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ABSTRACT

The HPC community is actively researching and evaluating tools to

support execution of scientific applications in cloud-based environ-

ments. Among the various technologies, containers have recently

gained importance as they have significantly better performance

compared to full-scale virtualization, support for microservices and

DevOps, and work seamlessly with workflow and orchestration

tools. Docker is currently the leader in containerization technology

because it offers low overhead, flexibility, portability of applications,

and reproducibility. Singularity is another container solution that

is of interest as it is designed specifically for scientific applications.

It is important to conduct performance and feature analysis of the

container technologies to understand their applicability for each

application and target execution environment.

This paper presents a (1) performance evaluation of Docker and

Singularity on bare metal nodes in the Chameleon cloud (2) mecha-

nism by which Docker containers can be mapped with InfiniBand

hardware with RDMA communication and (3) analysis of mapping

elements of parallel workloads to the containers for optimal re-

source management with container-ready orchestration tools. Our

experiments are targeted toward application developers so that

they can make informed decisions on choosing the container tech-

nologies and approaches that are suitable for their HPC workloads

on cloud infrastructure. Our performance analysis shows that sci-

entific workloads for both Docker and Singularity based containers

can achieve near-native performance.

Singularity is designed specifically for HPC workloads. However,

Docker still has advantages over Singularity for use in clouds as

it provides overlay networking and an intuitive way to run MPI

applications with one container per rank for fine-grained resources

allocation. Both Docker and Singularity make it possible to directly

use the underlying network fabric from the containers for coarse-

grained resource allocation.
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1 INTRODUCTION

Containerization technology has gained significant traction in re-

cent years. Containers are the appropriate tool for software de-

velopment landscape that has adopted microservices and DevOps.

Containers have several well known benefits for use in cloud envi-

ronments: (1) support for a uniform environment for testing and

deploying applications; (2) seamless and continuous updates of

microservices; and (3) agility to support different languages and

deployment platforms.

When containers were initially adopted for micro-services based

architectures in the industry, they did not attract the attention of

HPC community wherein the focus is primarily onMPI applications

for large parallel tasks. Containers were also initially shunned

due to reports of possible root escalation vulnerabilities. However,

the growing list of features along with the potential to provide

high performance, along with portability and reproducibility from

development to production environment, has made it critical to

evaluate current container technologies for HPC applications in

the cloud.

Docker [5] containers are known as lightweight Virtual Ma-

chines, which provide networking capabilities and dedicated com-

putational resources. Singularity containers are designed to effi-

ciently in conventional HPC environments. While Slurm [11] is the

most widely used scheduler for HPC applications, the industry has

successfully used open source technologies in the cloud such as

Apache Mesos [3] and YARN [10] for resource management, and

container orchestrators like Kubernates [9] and Docker Swarm [6].
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As there is support for Docker with these technologies, container-

ized HPC applications can also avail features such as container

migration, resource fairness, and fault tolerance.

Singularity is designed to use the underlying HPC runtime en-

vironment for executing MPI applications, whereas Docker is de-

signed to isolate the runtime environment from the host. Also,

Singularity focuses on coarse-grained resource allocation whereas

Docker can take advantage of the fine-grained allocation of re-

sources per rank.

HPC centers and academic clusters currently do not widely sup-

port Docker due to reports of security concerns that root escalation

is possible. However, this vulnerability is not a concern in cloud

allocations wherein users have root privileges to run their appli-

cations and other security modules provide separation between

different allocations. As containers keep expanding support for run-

ning HPC tasks in the cloud, it is critical to quantify the impact on

performance, support for orchestration and scheduling/placement

of containers on the resources.

The features of interest to the HPC community, which we present

in this paper, include (1) evaluation of support for Infiniband and

RDMA communication across MPI ranks; (2) mapping of sshd ports

between the container and host machine; (3) determining over-

head of containers compared to bare-metal access for memory, cpu,

and communication intensive tasks; and (4) study use of overlay

networks by container orchestration tools and its effect on HPC

applications.

