
Exploring the Fairness and Resource Distribution in

an Apache Mesos Environment

Pankaj Saha,Angel Beltre, and Madhusudhan Govindaraju

Cloud and Big Data Laboratory, State University of New York (SUNY) at Binghamton
{psaha4, abeltre1, mgovinda}@binghamton.edu

Abstract—Apache Mesos, a cluster-wide resource manager, is
widely deployed in massive scale at several Clouds and Data
Centers. Mesos aims to provide high cluster utilization via fine
grained resource co-scheduling and resource fairness among
multiple users through Dominant Resource Fairness (DRF) based
allocation. DRF takes into account different resource types (CPU,
Memory, Disk I/O) requested by each application and determines
the share of each cluster resource that could be allocated to the
applications. Mesos has adopted a two-level scheduling policy: (1)
DRF to allocate resources to competing frameworks and (2) task
level scheduling by each framework for the resources allocated
during the previous step. We have conducted experiments in a
local Mesos cluster when used with frameworks such as Apache
Aurora, Marathon, and our own framework Scylla, to study
resource fairness and cluster utilization. Experimental results
show how informed decision regarding second level scheduling
policy of frameworks and attributes like offer holding period,
offer refusal cycle and task arrival rate can reduce unfair
resource distribution. Bin-Packing scheduling policy on Scylla
with Marathon can reduce unfair allocation from 38% to 3%.
By reducing unused free resources in offers we bring down the
unfairness from to 90% to 28%. We also show the effect of task
arrival rate to reduce the unfairness from 23% to 7%. 1

Keywords—Apache Mesos, Dominant Resource Fairness

(DRF)

I. INTRODUCTION

Widely known fair resource sharing policies such as

max-min fairness and the generalized variation, weighted

max-min fairness, are designed to provide a fair share

guarantee [1]. However, these only work satisfactorily

when a single resource type, such as CPU or memory, is taken

into account. In data centers and clouds, where applications

could be co-scheduled on the same physical nodes, resource

fairness needs to extend to multiple resource types such as

memory, disk I/O, and network bandwidth. The Dominant

Resource Fairness (DRF) [2] algorithm was introduced to

address this requirement for resource management of large-

clusters and cloud environments.

The key tenant of DRF is that it takes into account different

resource types (CPU, Memory, Disk I/O) requested by each

application and determines the share of each cluster resource

that could be allocated to the applications. DRF has been

adopted by Apache Mesos [3], a widely used cluster-wide op-

erating system that can efficiently manage very large clusters.

Mesos is estimated to seamlessly scale to more than 10K nodes

in some commercial settings [4].

1This work was supported in part by NSF grant OAC-1740263.

Mesos pools all the resources in a cluster and allows fine-

grained resource sharing by allowing and enforcing multiple

applications (called Mesos frameworks) to co-schedule their

tasks on VMs/nodes. Mesos employs DRF to allocate re-

sources to frameworks, and then the frameworks use schedul-

ing algorithms to schedule tasks within the allocated resources.

The frameworks that are widely deployed to work in concert

with Apache Mesos are Apache Aurora [5] for long-running

services, Mesosphere Marathon [6] for container orchestration,

and Chronos [7] for cron jobs. In previous work, we developed

a Mesos framework, Scylla [8], for MPI based HPC jobs.

While DRF is well intentioned, there are several use cases

where the Mesos framework’s internal scheduling policy, and

attribute settings that govern interaction with DRF, prevent it

from meeting the desired fairness objectives. In this paper,

we have identified a few key attributes in a framework that

affect access to a fair share of resources, when used in an

Apache Mesos cluster. These include interaction with the

Mesos resource offer cycles, offer holding period, task arrival

rate, and task duration. We provide suggestions for how

cluster administrators can control these attributes to ensure

fair distribution of resources across all users of a cluster.

We assume that cluster managers and framework developers

will use off-the-shelf Apache Mesos and its DRF mod-

ules, as it has the advantage of receiving support from service

providers and the developer community, and can leverage

seamless upgrades to the core Mesos tools. Modifying the

DRF implementation within Mesos requires cluster managers

and framework developers to maintain custom versions and

manually keep track and incorporate the patches to Mesos and

DRF modules.

The key contributions of this paper are the following:

• We have identified the differences between the well-known

DRF algorithm and its variation that is available with the

widely used Apache Mesos distribution.

• We have studied and analyzed the behavior of an Apache

Mesos based cluster and determined the key attributes that

control the resource distribution among multiple users.

• We have developed recommendations for cluster administra-

tors for configuring key attributes to significantly improve

resource distribution among all the frameworks, for varying

workloads.





the offer, Mesos Master responds with an error. Otherwise, it

sends a set of tasks to the individual agents corresponding to

the offer.

B. Mesos Framework

A framework communicates with the Mesos Master for

resource negotiation, and upon receiving the desired resources

it executes its tasks on Mesos Agents. A Mesos Framework

has two key modules: (1) Framework Scheduler and (2)

Framework Executor.

1) Framework Scheduler: It is responsible for resource

negotiations. The Mesos master decides how many offers will

be given to each framework, but the framework’s scheduling

policy determines which offers will be picked among the

available offers. Once offers are accepted, the framework’s

scheduler creates a map of tasks with the offers and then

informs the Mesos Master to launch the tasks on the Mesos

Agents associated with the offer. Apache Mesos implements a

list of filters corresponding to each registered framework. After

a framework rejects or partially uses an offer, it can prevent

the same resources from being allocated to the framework by

temporarily placing that agent in the filter list. The framework

owner can configure the duration an agent should stay in the

filter list. During that wait period, resources from the same

agent are not offered. This wait time is known as Offer

Refusal and it is configured in units of seconds.

2) Framework Executor: It is a process that resides on each

Mesos Agent node and it is contacted whenever an agent node

accepts tasks from frameworks.

C. Framework’s Scheduling Policy

Apache Mesos’ allocation module allocates resources to

available frameworks based on the DRF fairness policy. The

resources are listed in an offer that has details of the

agent node and the share of each resource type that has been

allocated. Each framework scheduler can implement its custom

scheduling policy. Typically, a framework has a queue of tasks

to schedule, and it uses a policy to decide how to pack tasks

into offers. For example, Bin Packing and First Fit

are two commonly used scheduling policies.

IV. DOMINANT RESOURCE FAIRNESS

A. How DRF works

Apache Mesos provides two-level scheduling for resource

allocation to frameworks. The Mesos Master’s allocation mod-

ule decides the amount of resources that will be offered to

each framework during every DRF offer cycle. The dominant

resource of a framework is defined as the resource type that is

used the most and is computed in terms of percentage of the

overall availability of that resource. To calculate the dominant

share Si of user ui, DRF uses the following formula:

Si = maxm
j=1

(
ui,j

rj
)

m = available types of resources

rj = total available resources of type j

ui,j = amount of resource of type j, being use by user ui

Apache Mesos uses the DRF algorithm to decide the first

level of resource distribution among the frameworks. In the

second level of scheduling, a framework can choose which

offer to accept and which one to decline. This second level of

scheduling is pluggable and can be varied based on the require-

ments of the cluster. In each offer cycle, the Mesos Master tries

to allocate resources through DRF to the framework that has

the smallest dominant share. Then, it proceeds to offer to the

second smallest share, and so on, until all the resources have

been allocated. The DRF allocation module is not exercised in

an environment where only one framework is in use. However,

when multiple frameworks are competing, which is a common

use case in very large clusters and data centers, Mesos uses

DRF to attempt a fair allocation of resources based on each

frameworks’ current demands and usage.

B. DRF - Implementation in Mesos

Once resources are allocated to a framework, it can choose

which offers to accept and which ones to reject. The DRF

implementation within Apache Mesos does not exactly follow

the original algorithm.

1) