Evaluation of Docker Containers for Scientific Workloads in the
Cloud

Pankaj Saha
State University of New York (SUNY) at Binghamton
Binghamton, New York
psaha4@binghamton.edu

Piotr Uminski
Intel Technology Poland
Gdansk, Poland
piotr.uminski@intel.com

ABSTRACT

The HPC community is actively researching and evaluating tools to
support execution of scientific applications in cloud-based environ-
ments. Among the various technologies, containers have recently
gained importance as they have significantly better performance
compared to full-scale virtualization, support for microservices and
DevOps, and work seamlessly with workflow and orchestration
tools. Docker is currently the leader in containerization technology
because it offers low overhead, flexibility, portability of applications,
and reproducibility. Singularity is another container solution that
is of interest as it is designed specifically for scientific applications.
It is important to conduct performance and feature analysis of the
container technologies to understand their applicability for each
application and target execution environment.

This paper presents a (1) performance evaluation of Docker and
Singularity on bare metal nodes in the Chameleon cloud (2) mecha-
nism by which Docker containers can be mapped with InfiniBand
hardware with RDMA communication and (3) analysis of mapping
elements of parallel workloads to the containers for optimal re-
source management with container-ready orchestration tools. Our
experiments are targeted toward application developers so that
they can make informed decisions on choosing the container tech-
nologies and approaches that are suitable for their HPC workloads
on cloud infrastructure. Our performance analysis shows that sci-
entific workloads for both Docker and Singularity based containers
can achieve near-native performance.

Singularity is designed specifically for HPC workloads. However,
Docker still has advantages over Singularity for use in clouds as
it provides overlay networking and an intuitive way to run MPI
applications with one container per rank for fine-grained resources
allocation. Both Docker and Singularity make it possible to directly
use the underlying network fabric from the containers for coarse-
grained resource allocation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC 18, July 22-26, 2018, Pittsburgh, PA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6446-1/18/07...$15.00
https://doi.org/10.1145/3219104.3229280

Angel Beltre
State University of New York (SUNY) at Binghamton
Binghamton, New York
abeltrel@binghamton.edu

Madhusudhan Govindaraju
State University of New York (SUNY) at Binghamton
Binghamton, New York
mgovinda@binghamton.edu

CCS CONCEPTS

« Hardware — Networking hardware; » Software and its en-
gineering — Application specific development environments; « Gen-
eral and reference — Performance;

KEYWORDS

Docker, Singularity, scientific workloads

ACM Reference Format:

Pankaj Saha, Angel Beltre, Piotr Uminski, and Madhusudhan Govindaraju.
2018. Evaluation of Docker Containers for Scientific Workloads in the Cloud.
In Proceedings of Practice and Experience in Advanced Research Computing
(PEARC ’18). ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3219104.3229280

1 INTRODUCTION

Containerization technology has gained significant traction in re-
cent years. Containers are the appropriate tool for software de-
velopment landscape that has adopted microservices and DevOps.
Containers have several well known benefits for use in cloud envi-
ronments: (1) support for a uniform environment for testing and
deploying applications; (2) seamless and continuous updates of
microservices; and (3) agility to support different languages and
deployment platforms.

When containers were initially adopted for micro-services based
architectures in the industry, they did not attract the attention of
HPC community wherein the focus is primarily on MPI applications
for large parallel tasks. Containers were also initially shunned
due to reports of possible root escalation vulnerabilities. However,
the growing list of features along with the potential to provide
high performance, along with portability and reproducibility from
development to production environment, has made it critical to
evaluate current container technologies for HPC applications in
the cloud.

Docker [5] containers are known as lightweight Virtual Ma-
chines, which provide networking capabilities and dedicated com-
putational resources. Singularity containers are designed to effi-
ciently in conventional HPC environments. While Slurm [11] is the
most widely used scheduler for HPC applications, the industry has
successfully used open source technologies in the cloud such as
Apache Mesos [3] and YARN [10] for resource management, and
container orchestrators like Kubernates [9] and Docker Swarm [6].

PEARC *18, July 22-26, 2018, Pittsburgh, PA, USA

As there is support for Docker with these technologies, container-
ized HPC applications can also avail features such as container
migration, resource fairness, and fault tolerance.

Singularity is designed to use the underlying HPC runtime en-
vironment for executing MPI applications, whereas Docker is de-
signed to isolate the runtime environment from the host. Also,
Singularity focuses on coarse-grained resource allocation whereas
Docker can take advantage of the fine-grained allocation of re-
sources per rank.

HPC centers and academic clusters currently do not widely sup-
port Docker due to reports of security concerns that root escalation
is possible. However, this vulnerability is not a concern in cloud
allocations wherein users have root privileges to run their appli-
cations and other security modules provide separation between
different allocations. As containers keep expanding support for run-
ning HPC tasks in the cloud, it is critical to quantify the impact on
performance, support for orchestration and scheduling/placement
of containers on the resources.

