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people often can express their questions and commands more easily
using natural language than by translating their intentions to interface
actions [6, 24].

While recent research has explored touch and natural language in-
put, each modality largely has been explored on its own. Prior work
within the HCI community has shown, however, that multimodal inter-
action can significantly enhance user experience and system usability.
For instance, in a study comparing the use of speech and pen-based in-
put individually to a combination of both input modalities in the con-
text of an interactive mapping system, evaluations showed that mul-
timodal interaction significantly improved error handling and reliabil-
ity: people made 36% fewer errors with a multimodal interface [46].
A recent evaluation of an NLI for visualization also indicated poten-
tial value in combining direct manipulation and natural language as
complementary interaction techniques [60].

In our work we explore multimodal interaction with visualization,
with a particular focus on network-based data. Network visualizations
are useful for describing and exploring data relationships in many do-
mains such as transportation planning [39], biology [41], and the social
sciences [43]. Interaction plays an important role in network visual-
ization systems because users need to engage with elements of interest
(e.g., nodes, links) and interact with interface widgets (e.g., sliders,
dropdown menus) in order to better understand the data.

Until now, little work has been done in exploring natural language
and multimodal interfaces for network visualizations. We hypothesize
that the freedom of expression provided by natural language can be a
powerful addition to direct manipulation-based network visualization
tools. Natural language combined with direct manipulation may fa-
cilitate a better analytical flow by allowing people to more naturally
communicate operations such as finding nodes and paths, even while
interacting with different parts of the visualization system.

While multimodal interfaces for network visualization appear to be
a promising idea, clearly further research and evaluation is needed to
determine whether the conjectures above are true. Will such inter-
faces facilitate common network exploration and analysis tasks? Will
they lead to an improved user experience? To answer such questions,
we developed a system, Orko, that facilitates direct manipulation and
natural language based multimodal interaction with network visualiza-
tions. The primary contributions of our work are as follows:

• Building upon existing visualization task taxonomies, we high-
light the types of queries and interaction patterns that a multi-
modal network visualization tool needs to support.

• Through the design and implementation of Orko, we exemplify
how multimodal input can be processed to generate context that
can be used to complement the individual modalities. We discuss
how coupling this context with time lags between inputs helps
facilitate unimodal (touch or speech only), and simultaneous or
sequential multimodal interaction with a given visualization.

• We report observations from an evaluation of Orko that show
people naturally use multimodal input when performing network
visualization tasks. Further, we discuss varying preferences for
modalities and interaction patterns highlighting the need for fu-
ture visualization tools to further explore multimodal interaction.

2 RELATED WORK

Networks have been studied extensively by the visualization commu-
nity. Many existing systems (e.g., [5, 19, 66]) allow people to inter-
actively explore networks by visualizing them using different layouts
and representations. Various researchers have proposed different task
taxonomies for network visualizations. Lee et al. [33] present a list
of tasks commonly encountered while analyzing network data. They
define network specific objects and demonstrate how complex tasks
could be seen as a series of low-level tasks [2] performed on those
objects. Pretorius et al. [53] give an overview of the entities and prop-
erties of multivariate networks and present a taxonomy for general vi-
sualization tasks. They describe how multivariate network tasks can
be composed of lower-level tasks of the general taxonomy. Saket et
al. [57] present a group-level task taxonomy for network visualizations

and characterize a subset of the proposed tasks using a multi-level ty-
pology of abstract visualization tasks [11]. As part of our work, we uti-
lized these taxonomies to understand the tasks that our system would
need to support and the types of questions people may ask.

A large part of our motivation to explore input modalities (e.g., nat-
ural language and touch) that are afforded by post-WIMP interfaces is
based on opportunities and challenges highlighted by Lee et al. [32].
The authors specifically identify “going beyond the mouse and key-
board” and “providing a high freedom of expression” as two of the
five key opportunities for research within the visualization commu-
nity. Given the widespread adoption of direct manipulation as an in-
teraction technique, visualization systems on post-WIMP interfaces
have largely been explored using touch-based input [8, 18, 45, 54–56].
Along similar lines, there has been work exploring network visual-
izations, particularly node-link diagrams, on post-WIMP interfaces.
Schmidt et al. [59] proposed a set of multi-touch gestures for selec-
tions in network visualizations. Frisch et al. [20] explored how people
interact with network visualizations on interactive tabletop surfaces
using multimodal interaction in the form of touch and pen-based in-
put. More recently, Cordeil [15] et al. investigated the relative advan-
tages of immersive technologies like CAVE-style environments and
low-cost head-mounted displays (HMDs) for collaborative analysis of
network connectivity.

