above can be done with data that
lump all days of the years together, or with data for days of specific season(s) only.
Qualitatively the nature of the scaling relationship does not show clear seasonal
dependency; quantitatively, results based on the lumped data (as used in this study)
are dominated by data from the warm season (when convective precipitation
is dominant).

For any given criterion of extreme definition (for example, daily precipitation
exceeding the 99th percentile), instead of defining precipitation extremes
conditional on temperature (as is done for this study), unconditional precipitation
extremes were widely used in previous studies. The unconditional approach defines
the 99th percentile of precipitation based on all data points with no regard to
temperature, and the days with precipitation exceeding the 99th percentile are
extracted as the extreme days, and average among these days defines the
unconditional extreme (Pextreme). Past studies evaluating the scaling of precipitation
extremes with local temperature were mostly based on Pextreme and local mean
surface temperature (Tmean) (see reviews in ref. 18).

In defining both conditional and unconditional extremes, the definition of 99th
percentile in this study is based on all days and not just the rain days. For
applications in assessing changes of precipitation extremes, definition based on
all-day percentiles was recommended over the wet-day percentiles35.

Data availability. All data analysed in this study are publicly available. The
ERA-Interim data was obtained from the NCAR Research Data Archive
(https://doi.org/10.5065/D64747WN); the MERRA-2 data is available from NASA
Goddard Earth Sciences (GES) Data and Information Services Center (DISC) at
https://disc.sci.gsfc.nasa.gov/mdisc; and the TRMM 3B42 data is available from
GES DISC at https://disc.gsfc.nasa.gov/precipitation. The Global climate models
output can be obtained from the CMIP5 archive accessed through the Earth System
Grid Federation data portal (http://esgf.llnl.gov).
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