The features of interest to the HPC community, which we present
in this paper, include (1) evaluation of support for Infiniband and
RDMA communication across MPI ranks; (2) mapping of sshd ports
between the container and host machine; (3) determining over-
head of containers compared to bare-metal access for memory, cpu,
and communication intensive tasks; and (4) study use of overlay
networks by container orchestration tools and its effect on HPC
applications.

Our experiments were conducted on an NSF funded academic
Chameleon cloud [4]. It provides a utility called "Complex Ap-
pliances," which offers accessible cluster configurations for the
acquired nodes. One of the appliances is called "MPI bare-metal
cluster, which comes with "MPICH2" library on CentOS 7 based
image. Chameleon Cloud provides InfiniBand supported bare metal
nodes.

e We mapped InfiniBand devices of the host machine to Docker
containers for RDMA communication across MPI ranks.
We quantified the performance overhead of MPI applications
when run in containers and compared with their bare metal
performance. For this evaluation, we used both the host and
Docker’s overlay network to execute the MPI benchmarks.
With Docker, we orchestrated containers using different
approaches:

(1) We ran the container's sshd on a non-standard port and
mapped the port with host machines. One container per
host was used in this approach such that the container
and host node use the same IP address, but run sshd on
different ports.

(2) We used an overlay network, provided by Docker Swarm,
which spans across multiple host nodes. We created a one
container per node setup and plugged all of them to the
same overlay network. This network assigned separate IP
addresses to all containers under the same subnet address.

(3) We used a similar setup as approach (2), but used multiple
containers per host node attached to the common overlay
network.

e We used different classes (CPU , memory, and latency sen-

sitive) of MPI applications for benchmarking. We observed

P. Saha et al.

for fixed number of MPI ranks how the performance varies
when the number of nodes changes in the cluster. We also
compared communication with InfiniBand vs Ethernet for
the different classes of applications.

2 BACKGROUND

Linux container (LXC) provides a virtual layer on top of the Linux
host Operating System (OS) allowing multiple Linux systems to run
in isolation. Containers separate the runtime environment from the
underlying host resources and networking capabilities. Containers
primarily rely on the use of namespace and cgroups to provide
isolation, which enables users to run numerous applications in
isolation on different containers on the same host. Additionally,
due to the system level of abstraction, a container can freely move
between host machines that support the container’s runtime envi-
ronment. Docker is the leading container solution widely accepted
in industry. Docker has gained widespread acceptance in the re-
cent years as can be seen by the support in resource managers
and orchestration frameworks like Apache Mesos and Kubernetes.
Another container technlogy that has gained the attention of the
community is Singularity. It has been developed for scientific appli-
cations keeping the HPC eco-system as the focus. In the following
subsections, we introduce these container mechanisms and their
associated capabilities.

2.1 Docker Container

Docker can be considered a high-level user-space Linux utility,
which can build, run and ship containers across hosts. Docker pro-
vides an isolated runtime environment. It is a lightweight Virtual
Machine (VM) that has a networking configuration under a subnet
and dedicated computational resources. A traditional VM abstracts
the underlying hardware from guest OS, whereas Docker container
provides one or more levels of abstraction by hiding the underly-
ing host OS. Unlike other container solutions, Docker provides a
virtual network, on top of the host machine, which can connect
all containers to provide a convenient and secure inter-container
communication.

2.2 Docker Swarm Mode

While containers provide a flexible packaging solution for building
and shipping applications, additional tools are needed to manage
the orchestration of multiple containers when running a distributed
application. Docker Swarm addresses this need. It provides native
support to manage the Docker container orchestration. This or-
chestration tool offers a software-defined overlay network across
all participating host machines. In this setup, containers reside un-
der the same virtual network and communicate with each other
without any other networking configurations. An application can
run as part of a swarm service, which can be scaled up and down
as required. Swarm also can provide an attachable overlay network
where containers from any host can be connected during creation,
and all attached containers can be part of the same network.

2.3 Singularity Containers

Singularity has gained traction in the scientific community for its
in-built support to integrate with the Message Passing Interface

Evaluation of Docker Containers for Scientific Workloads in the Cloud

(MPI). Singularity provides an easy packaging mechanism for appli-
cations along with a user friendly runtime execution environment.
Singularity is designed to execute containers like a normal process
in the host machine. This feature makes the integration of Sin-
gularity with the HPC schedulers easy. A fundamental difference
with Docker container is the file format Singularity uses to store
the image. Unlike Docker, which uses multiple layers, Singularity
stores the entire image as one large file. Singularity hub provides
the repository to save and maintain public Singularity container
images.