Another input modality that has recently gained renewed interest for
data analysis and visualization is natural language. There are several
NLIs that allow users to ask questions of their data in the context of
databases (NLIDBs) [1,4,30,62]. More recently, Li and Jagadish [35]
showed how even novice users were able to specify complex SQL
queries using natural language. NLIs for visualization, have been ex-
plored both in the research community and as commercial software
(e.g., IBM Watson Analytics). Cox et al. [16] presented some of the
earliest work in the space of NLIs for visualization. They combined
natural language and direct manipulation in a data visualization envi-
ronment and showed that multimodal input provides more expressibil-
ity than a single modality [49]. The Articulate system [64] presents
a natural language interface for visualization. It maps user queries to
tasks and uses these tasks in combination with data attributes to gen-
erate required visualizations. DataTone [21] is another system that al-
lows users to generate visualizations using natural language queries. It
specifically focuses on detecting ambiguity in natural language queries
and uses a mixed-initiative approach to resolve this ambiguity and help
users iteratively construct visualizations. Kumar et al. [31] present Ar-
ticulate2 an initial prototype of a conversational interface for visualiza-
tion which aims to explore the dialogue between a user and a system
to generate visualizations. The Eviza system [60] presents a visual-
ization and allows users to ask questions in the context of the given
visualization. In doing so, Eviza enables users to have an interactive
conversation with the system. By emphasizing the ability for a user to
continually revise and update their queries, Eviza seeks to provide a
rich dialog with the visualization.

We also use the context of a given network visualization as a starting
point for a conversation between our system and its users. Our work
builds upon techniques presented by prior work and extends them to
support tasks required to interact with network visualizations. We
use a combination of grammar-based and lexicon-based parsing tech-
niques to interpret natural language queries. Further, while existing
NLIs for visualization facilitate some level of multimodal input (e.g.,
Eviza lets users ask a query and then select points on a map), these sys-
tems focus more on responding to user queries rather than exploring
how people may use multiple modalities. Additionally, most existing
NLIs focus on WIMP-based settings and largely let users interact via
a mouse and keyboard.

The broader HCI community, on the other hand, has explored mul-
timodal interfaces facilitating natural language in post-WIMP set-
tings [65]. Possibly the first, and one of the best known multimodal
systems was presented in Bolt’s article “Put-that-there” [9] in 1980.
Following this, there were many systems that explored multimodal in-
teraction using a combination of of touch or pointing devices and natu-
ral language for a variety of applications including graphics manipula-

Explicit

Find Ronaldo. — Show Pepe’s connections. — Show connections between Pogba and Bale. — Show the shortest path 
from Evra to Kroos. — Color by position. — Size nodes by betweenness centrality. — What is the clustering coefficient 
of this network. — Only show German forwards. — Clear all filters. — Resize graph to fit the screen. — Add a filter 
widget for country. — Change value of the age slider to show players over the age of 30. — Change red nodes to blue.

Follow-up 
& 
Contextual

Are any of these players right footed. — Filter by this player’s club. — Show connections of these players. — Do any of 
these players play for the same club and national team. — Show the different countries players come from. — Ronaldo 
and Rooney. — Color nodes by country > Now club > How about position?

High-level

How are France and Italy connected. — Players from which countries tend to play more with clubs in the same country. 
— Which clubs have more left footed players. — Which countries have highest number of common players. — Modify 
the network layout to focus on England players. — Which three nodes have highest betweenness centralities. — Modify 
layout to show least edge crossings. — Find clusters.

(a) Possible query types (b) Different ways of asking the same query

Show nodes connected to Ronaldo.