Our experiments were conducted on an NSF funded academic

Chameleon cloud [4]. It provides a utility called "Complex Ap-

pliances," which offers accessible cluster configurations for the

acquired nodes. One of the appliances is called "MPI bare-metal

cluster," which comes with "MPICH2" library on CentOS 7 based

image. Chameleon Cloud provides InfiniBand supported bare metal

nodes.

• Wemapped InfiniBand devices of the host machine to Docker

containers for RDMA communication across MPI ranks.

• We quantified the performance overhead of MPI applications

when run in containers and compared with their bare metal

performance. For this evaluation, we used both the host and

Docker’s overlay network to execute the MPI benchmarks.

With Docker, we orchestrated containers using different

approaches:

(1) We ran the container's sshd on a non-standard port and

mapped the port with host machines. One container per

host was used in this approach such that the container

and host node use the same IP address, but run sshd on

different ports.

(2) We used an overlay network, provided by Docker Swarm,

which spans across multiple host nodes. We created a one

container per node setup and plugged all of them to the

same overlay network. This network assigned separate IP

addresses to all containers under the same subnet address.

(3) We used a similar setup as approach (2), but used multiple

containers per host node attached to the common overlay

network.

• We used different classes (CPU , memory, and latency sen-

sitive) of MPI applications for benchmarking. We observed

for fixed number of MPI ranks how the performance varies

when the number of nodes changes in the cluster. We also

compared communication with InfiniBand vs Ethernet for

the different classes of applications.

2 BACKGROUND

Linux container (LXC) provides a virtual layer on top of the Linux

host Operating System (OS) allowing multiple Linux systems to run

in isolation. Containers separate the runtime environment from the

underlying host resources and networking capabilities. Containers

primarily rely on the use of namespace and cgroups to provide

isolation, which enables users to run numerous applications in

isolation on different containers on the same host. Additionally,

due to the system level of abstraction, a container can freely move

between host machines that support the container’s runtime envi-

ronment. Docker is the leading container solution widely accepted

in industry. Docker has gained widespread acceptance in the re-

cent years as can be seen by the support in resource managers

and orchestration frameworks like Apache Mesos and Kubernetes.

Another container technlogy that has gained the attention of the

community is Singularity. It has been developed for scientific appli-

cations keeping the HPC eco-system as the focus. In the following

subsections, we introduce these container mechanisms and their

associated capabilities.

2.1 Docker Container

Docker can be considered a high-level user-space Linux utility,

which can build, run and ship containers across hosts. Docker pro-

vides an isolated runtime environment. It is a lightweight Virtual

Machine (VM) that has a networking configuration under a subnet

and dedicated computational resources. A traditional VM abstracts

the underlying hardware from guest OS, whereas Docker container

provides one or more levels of abstraction by hiding the underly-

ing host OS. Unlike other container solutions, Docker provides a

virtual network, on top of the host machine, which can connect

all containers to provide a convenient and secure inter-container

communication.

2.2 Docker Swarm Mode

While containers provide a flexible packaging solution for building

and shipping applications, additional tools are needed to manage

the orchestration of multiple containers when running a distributed

application. Docker Swarm addresses this need. It provides native

support to manage the Docker container orchestration. This or-

chestration tool offers a software-defined overlay network across

all participating host machines. In this setup, containers reside un-

der the same virtual network and communicate with each other

without any other networking configurations. An application can

run as part of a swarm service, which can be scaled up and down

as required. Swarm also can provide an attachable overlay network

where containers from any host can be connected during creation,

and all attached containers can be part of the same network.

2.3 Singularity Containers

Singularity has gained traction in the scientific community for its

in-built support to integrate with the Message Passing Interface
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(MPI). Singularity provides an easy packaging mechanism for appli-

cations along with a user friendly runtime execution environment.