2.4 InfiniBand

InfiniBand is well known for providing high throughput and low
latency communication in distributed and parallel applications.
For simplification, InfiniBand uses two channel adapters (CA) (1)
Host CA (HCA) and (2) Target (TCA). Among the two channel
adapters, only HCA provides visibility of the underlying hardware
and software necessary for communication. The OpenFabrics Al-
liance controls the standard for developing software stack for the
RDMA through InfiniBand. Vendors design and implement custom
Verbs interfaces following the Verbs’ specifications, which aims to
address the interfaces that abstract the hardware components.

3 EXPERIMENTAL SETUP

We acquired six bare metal nodes from the Chameleon Cloud plat-
form equipped with Mellanox InfiniBand interconnect. Each node
consists of 48 cores and 128GB of RAM. Initially, each MPI bench-
mark was profiled to understand its characterization. For our ex-
periments, a bare-metal execution is considered the baseline per-
formance. We then use it to derive the respective performance vari-
ation for each containerization approach. Our set of benchmarks is
composed of HPCG and miniFE for measuring the computational
work, OSU-Micro benchmarks for measuring latency, and KMI Hash
to profile memory bound applications. Each benchmark is profiled
using experimental setups described in Table 3. We conducted ten
iterations of each experiment and report the average.

Benchmarks | Description
HPCG High Performance Conjugate Gradient
MiniFE Unstructured finite element solver
Oosu Latency over MPI ranks
KMI Hash Memory intensive integer operation
Table 1: Software Stack and Version
Software | Version
Linux CentOS 7.4.1708

Open MPI | Open MPI-3.0.0

Infiniband | ConnectX3

Mellanox OpenFabrics Enterprise Distri-
bution

Drivers

Table 2: Software Stack and Hardware Components

PEARC ’18, July 22-26, 2018, Pittsburgh, PA, USA

3.1 Bare Metal Nodes + InfiniBand (IB)

Cloud bare metal nodes with InfiniBand hardware were used
int this setup. Open MPI 3.0.0 was configured with Mellanox inter-
connect driver, ConnectX3, for accessing InfiniBand hardware to
facilitate RDMA communication. Each MPI benchmark in Table 1
was installed separately on each node. Experimental results for
each benchmark obtained by this configuration is considered as the
base, and performance deviation of each containerization approach.

3.2 Docker: one container per node, host
network + InfiniBand

Figure 1 shows the required configuration for this setup. We config-
ured one Docker container on each host node, where each container
used the host network and shared the ip address of the host node.
A new userid, "mpi" was added to all the container images along
with an ssh daemon configured to run on port 9100, so that it is
different from the default port 22 used by the host’s sshd daemon.
For mpirun, hostfile contained the ip addresses of the participating
host nodes and the host network was used. However, the RDMA
communication of MPI ranks was made possible by direct mapping
of the InfiniBand devices of host node to the container. At the time
of container deployment, each container was mapped to the host
with the required Mellanox InfiniBand devices. All the drivers were
made available via the container by commands shown in Listing 1.
In order for the mapping of the devices to be accessible, containers
needed to be started in privileged mode to access the devices of
their host machine.

Listing 1: Launching containers on different host nodes
with custom sshd port mapped to host node

$ docker run ——privileged

—itd —p 9100:9100

——name host_container
——device=/dev/infiniband /rdma_cm
——device=/dev/infiniband/uverbs0
——device=/dev/infiniband /ucm0
——device=/dev/infiniband /umad0
——ulimit memlock=-1

——network=host
sciencecontainer/ompi3—infiniband :base

3.3 Docker: one container per node, overlay
network + InfiniBand

Docker swarm mode enables users to abstract the underlying host
machine topology through a virtual overlay network. This network
can be spun across a few or a large number of host machines. Even
though the physical location of each container may be different, as
they all may not share the same host machine, they all share the
software-defined network (SDN) and subnet address. This setup
enables direct communication across containers. Unlike the previ-
ous approach in section 3.2, in this approach each container has a
different IP address under the same subnet address. So, containers
do not need to communicate over a non standard custom ssh port.
It is important to note that we selected one of the containers as
master-container and mapped its ssh port to the host node. The

PEARC ’18, July 22-26, 2018, Pittsburgh, PA, USA

P. Saha et al.

Orchestration Method sshd Port # of Containers per Host | IP Address Network for mpirun and ssh
Bare Metal (Section 3.1) default (22) 0 host IP address host network

Docker: Host Network (Section 3.2) custom (9100) | 1 host IP address host network

Docker: Overley Network-I (Section 3.3) | default (22) 1 unique IP address | overlay network

Docker: Overlay Network-II (Section 3.4) | default (22) n>1 unique Ip address | overlay network
Singularity (Section 3.5) default (22) 1 host IP address host network