Show Ronaldo's connections.
Find players linked to Ronaldo.
Highlight players who play with Ronaldo.
Which players play in the same team as Ronaldo.
Show nodes directly connected to Ronaldo.
Find nodes adjacent to Ronaldo.
Show Ronaldo's teammates.
Who all is Ronaldo directly connected to.
Find players with a direct link to Ronaldo.
Find direct connections of Ronaldo.
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leagues. We use a python based AIML interpreter (PyAIML) trained
with the AIML files to parse incoming query strings. The interpreter
builds a directed pattern tree and employs a backtracking depth-first
search algorithm for pattern matching. For a given query, the grammar
parser seeks to identify operations (Figure 3) specified and substrings
containing references to attributes or values the operations apply to
(analogous to a set of non-terminal symbols in a context-free gram-
mar [17]). If there is no matching pattern found, the entire query is for-
warded to the second parser, else, only the target referencing substring
is sent to the lexicon-based parser. For instance, given a query like
“Show connections of Ronaldo”, the grammar parser identifies that
the operation is find connections and the target is ‘Ronaldo’ (which is
sent to the second parser). Alternatively, a query like “Show only if
Barcelona and left foot” may not match an existing pattern and will be
forwarded as-is to the lexicon-based parser. The lexicon used consists
of attributes derived from the dataset (e.g. goals, country, names) and
manually specified keywords (e.g., teammates, adjacent, striker) that
help identify attributes, values, and operations in a given query. Some
of these keywords are generic and apply to multiple datasets (e.g.,
adjacent) while others are dataset specific (e.g., striker, teammate).
While we leverage existing lexical databases like WordNet [42] to sup-
port using synonyms (discussed further below), there always will be
dataset-specific cases that are not supported by such general databases
(e.g., using “striker” instead of “forward” for position). For such cases,
in our current implementation, both, domain-specific grammar pat-
terns and dataset-specific keywords should be manually added the first
time a dataset is loaded.

Given a portion of the query or the entire query string, the lexicon-
based parser first performs stemming and removes stop words (with
the exception of conjunction/disjunction phrases). It then extracts n-
grams (with n ranging from 1 to the number of words in the input
string). For each n-gram, it identifies POS tags (e.g., noun, verb) and
entity types (e.g., person, location, organization) using NLTK [36] and
Stanford CoreNLP [40]. n-grams not containing entity types relevant
to the dataset or values that may apply to filters (e.g., numbers) are
discarded. This filtering helps improve performance by ignoring n-
grams that do not contain relevant information. Next, the relevant n-
grams are compared to logically similar lexical entries (those that have
related POS tags or entity types). This similarity-based comparison
again helps improve performance by avoiding matches against poten-
tially irrelevant values (e.g., comparing people to locations). Build-
ing upon existing work [21, 60], we use the cosine similarity and the
Wu-Palmer similarity score [70] when comparing n-grams to lexi-
cal entries. These scores help in detecting both syntactic (e.g., mis-
spelled words) and semantic (e.g., synonyms, hypernyms) ambigui-
ties. If there are no operations identified by the grammar parser, sim-
ilar to Gao et al. [21], we use keyword-matching and a combination
of POS-tags and dependency parsing techniques [40] to identify op-
erations specified in a query. In summary, for the query “Show only
if Barcelona and left foot”, the lexicon-based parser identifies a filter
operation, a club (“Barcelona FC”), and a value for foot (“left”).

4.4.2 Managing multimodal input

In addition to its focus on network visualizations, Orko’s primary dif-
ference compared to related systems (e.g., [16, 60]) is its support for
various multimodal interaction patterns listed in DG2. As an example
of the input patterns the current framework supports, consider the case
of finding connections of a set of top goal scoring players for England.
A user could accomplish this via only touch by applying multiple fil-
ters (for country and goals) and double tapping nodes to highlight con-
nections. Instead, one could also use speech alone to perform the same
task (using a single query like “Show connections of English players
with more than 20 goals” or multiple smaller queries). Alternatively,
a user could use a combination of the two modalities and: (1) apply
filters (via touch) and follow it with a spoken query (e.g.,“show adja-
cent nodes”), or (2) apply filters via speech and then double-tap nodes,
or (3) do both filtering and uttering a query simultaneously (starting
with either of the two modalities). In cases (1) and (3), the context
generated by one input is used to complement the second and high-

light connections of the filtered nodes. For (2), the system processes
the two inputs individually as described in the subsection above, pre-
serving filters from the spoken query.