Singularity is designed to execute containers like a normal process

in the host machine. This feature makes the integration of Sin-

gularity with the HPC schedulers easy. A fundamental difference

with Docker container is the file format Singularity uses to store

the image. Unlike Docker, which uses multiple layers, Singularity

stores the entire image as one large file. Singularity hub provides

the repository to save and maintain public Singularity container

images.

2.4 InfiniBand

InfiniBand is well known for providing high throughput and low

latency communication in distributed and parallel applications.

For simplification, InfiniBand uses two channel adapters (CA) (1)

Host CA (HCA) and (2) Target (TCA). Among the two channel

adapters, only HCA provides visibility of the underlying hardware

and software necessary for communication. The OpenFabrics Al-

liance controls the standard for developing software stack for the

RDMA through InfiniBand. Vendors design and implement custom

Verbs interfaces following the Verbs’ specifications, which aims to

address the interfaces that abstract the hardware components.

3 EXPERIMENTAL SETUP

We acquired six bare metal nodes from the Chameleon Cloud plat-

form equipped with Mellanox InfiniBand interconnect. Each node

consists of 48 cores and 128GB of RAM. Initially, each MPI bench-

mark was profiled to understand its characterization. For our ex-

periments, a bare-metal execution is considered the baseline per-

formance. We then use it to derive the respective performance vari-

ation for each containerization approach. Our set of benchmarks is

composed of HPCG and miniFE for measuring the computational

work, OSU-Micro benchmarks for measuring latency, and KMIHash

to profile memory bound applications. Each benchmark is profiled

using experimental setups described in Table 3. We conducted ten

iterations of each experiment and report the average.

Benchmarks Description

HPCG High Performance Conjugate Gradient

MiniFE Unstructured finite element solver

OSU Latency over MPI ranks

KMI Hash Memory intensive integer operation

Table 1: Software Stack and Version

Software Version

Linux CentOS 7.4.1708

Open MPI Open MPI-3.0.0

Infiniband ConnectX3

Drivers Mellanox OpenFabrics Enterprise Distri-

bution

Table 2: Software Stack and Hardware Components

3.1 Bare Metal Nodes + InfiniBand (IB)

Cloud bare metal nodes with InfiniBand hardware were used

int this setup. Open MPI 3.0.0 was configured with Mellanox inter-

connect driver, ConnectX3, for accessing InfiniBand hardware to

facilitate RDMA communication. Each MPI benchmark in Table 1

was installed separately on each node. Experimental results for

each benchmark obtained by this configuration is considered as the

base, and performance deviation of each containerization approach.

3.2 Docker: one container per node, host
network + InfiniBand

Figure 1 shows the required configuration for this setup. We config-

ured one Docker container on each host node, where each container

used the host network and shared the ip address of the host node.

A new userid, "mpi" was added to all the container images along

with an ssh daemon configured to run on port 9100, so that it is

different from the default port 22 used by the host’s sshd daemon.

For mpirun, hostfile contained the ip addresses of the participating

host nodes and the host network was used. However, the RDMA

communication of MPI ranks was made possible by direct mapping

of the InfiniBand devices of host node to the container. At the time

of container deployment, each container was mapped to the host

with the required Mellanox InfiniBand devices. All the drivers were

made available via the container by commands shown in Listing 1.

In order for the mapping of the devices to be accessible, containers

needed to be started in privileged mode to access the devices of

their host machine.