Table 3: Container Orchestration Methods

K\
Application

MPI
Mellanox OFED

Docker Container
i
Infiniband device

(Host Linux Kernel]

Docker Container

o>

Docker Container

CentoS

MPI RDMA AN

bugh Infinibhnd \
CentOS

MPI
Applicaton | | =@ ____t_ | ________

SSH connectipn through dustom ports
Mellanox OFED

<

) O

(sshd)

. MPI
R % Application
@ ellanox OFED

of host network

9
kel
H
H
3
=
2
§
E
£
E

Docker
Container

Host Linux Kernel

Overlay
Docker Network
N SRS

Container

, Docker
\ Container
/
- \
Infiniband device

(Host Linux Kernel]

Infiniband device

(Host Linux Kernel]

(Oinfiniband device) sshd sshd ((Oinfiniband device]
(_ Host Linux Kernel] (Host Linux Kernel]

Figure 1: One Docker container per host node is launched where
each container can use the entire resource of the host node and host
multiple MPI ranks. InfiniBand is used for MPI RDMA communication;
however, TCP/IP over Ethernet is used for ssh and mpirun by running
sshd on container’s nonstandard port mapped to host node.

master container is used as an entry point to start the MPI appli-
cation from within the container. For mpirun, the hostfile contains
the ip addresses of each container provided by the overlay network.
RDMA communication across MPI rank was enabled as the host
node’s InfiniBand drivers were mapped as explained in the section
3.2

Listing 2: Creating custom overlay attachable network

$ docker network create
——driver overlay ——subnet 10.10.0.1/24
——attachable custom-network

3.4 Docker - Multiple containers per Host and
‘n’ MPI Ranks per Container

In this approach we launched multiple containers per host node and
we split the MPI ranks among containers across nodes. As described
in Section 3.3, each container is part of the Docker Swarm overlay
network and for mpirun the hostfile contains the ip addresses of
the containers. A configuration similar to the one mentioned in
Section 3.3 was used while launching the containers via RDMA
communication across MPI ranks and also for starting the MPI
application.

Figure 2: One Docker container per host node is launched where
containers from different hosts are connected to each other through
Docker Swarm defined overlay network. ssh and mpirun use overlay
network over standard ssh port, whereas for MPI RDMA communica-
tion, InfiniBand is used.

Initially we launched one container for one MPI rank and then
started growing the number of ranks per container while keeping
the total number of ranks same. Containers were equally divided
among host nodes in the cluster and each container hosted equal
number of MPI ranks. The performance difference in this setup is
dependent on the number of ranks per container.

Listing 3: creating Singularity images from Docker image

$ sudo singularity build
ompi3—infiniband —base . simg
docker :// sciencecontainer /ompi3: base

Listing 4: Launching Singularity containers using host
MPI libraries

$ mpirun —mca mtl_mxm_np 0

——mca btl openib —np 72

——map-by node

——hostfile ~/hostfile

singularity exec
ompi3—infiniband —base . simg

<path to executable inside container >
<parameters >

Evaluation of Docker Containers for Scientific Workloads in the Cloud

3.5 Singularity Container

We used MPI libraries of the host node to run applications through
the Singularity containers. Running application through Singularity
is like running the application on the host node. Singularity provides
a way to create singularity images from existing Docker image
layers. We used our Docker MPI images to create singularity images
for the experiments.

4 EVALUATION

4.1 HPCG -High Performance Conjugate
Gradients

We ran the HPCG benchmark on our experimental cluster with
72 MPI ranks for all the approaches mentioned in Table 3. In Fig-
ure 3a, our results show that the relative performance overhead
of different containerization approaches is small when compared
to traditional bare metal approaches. The approach (Section 3.2),
One Docker container per host using host-network, yielded 0.65%
overhead compared to bare metal. However, one Docker container
per host with overlay-network (section 3.3) and Singularity showed
performance reduction by 0.47% and 0.22% respectively.

In Figure 3b, we present HPCG performance when multiple MPI
ranks are mapped with each Docker container. We ran one container
per rank using 72 containers for a total 72 MPI ranks. We observed
that the performance degraded by 50% compared to bare metal.
However, when the number of ranks per container is increased
from one to an amount equal or greater than 2, we observed that
performance was similar to bare metal performance.

Figure 3c represents how the performance of the HPCG bench-
mark changes as we vary the number of nodes in a cluster. We
varied the number of nodes from two (2) to six (6) and only exe-
cuted 24 ranks throughout all the experiments. Our experimental
results showed that, as expected, performance increased as the num-
ber of hosts in the cluster increased. From a two-node cluster to a
four-node cluster, the performance increased by 37%. Additionally,
after expanding the cluster by two more nodes, the performance
increased by another 20%.

4.2 MiniFE - Finite Element mini-application

Figure 4a shows the performance of MiniFE benchmark with the
various approaches when it ran with 96 MPI ranks. One container
per host with the host-network yielded an overhead of 0.36% com-
pared to bare metal. One container per host with overlay-network
produced 0.15% degradation. On the other hand, when MiniFE ran
with Singularity, we observed a 1.25% overhead in performance.
Like HPCG, we observed similar behavior for MiniFE, when ranks
are divided into multiple containers.

In Figure 4b, one container per rank approach produced 50%
performance loss compared to bare metal, whereas when running
two, four, eight, and sixteen ranks per container, the performance
approached that of the bare metal setup.

We ran MiniFE with a fixed number of ranks (32 MPI ranks)
while changing the size of the cluster from two nodes to 6 nodes.
We observed that the performance expectedly improves as the num-
ber of nodes increases in the cluster. In Figure 4c, as the cluster size
increased from two (2) nodes to four (4) nodes, the performance

PEARC ’18, July 22-26, 2018, Pittsburgh, PA, USA

improved by 40%. Also, adding another two nodes into the clus-
ter improved the performance by another 13% while keeping the
number of ranks same.

4.3 OSU - Ohio State University Micro
benchmarks

We chose alltoallv collective communication benchmark from the
OSU benchmark suite to measure the latency across all the ranks
when distributed across nodes. OSU can run 'n’ processes where
each sends 1/n of its allocated data to all the other ranks and receives
a response back. We ran the latency benchmark for message size
of 65536 Bytes. In Figure 5, our results show that the latency did
not change significantly for any of our approaches. When we split
the ranks into containers, one container per rank performance was
within 0.82% of the bare metal performance, whereas four (4) ranks
per container yielded an overhead of 0.72%. For the multi-node
experiment, OSU ran with a fixed (32) number of ranks for an
increasing number of hosts in which every variation outperformed
the previous one - starting from two (2) hosts to six (6) hosts, with
a final latency improvement of 63%.

4.4 KMI Hash - M-mer Matching Interface
benchmark

The purpose of KMI-Hash data-centric benchmark is to measure
the performance of integer operation such as hashing. In Figure 6a,
our experimental results show that Docker container approaches
produce similar throughput compare to the setup with bare metal
nodes. Singularity performs within 0.6% of the bare metal per-
formance. In Figure 6b apart from one container per rank, other
approaches did not show any significant overhead compared to
the bare metal setup. In Figure 6c, multi-node execution for KMI
hash yielded similar trends in results as the previous benchmarks.
However, for KMI Hash the performance improved by 94% as the
number of hosts increased from two nodes to six nodes while the
number of ranks was fixed to 32.

4.5 Evaluating InfiniBand and Ethernet for
different classes of MPI applications

We conducted experiments to study use of Containers with two
different interconnects (1) InfiniBand for RDMA (2) Ethernet for
TCP communication. In this approach, we considered three classes
of MPI benchmarks (1)MiniFE as CPU bound (2)KMI Hash as mem-
ory bound and (3) OSU benchmark for latency. For the first two
approaches (1) Ethernet on bare metal (Ethernet-BareMetal) and (2)
Ethernet on Docker container on host network (Ethernet-Docker),
both were used to measure the performance overhead compared to
the third approach, which is bare metal with InfiniBand (InfiniBand-
BareMetal). For the experimental evaluation, the average perfor-
mance of 10 iterations was considered, and the results are presented
in Table 4.

In Figure 7a, the benchmark MiniFE for Ethernet-BareMetal and
Ethernet-Docker approaches performed within 1% and 1.4% of the
InfiniBand-BareMetal approach respectively. This illustrates that
CPU performance hit is minimal. However, Figure 7b shows a simi-
lar setup, but this time with a memory intensive benchmark, KMI

PEARC 18, July 22-26, 2018, Pittsburgh, PA, USA P. Saha et al.

HPCG - MPI Execution Approaches HPCG - MPI Ranks per Container HPCG - Variable Number of Nodes
65 70 40
%) 60 %) 60 %) 35
3 3 3
p) 55 - 50 - 30
w w w
] 50 o] 40 o] 25
(= (= (=
=l =l ~
o S . o .
40 20 15
Bare metal 1 Docker 1 Docker Singularity 1 Rank 2 Ranks 4 Ranks 6 Ranks 12 Ranks 2 host 3 host 4 host 5 host 6 host
container per container per container nodes nodes nodes nodes nodes
host using host using
host network overlay network Ranks per Container Number of Hosts

Execution Methods

(a) Performance comparison of HPCG benchmark with (b) HPCG benchmark performance comparison when the (c) HPCG benchmark evaluation when 24 MPI ranks
different approaches, running with 72 MPI ranks. benchmark is running across multiple Docker container were distributed across variable number of hosts in a
per host node. A total of 72 MPI ranks were used and cluster.
distributed equally in varied number of containers. Each
node hosted equal number of containers.

Figure 3: HPCG Performance Evaluation with Different Execution Approaches.

MiniFE - MPI Execution Approaches MiniFE - MPI Ranks per Container MiniFE - variable Number of Nodes
95k 55k
50k
2 2 oo 2 a5k
S ook 5 5
' ' '
w w 60k w 40k
© © © 35k
> g5k =y =2
() Q L 30k
= = 40k =
25k
8ok Bare metal 1 Docker 1 Docker Singularity 20k 1 Rank 2 Ranks 4 Ranks 8 Ranks 16 Ranks 20k 2 host 3 host 4 host 5 host 6 host
container per container per container nodes nodes nodes nodes nodes
host using host using
host network overlay network Ranks per Container Number of Hosts

Execution Methods

(a) Performance comparison of MiniFE benchmark with (b) MiniFE benchmark performance comparison when (c¢) MIniFE benchmark is evaluated when 32 MPI ranks
different approaches, running with 96 MPI ranks. the benchmark is running across multiple docker were distributed across variable number of hosts in a
containers per host node. A total of 96 MPI ranks were cluster.
used and distributed equally in varied number of
containers. Each node hosted equal number of containers.

Figure 4: MiniFE Performance Evaluation with Different Execution Approaches.

0SU - MPI Execution Approaches 0SU - MPI Ranks per Container 0SU - variable Number of Nodes
10k
8400 8400
0 0 0 8k
EL/ 8200 EL/ 8200 EL/
6k
> >
3 8000 3 8000 >
< < c ak
[[[
4 7800 + 7800 =
5] 5] T
- - -
7600 7600
Bare metal 1 Docker 1 Docker singularity 1 Rank 2 Ranks 4 Ranks 8 Ranks 16 Ranks o 2 host 3 host 4 host 5 host 6 host
container per container per container nodes nodes nodes nodes nodes
host using host using
host network overlay network Ranks per Container Number of Hosts

Execution Methods

(a) Performance of OSU latency benchmark benchmark (b) OSU latency benchmark performance comparison (c) OSU latency benchmark is evaluated with 32ranks,
with different approaches, running with 96 MPI ranks . when the benchmark is running across multiple Docker across variable number of hosts in the cluster.
container per host node. In total 96 MPI ranks were used
and distributed equally in varied number of containers.
Each node hosted equal number of containers.

Figure 5: OSU (Latency) Performance Evaluation in Different Execution Approaches

Evaluation of Docker Containers for Scientific Workloads in the Cloud

KMI Hash - MPI Execution Approaches

a.2m

am
3.8M
3.6M
3.4M
3.2M

Bare metal 1 Docker 1 Docker singularity
container per container per container
host using host using
host network overlay network

Execution Methods

sM

Queries per Second
N

Queries per Second

1 Rank 2 Ranks

KMI Hash - MPI Ranks per Container

am
am
M .

4 Ranks 8 Ranks 16 Ranks

Ranks per Container

PEARC 18, July 22-26, 2018, Pittsburgh, PA, USA

KMI Hash - variable Number of Nodes

©
@
E

Queries per Second
- ~

P

= ¢ % g2 g

Number of Hosts

(a) KMI Hash benchmark benchmark with different (b) KMI Hash benchmark performance with different ~ (c) KMI Hash - Performance Evaluation with 24 MPI

approaches to compare the relative throughput for 72 container to MPI rank ratio. In total, 72 MPI ranks were
used and distributed equally in varied number of

MPI ranks.

ranks on different number of hosts in the cluster.

containers. Each node hosted equal number of containers.

Figure 6: KMI Performance Evaluation with Different Execution Approaches.

Benchmarks MPI Ranks Interconnect Methods
InfiniBand-BareMetal | InfiniBand-Docker | Ethernet-Bare Metal | Ethernet-Docker
MiniFE (MFLOPS) 96 94557.7 94484.9 93612.5 93258.6
KMI Hash (queries/second) 72 4213375.4 4209725.1 653820.8 602075.2
OSU Latency (micro second) 96 24074.9 24064.7 82972.8 82994.4

Table 4: Performance of MPI benchmarks with different interconnect approaches

MiniFE - InfiniBand vs. Ethernet KMI Hash - InfiniBand vs. Ethernet 0SU - InfiniBand vs. Ethernet
95k 'g 5M
S 80k
o —~
[am 1%}
» 9k @ 2 ek
& 5 M -
p} (=8 o
w [=4 40k
= sk P 3
3 ©
= - 20k
3 ™M
S
80k & —

InfiniBand InfiniBand Ethernet Ethernet
Bare Metal Docker Container Bare Metal Docker Container

Interconnection Methods

InfiniBand InfiniBand
Bare Metal Docker Container Bare Metal Docker Container

Interconnection Methods

Ethernet Ethernet InfiniBand InfiniBand Ethernet Ethernet
Bare Metal Docker Container Bare Metal Docker Container

Interconnection Methods

(@) MiniFE - comparing performance over InfiniBand (b) KMI Hash - comparing performance over InfiniBand (c) OSU alltoallv - comparing performance over

and Ethernet based interconnects for 96 MPI ranks

and Ethernet based interconnects for 72 MPI ranks InfiniBand and Ethernet based interconnects for 96 MPI

ranks

Figure 7: Performance of MPI benchmarks with InfinBand and Ethernet interconnect for RDMA and TCP based MPI commu-

nication

hash. As expected, when using Ethernet-BareMetal and Ethernet-
Docker approaches, we noticed an overhead of 84% and 85% re-
spectively. This is a significant performance degradation compared
to the InfiniBand-BareMetal approach. Unlike a CPU intensive
benchmark, RDMA over InfiniBand interconnects outperforms the
TCP based inter-process communication for a memory intensive
benchmark such as KMI Hash. As expected, the OSU benchmark
yielded better latency in the presence of InfiniBand. Figure 7c shows
that Ethernet-BareMetal and Ethernet-Docker have close to 245%
overhead compared to the InfiniBand-BareMetal approach. As pre-
sented in Figure 7, InfiniBand-Docker performed within 1% of the
InfiniBand-BareMetal setup.

5 RELATED WORK

Docker is the widely used and supported containerization solution
in the industry, but its adoption int HPC is hindered due to Docker’s
root escalation concerns. Azab et al. [1] developed a secure way
of running Docker containers in HPC via a Slurm scheduler, with-
out altering the underlying Docker engine and utilizing the full
potential of Docker containers.

Apart from the security concerns due to root escalation, band-
width and throughput for HPC jobs via Docker container has been
another concern. HPC jobs require faster interconnection across
ranks for better performance. Unlike Singularity containers, Docker

PEARC *18, July 22-26, 2018, Pittsburgh, PA, USA

does not support InfiniBand (IB) interconnect as part of its archi-
tecture, but Chung et al. [2] deployed Docker on an IB setup and
evaluated the performance of containers over IB with other visual-
ization technologies. Chung et al’s research also aimed to highlight
the benefits of IB with Docker containers.

Younge et al. have defined a model for parallel MPI application
DevOps for HPC systems to improve the development effort and
reproducibility with the help of containers. They evaluated the
feasibility of containers in HPC and showed the performance of
Singularity containers on Cray systems [12].

In our previous work [7] [8], we have shown how Docker con-
tainers can be integrated with HPC environments and run MPI
applications with cloud-enabled schedulers like Apache Mesos.

6 CONCLUSIONS

e Containers can be used to make HPC applications portable.
They have proven to provide flexibility and maintainability
for commercial applications executing on clouds.

o We conducted experiments to determine the performance
of different benchmarks on Intel(R) Xeon(R) CPU E5-2670 v3
@ 2.30GHz based cloud nodes. The performance of differ-
ent containerization approaches are extremely close to bare
metal. Different modes of running MPI application over a pri-
vate cloud provides both flexibility and minimal performance
overhead (less than 1%).

e Singularity provides direct support for MPI, and while Docker
still does not provide full support for MPL, it is another choice
developers and administrator can make. Docker provides
more flexibility in terms of container placement with fine-
grained resource allocation.

o Unlike Singularity, a Docker container needs to have Infini-
Band interconnect drivers installed and mapped inside the
container to enable fast communication.

o For MPI applications, splitting ranks per container with re-
stricted resources to each container can be employed by
Docker. This option is not available in Singularity contain-
ers.

A HEADINGS IN APPENDICES
A.1 Introduction

A.2 Background
A.2.1 Docker Container.

A.2.2 Docker Swarm Mode.
A.2.3 Singularity Containers.
A.2.4 InfiniBand.
A.3 Experimental Setup
A.3.1 Bare Metal Nodes + InfiniBand (IB).
A.3.2 Docker: one container per node, host network + InfiniBand.

A.3.3 Docker: one container per node, overlay network + Infini-
Band.

P. Saha et al.

A.3.4 Docker - Multiple containers per Host and ‘n” MPI Ranks
per Container.

A.3.5 Singularity Container.

A.4 Evaluation
A.4.1 HPCG -High Performance Conjugate Gradients.

A.4.2 MiniFE - Finite Element mini-application.
A.4.3 OSU - Ohio State University Micro benchmarks.
A.4.4 KMI Hash - M-mer Matching Interface benchmark.