To support the patterns described above, the system needs to first
classify input patterns and then share relevant information collected
across input modes to appropriately respond to the user input. To ac-
complish this, Orko first classifies an input pattern as unimodal, se-
quential, or simultaneous. To classify an input pattern, we use a com-
bination of interface context and time lag between user inputs. The in-
terface context is tracked using an object that stores information about
active/highlighted nodes, filters applied, encodings used, previous in-
teraction modality used, and operations and target values in the last
specified query. Both the interface manager and the query processor
continually update this context object based on user inputs and actions.

When a user input (touch or speech) event occurs, we check in par-
alell if there is a change in the modality used between inputs. If so,
we further check if there is any missing information in the input (e.g.,
missing target value in a query) and a corresponding interface context
that can be applied to the current input. For example, if a user selects
two nodes (via touch) and then issues a query “Find connections”,
Orko can leverage the context of the selected nodes and apply it to the
user query. We use a heuristic approach and mappings between opera-
tions and attribute types (Figure 3) to decide if a context applies to an
input. However, an applicable interface context could be generated in
both sequential and simultaneous input.

To differentiate between the two, when there is an applicable in-
terface context, we also check the time lag between the previous and
recent input. Based on prior work on multimodal input patterns [51]
and our pilot studies, we differentiate between sequential and simul-
taneous input based on a time lag of two seconds between modalities.
We make this differentiation to decide when context from the previous
input should not be applied to the current one. For example, consider
a case where there are no selected nodes and a user issues a query
“Show nodes connected to” and follows it by a long pause. Now, the
user adds a filter (via touch) to highlight the Spanish players. If the
context from the query is applied by default, connections of the fil-
tered nodes will automatically be shown. However, after such a pause,
it is likely that the user was trying to perform a new filter action and
wanted to ignore the previous query. In such cases, since we know that
the pattern in this case was sequential, we can choose to not apply the
system context and ignore the previous query instead.

4.4.3 Supporting follow-up queries and query refinement

To handle follow-up queries (discussed in Section 3), we implement a
conversational centering [26, 27] (or immediate focusing [25]) based
approach. The centers are maintained by the query processor and in-
clude operations, attributes, and values. We retain, shift, or continue
centers across utterances [27] depending on the information shared or
added between queries. Consider the query “Show only Real Madrid
players” followed by “Show strikers”. In this case, the club filter “Real
Madrid” is retained across queries, and a position filter (“striker”) is
added after the second query (a continue operation). Now, when an-
other query “Show defenders for Barcelona” is presented, the center is
shifted to “defender” and “Barcelona FC” respectively.

Since we wanted to test Orko in a speech+touch setting where typ-
ing to modify specific parts of a query or repeatedly uttering similar
queries can become tedious, while designing Orko, we also considered
interface elements that may assist users in modifying their queries.
We considered ways in which we could assist users to ask follow-
up queries that refer to the same operation but different target(s) (e.g.
“Show Real Madrid players” followed by “Show Barcelona players”).
Such queries can be very common during network exploration, partic-
ularly while users try to scan through different node groups. To assist
in constructing such follow-up queries, Orko adds query manipulation
widgets (dropdowns and sliders) to the action feedback row highlight-
ing the domain of input values for an attribute alongside the operation
being performed (e.g., Figure 6a). Hence, for the club example dis-
cussed above, the user can specify a filter by club query once and then
keep updating the club names for consecutive queries using the drop-
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using the system if desired. Participants were then given a post-session
questionnaire that consisted of SUS questions and questions asking
them about their experience with Orko. We also conducted informal
interviews asking the participants about what they liked/disliked most
about the system and recorded their their responses as audio files. Ses-
sions lasted between 40-60 minutes and participants were given a $20
Amazon gift card.