Listing 1: Launching containers on different host nodes

with custom sshd port mapped to host node

$ docker run −− p r i v i l e g e d

− i t d −p 9 1 0 0 : 9 1 0 0

−−name ho s t _ c o n t a i n e r

−−d ev i c e =/ dev / i n f i n i b a n d / rdma_cm

−−d ev i c e =/ dev / i n f i n i b a n d / uverbs0

−−d ev i c e =/ dev / i n f i n i b a n d / ucm0

−−d ev i c e =/ dev / i n f i n i b a n d / umad0

−−ulimit memlock=−1

−−network=hos t

s c i e n c e c o n t a i n e r / ompi3− i n f i n i b a n d : base

3.3 Docker: one container per node, overlay
network + InfiniBand

Docker swarm mode enables users to abstract the underlying host

machine topology through a virtual overlay network. This network

can be spun across a few or a large number of host machines. Even

though the physical location of each container may be different, as

they all may not share the same host machine, they all share the

software-defined network (SDN) and subnet address. This setup

enables direct communication across containers. Unlike the previ-

ous approach in section 3.2, in this approach each container has a

different IP address under the same subnet address. So, containers

do not need to communicate over a non standard custom ssh port.

It is important to note that we selected one of the containers as

master-container and mapped its ssh port to the host node. The
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3.5 Singularity Container

We used MPI libraries of the host node to run applications through

the Singularity containers. Running application through Singularity

is like running the application on the host node. Singularity provides

a way to create singularity images from existing Docker image

layers. We used our Docker MPI images to create singularity images

for the experiments.

4 EVALUATION

4.1 HPCG -High Performance Conjugate
Gradients

We ran the HPCG benchmark on our experimental cluster with

72 MPI ranks for all the approaches mentioned in Table 3. In Fig-

ure 3a, our results show that the relative performance overhead

of different containerization approaches is small when compared

to traditional bare metal approaches. The approach (Section 3.2),

One Docker container per host using host-network, yielded 0.65%

overhead compared to bare metal. However, one Docker container

per host with overlay-network (section 3.3) and Singularity showed

performance reduction by 0.47% and 0.22% respectively.

In Figure 3b, we present HPCG performance when multiple MPI

ranks are mappedwith each Docker container.We ran one container

per rank using 72 containers for a total 72 MPI ranks. We observed

that the performance degraded by 50% compared to bare metal.

However, when the number of ranks per container is increased

from one to an amount equal or greater than 2, we observed that

performance was similar to bare metal performance.

Figure 3c represents how the performance of the HPCG bench-

mark changes as we vary the number of nodes in a cluster. We

varied the number of nodes from two (2) to six (6) and only exe-

cuted 24 ranks throughout all the experiments. Our experimental

results showed that, as expected, performance increased as the num-

ber of hosts in the cluster increased. From a two-node cluster to a

four-node cluster, the performance increased by 37%. Additionally,

after expanding the cluster by two more nodes, the performance

increased by another 20%.

4.2 MiniFE - Finite Element mini-application

Figure 4a shows the performance of MiniFE benchmark with the

various approaches when it ran with 96 MPI ranks. One container

per host with the host-network yielded an overhead of 0.36% com-

pared to bare metal. One container per host with overlay-network

produced 0.15% degradation. On the other hand, when MiniFE ran

with Singularity, we observed a 1.25% overhead in performance.

Like HPCG, we observed similar behavior for MiniFE, when ranks

are divided into multiple containers.

In Figure 4b, one container per rank approach produced 50%

performance loss compared to bare metal, whereas when running

two, four, eight, and sixteen ranks per container, the performance

approached that of the bare metal setup.

We ran MiniFE with a fixed number of ranks (32 MPI ranks)

while changing the size of the cluster from two nodes to 6 nodes.

We observed that the performance expectedly improves as the num-

ber of nodes increases in the cluster. In Figure 4c, as the cluster size

increased from two (2) nodes to four (4) nodes, the performance

improved by 40%. Also, adding another two nodes into the clus-

ter improved the performance by another 13% while keeping the

number of ranks same.

4.3 OSU - Ohio State University Micro
benchmarks

We chose alltoallv collective communication benchmark from the

OSU benchmark suite to measure the latency across all the ranks

when distributed across nodes. OSU can run ’n’ processes where

each sends 1/n of its allocated data to all the other ranks and receives

a response back. We ran the latency benchmark for message size

of 65536 Bytes. In Figure 5, our results show that the latency did

not change significantly for any of our approaches. When we split

the ranks into containers, one container per rank performance was

within 0.82% of the bare metal performance, whereas four (4) ranks

per container yielded an overhead of 0.72%. For the multi-node

experiment, OSU ran with a fixed (32) number of ranks for an

increasing number of hosts in which every variation outperformed

the previous one ś starting from two (2) hosts to six (6) hosts, with

a final latency improvement of 63%.

4.4 KMI Hash - M-mer Matching Interface
benchmark

The purpose of KMI-Hash data-centric benchmark is to measure

the performance of integer operation such as hashing. In Figure 6a,

our experimental results show that Docker container approaches

produce similar throughput compare to the setup with bare metal

nodes. Singularity performs within 0.6% of the bare metal per-

formance. In Figure 6b apart from one container per rank, other

approaches did not show any significant overhead compared to

the bare metal setup. In Figure 6c, multi-node execution for KMI

hash yielded similar trends in results as the previous benchmarks.

However, for KMI Hash the performance improved by 94% as the

number of hosts increased from two nodes to six nodes while the

number of ranks was fixed to 32.

4.5 Evaluating InfiniBand and Ethernet for
different classes of MPI applications

We conducted experiments to study use of Containers with two

different interconnects (1) InfiniBand for RDMA (2) Ethernet for

TCP communication. In this approach, we considered three classes

of MPI benchmarks (1)MiniFE as CPU bound (2)KMI Hash as mem-

ory bound and (3) OSU benchmark for latency. For the first two

approaches (1) Ethernet on bare metal (Ethernet-BareMetal) and (2)

Ethernet on Docker container on host network (Ethernet-Docker),

both were used to measure the performance overhead compared to

the third approach, which is bare metal with InfiniBand (InfiniBand-

BareMetal). For the experimental evaluation, the average perfor-

mance of 10 iterations was considered, and the results are presented

in Table 4.

In Figure 7a, the benchmark MiniFE for Ethernet-BareMetal and

Ethernet-Docker approaches performed within 1% and 1.4% of the

InfiniBand-BareMetal approach respectively. This illustrates that

CPU performance hit is minimal. However, Figure 7b shows a simi-

lar setup, but this time with a memory intensive benchmark, KMI
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does not support InfiniBand (IB) interconnect as part of its archi-

tecture, but Chung et al. [2] deployed Docker on an IB setup and

evaluated the performance of containers over IB with other visual-

ization technologies. Chung et al.’s research also aimed to highlight

the benefits of IB with Docker containers.

Younge et al. have defined a model for parallel MPI application

DevOps for HPC systems to improve the development effort and

reproducibility with the help of containers. They evaluated the

feasibility of containers in HPC and showed the performance of

Singularity containers on Cray systems [12].

In our previous work [7] [8], we have shown how Docker con-

tainers can be integrated with HPC environments and run MPI

applications with cloud-enabled schedulers like Apache Mesos.

6 CONCLUSIONS

• Containers can be used to make HPC applications portable.

They have proven to provide flexibility and maintainability

for commercial applications executing on clouds.

• We conducted experiments to determine the performance

of different benchmarks on Intel(R) Xeon(R) CPU E5-2670 v3

@ 2.30GHz based cloud nodes. The performance of differ-

ent containerization approaches are extremely close to bare

metal. Different modes of running MPI application over a pri-

vate cloud provides both flexibility andminimal performance

overhead (less than 1%).

• Singularity provides direct support forMPI, andwhile Docker

still does not provide full support for MPI, it is another choice

developers and administrator can make. Docker provides

more flexibility in terms of container placement with fine-

grained resource allocation.

• Unlike Singularity, a Docker container needs to have Infini-

Band interconnect drivers installed and mapped inside the

container to enable fast communication.

• For MPI applications, splitting ranks per container with re-

stricted resources to each container can be employed by

Docker. This option is not available in Singularity contain-

ers.
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