A.4.5 Evaluating InfiniBand and Ethernet for different classes of
MPI applications.

A.5 Related Work
A.6 Conclusions

A.7 References
ACKNOWLEDGMENTS

This work is partially supported by National Science Foundation,
through the OAC-1740263 award.

REFERENCES

[1] Abdulrahman Azab. 2017. Enabling Docker Containers for High-Performance
and Many-Task Computing. In 2017 IEEE International Conference on Cloud Engi-
neering (IC2E). IEEE, 279-285. https://doi.org/10.1109/IC2E.2017.52

Minh Thanh Chung, An Le, Nguyen Quang-Hung, Duc-Dung Nguyen, and Nam

Thoai. 2016. Provision of Docker and InfiniBand in High Performance Comput-

ing. In 2016 International Conference on Advanced Computing and Applications

(ACOMP). IEEE, 127-134. https://doi.org/10.1109/ACOMP.2016.027

[3] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: a platform
for fine-grained resource sharing in the data center. , 295-308 pages. http:
//dl.acm.org/citation.cfm?id=1972488

[4] Joe Mambretti, Jim Chen, and Fei Yeh. 2015. Next Generation Clouds, the
Chameleon Cloud Testbed, and Software Defined Networking (SDN). In 2015
International Conference on Cloud Computing Research and Innovation (ICCCRI).
IEEE, 73-79. https://doi.org/10.1109/ICCCRI.2015.10

[5] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal 2014, 239 (2014), 2.

[6] Nitin Naik. 2016. Building a virtual system of systems using docker swarm in
multiple clouds. In 2016 IEEE International Symposium on Systems Engineering
(ISSE). IEEE, 1-3. https://doi.org/10.1109/SysEng.2016.7753148

[7] Pankaj Saha, Angel Beltre, and Madhusudhan Govindaraju. 2017. Scylla: A
Mesos Framework for Container Based MPI Jobs. In MTAGS17: 10th Workshop on
Many-Task Computing on Clouds, Grids, and Supercomputers. Denver.

[8] Pankaj Saha, Madhusudhan Govindaraju, Suresh Marru, and Marlon Pierce. 2016.

Integrating Apache Airavata with Docker, Marathon, and Mesos. Concurrency

and Computation: Practice and Experience 28, 7 (5 2016), 1952-1959. https:

//doi.org/10.1002/cpe.3708

Hideto Saito, Hui-Chuan Chloe Lee, and Ke-Jou Carol Hsu. 2016. Kubernetes

Cookbook. Packt Publishing.

[10] Vinod Kumar Vavilapalli, Siddharth Seth, Bikas Saha, Carlo Curino, Owen
O’Malley, Sanjay Radia, Benjamin Reed, Eric Baldeschwieler, Arun C. Murthy,
Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas Graves,
Jason Lowe, and Hitesh Shah. 2013. Apache Hadoop YARN. In Proceedings of the
4th annual Symposium on Cloud Computing - SOCC ’13. ACM Press, New York,
New York, USA, 1-16. https://doi.org/10.1145/2523616.2523633

[11] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux

Utility for Resource Management. Springer, Berlin, Heidelberg, 44-60. https:

//doi.org/10.1007/10968987{ }3

Andrew J. Younge, Kevin Pedretti, Ryan E. Grant, and Ron Brightwell. 2017. A

Tale of Two Systems: Using Containers to Deploy HPC Applications on Super-

computers and Clouds. In 2017 IEEE International Conference on Cloud Comput-

ing Technology and Science (CloudCom). IEEE, 74-81. https://doi.org/10.1109/

CloudCom.2017.40

[2

=

[12

	Abstract
	1 Introduction
	2 Background
	2.1 Docker Container
	2.2 Docker Swarm Mode
	2.3 Singularity Containers
	2.4 InfiniBand

	3 Experimental Setup
	3.1 Bare Metal Nodes + InfiniBand (IB)
	3.2 Docker: one container per node, host network + InfiniBand
	3.3 Docker: one container per node, overlay network + InfiniBand
	3.4 Docker - Multiple containers per Host and 'n' MPI Ranks per Container
	3.5 Singularity Container

	4 Evaluation
	4.1 HPCG -High Performance Conjugate Gradients
	4.2 MiniFE - Finite Element mini-application
	4.3 OSU - Ohio State University Micro benchmarks
	4.4 KMI Hash - M-mer Matching Interface benchmark
	4.5 Evaluating InfiniBand and Ethernet for different classes of MPI applications

	5 Related Work
	6 Conclusions
	A Headings in Appendices
	A.1 Introduction
	A.2 Background
	A.3 Experimental Setup
	A.4 Evaluation
	A.5 Related Work
	A.6 Conclusions
	A.7 References

	Acknowledgments
	References