5.3 Results and Observations

5.3.1 System Usability Scale responses

All participants attempted each of the 10 tasks and on average, pro-
vided correct responses for 8.67 tasks. Figure 7 (right) summarizes
overall SUS scores. Participants gave Orko an average SUS score of
75.42. SUS scores have a range of 0 to 100 and a score of around
60 and above is generally considered as an indicator of good usabil-
ity [38]. The SUS scores indicate that even though the prototype is
in its initial stages, participants in general found the interface and the
interactions facilitated by Orko usable.

5.3.2 Interaction Patterns and preferences

Figure 7 (left) summarizes interactions for the six participants for each
study task (descriptions provided as supplementary material). The cell
values indicate the number of times an input modality was used to
accomplish operations in Figure 3. For example, for a find connections
operation, P1 used a combination of speech and touch (find query +
double-tap) once and two speech queries (find + find connections) the
second time (first and second row of the table respectively).

Of 181 total constructions, 92 (50.8%) instances of just spoken
queries arose, unimodal touch accounted for 55 (30.9%), and mul-
timodal interaction where both speech and touch were used sequen-
tially made up the remaining 33 (18.3%) constructions. No instances
existed where modalities were used simultaneously (a myth of multi-
modal interaction [47]). However, all participants used more than one
input modality at least once while performing the study tasks. Interac-
tion patterns varied for the same task across participants (e.g., P1 per-
formed task T1 using a multimodal pattern of speech+touch whereas
P2 performed the same task using a single speech query). Similarly,
individual participants’ patterns varied as they performed similar tasks
multiple times too. For instance, P6 performed task T5 using a series
of spoken, touch, and multimodal interactions but when performing a
similar task T6, used only speech.

In general, speech was typically used for search, filtering, and
topology-based tasks involving multiple nodes (e.g., finding path and
common connections). Touch, on the other hand was typically used
for tasks like highlighting connections of individual nodes and chang-
ing values of existing graphical encodings. However, preferences for
modalities also varied across task types (Figure 3). For instance, for a
find connections task, four participants (P1, P3, P4, P5) generally used
a combination of speech (for find) and touch (for finding connections)
whereas the remaining two participants used only spoken queries to
see connections (P2, P6). For filtering, all participants used speech at
least once (typically at the beginning). For the spoken queries, two par-
ticipants (P1, P4) used longer queries with multiple filters (e.g., “Show
Barcelona midfielders”) whereas three participants (P2, P5, P6) used
multiple single filter queries. One participant (P3) typically followed a
spoken query with touch interactions for modifying filters. Preferences
even varied for less-visualization specific tasks such as coloring and
sizing. Four participants mostly used spoken queries to change node
color/size whereas two (P3, P6) often used a combination of speech
and touch for the same.

The use of multiple modalities (individually and together) to ac-
complish tasks and the variable nature of interaction patterns across
participants highlights the need and potential value of multimodal in-
terfaces that accommodate such varying user preferences.

Natural language interaction and interpretation. Participants
commended Orko’s natural language capabilities and felt it interpreted
queries fairly well (Figure 7-right). Multiple participants were initially
skeptical about natural language input based on their previous experi-
ences but were pleasantly surprised by the system’s capabilities and

the usefulness of speech input. For instance, P6, who reported that
she frequently used applications like Siri and Notes stated “I was sur-
prised by the speech feature. I did not expect it to work as well as
it did”. She also mentioned that speech not only worked well but
actually improved her experience with visualization tools. She said
“having worked with many visualization programs before, having to
go through and manually clicking is really annoying epecially when
you have a ton of dropdowns. So I really like the speech feature, I
know it’s still in a rudimentary stage but it does a really good job”.

In terms of query interpretation, there were only seven instances
where Orko either did not respond or responded incorrectly to a query.
Some of these were queries included operations that were not yet sup-
ported (e.g., layout change) while others queries had multiple values
that were not separated by conjunctions. For example, for the query
“Show connections of Rooney McCarthy and Stones” P5 expected the
system to find connections of three players. The system, however, only
showed connections of two players (Rooney and Stones), but still list-
ing McCarthy within the ambiguity tooltip widget (Figure 6b). In such
cases, participants typically thought of an alternative way to perform
operations via touch or broke the query further into more explicit ones.

Although speech recognition was viewed favorably by participants
in general, it was not perfect. On average, 16% of queries were
missed or incorrectly translated from speech-to-text. The percentage
was higher for some participants (e.g., 30% for P3) due to variations
in accent and speaking tone. Speech detection issues did cause some
frustration among participants. For example, P3 stated “It was a little
frustrating when the system did not understand my voice or did not
react at all to voice”. Ambiguity widgets did help for incorrectly de-
tected player names, but only twice. Participants typically used the
virtual keyboard to fix their utterances since it happened only occa-
sionally. The more common case was the system failing to detect
queries. In such cases, participants either repeated queries by tapping
the � icon (Figure 1A) or used touch input to proceed with the task.
For example, when the system did not detect a participant’s (P4) find
connections query, the participant simply double-tapped the node to
see its connections.

These observations further motivate the need to study multimodal
interaction for visualization systems. With a growing number of NLIs,
such examples show how users can leverage alternative modalities to
counterbalance issues such as speech detection in NLIs.

Contextual and follow-up queries Based on prior work that has
shown a high preference for queries where touch (or pen) is followed
by speech input [51,69], we hypothesized that such contextual queries
(Figure 2a) would be a common pattern. However, this was not the
case. Only two participants (P2, P6) uttered such contextual queries
that referred to nodes highlighted via touch interaction. Both P2 and
P6 used a contextual query when highlighting connections within a
group of nodes. They applied a country filter through the dropdown
and then said “Show the connections of these nodes” (P2) and “High-
light connections” (P6). However, we suspect the nature of the study
tasks and prior experience of participants with visualization tools may
have had an effect on the reduced usage of this pattern. Observing
users (including novice users) perform more open-ended tasks and ex-
ploring the use of contextual queries in the context of other visual-
izations is certainly a direction for future work. Additionally, Orko
currently only supports a limited number of touch gestures. Three par-
ticipants (P1, P4, P5) also expressed a desire in having more expressive
multitouch gestures to select and move groups of nodes. Exploring if
the availability of additional multitouch gestures [59] increases the use
of contextual queries is another open question.

For follow-up utterances, queries involving continue opera-
tions [27] were most common (e.g., adding new filters). Follow-
up queries with references to new values (e.g., “Filter to show Real
Madrid” > “now Barcelona” > “now strikers”) were only used five
times (thrice by P2 and twice by P5), all during a filtering operation.
Instead, participants preferred to repeat entire queries (e.g., “Filter to
show Real Madrid” > “Filter to show Barcelona” > “Filter by strik-
ers”) and often also repeated existing filters (e.g., “Filter to show strik-
ers” > “Show only strikers for England”). Given this behavior, the

P1 P2 P3 P4 P5 P6
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Fig. 7. (Left) Summary of interactions per study task for each participant. S: Speech, T : Touch, ST : Sequential speech+touch, TS: Sequential
touch+speech. (Right) Participant respones for specific SUS questions and Orko’s query interpretation

query manipulation widgets were not frequently used. Based on these
observations, we believe future work could focus more on exploring
elements like ambiguity widgets [21] and ways to help users correct
their queries and potentially less on how systems could help users ask
follow-up questions.

5.3.3 Reaction to system feedback and proactive behavior

A recent analysis of NLI utterances to visualization systems [63] high-
lights instruction and feedback as well as proactive system behavior as
two areas for data visualization NLIs to explore. Along these lines, in
Orko, we present both audio and textual feedback when responding to
natural language queries. However, even after multiple modes of feed-
back, one participant (P2) repeated his query twice before he realized
the query had already been executed. P2 also expressed that he would
like the system to show the possible space of input queries and said
“If the system used the keyboard, an auto-complete function would be
very helpful”. Such observations and feedback indicate that we need
to explore more ways to surface feedback and potentially expose the
input query space on post-WIMP interfaces.

Orko exhibits proactive behavior with its suggestion of tasks for un-
derspecified queries and by rearranging the summary charts based on
user interactions and queries. The task suggestion feature was only
triggered thrice (twice for P5 and once for P3). In both cases, the par-
ticipants did not detect it and went on to change their query indicating
that the feature needs improvement and more importantly, needs to be
surfaced in a more detectable way. All participants used the summary
charts at least once. Three participants did not realize the charts were
changing order but the ones who did (P1, P2, P4) stated they liked the
system behavior. P2 stated “I enjoyed how quickly the system filtered
and changed the settings like color and size of the nodes and provided
summary statistics like goals, age, market value”. The reordered sum-
mary charts also helped trigger new questions in participants’ minds.
For instance, after applying a club filter, one participant (P1) scanned
the summary charts to realize that there was an attribute for position
and said “Oh yeah! There’s position too” and asked the system to filter
based on one of the position values. Based on the feedback and our ob-
servations, we feel that adding such proactive behavior to complement
interactions within the main visualization was a useful design choice.
As future work, similar system behavior should be explored to help fa-
cilitate an analytical conversation between users and multimodal (and
NLIs) visualization systems.

5.3.4 Participants’ feedback on multimodal interaction

Participants overall felt that the various features of the system were
well integrated (Figure 7-right). They generally found the multimodal
interaction to be intuitive and stated they would want to use such a sys-
tem frequently (Figure 7-right). One participant (P3) wrote “It was fun
to use and a very intuitive way to explore a network.”. Other partici-
pants even stated that they felt direct manipulation and speech-based
multimodal input should become a part of network visualization tools
in general. For example, one participant (P4) who works with network
visualizations almost on a daily basis wrote, “The ability to perform
simple actions like “find node” and “find path between two nodes”
was really fun to use, and I see this being highly used in general net-
work visualization tools, especially for novice users”. He further stated

that he felt that the speech input worked particularly well for naviga-
tion and topology-based tasks. He suggested that the natural language
modality for such tasks would be a great addition to keyboard and
mouse based network visualization systems and it can speed up per-
formance. He did state, however, that he still wanted to use direct
manipulation for tasks like selecting specific values for graphical en-
codings or tuning parameters for analytical operations, emphasizing
that he wanted both modalities.

6 FUTURE WORK

Facilitating network presentation tasks. One particularly interesting
category of tasks that emerged from our experiment were network pre-
sentation tasks. Three of the participants mentioned that they found the
ability of being able to spatially drag and pin nodes useful. As stated
earlier, some of these participants even wanted to drag and pin entire
groups. During the session, one participant (P5) even asked “Can I ask
it to modify the layout to something other than force-directed?”. Such
observations indicate potential value in exploring ways in which we
can help people accomplish network presentation related tasks such
as layout modification, bundling or untangling edges, and minimizing
edge crossings. Particularly with natural language, one can even envi-
sion layouts being set automatically by the system in response to user
queries. Another possible extension of this idea is the system suggest-
ing alternative representations (e.g., a matrix instead of a node-link
diagram) that can be most effective in answering a given question.

Exploring additional classes of networks. As part of our current
work, we have primarily used Orko to explore multivariate, undirected
networks. While interactions supported by Orko are rather generic
and can be used in other network types such as directed and multipar-
tite networks, we need to explore other types of networks further to
identify and support network-specific tasks that people may want to
perform. For instance, for a temporal network, in addition to consid-
ering what questions people want to answer and how they ask those
questions, considering how multimodal interaction can be leveraged
for tasks such as navigating through temporal variations in the net-
work structure is another direction for future research.

7 CONCLUSION

We introduced Orko, a network visualization tool facilitating multi-
modal interaction via natural language and direct manipulation (e.g.,
touch) input. To explain the difficulty of providing such an inter-
face, we highlighted challenges associated with interpreting natural
language in such a multimodal setting. We presented Orko’s architec-
ture describing how it processes multiple input modalities and facili-
tates multimodal interaction. Through an example scenario of use and
descriptions of Orko’s capabilities, we sought to illustrate its innova-
tive approach and potential for a new style of network exploration and
data analysis. We reported results from an evaluation study of Orko
and used our observations to discuss opportunities and challenges for
future work in multimodal network visualization interfaces.
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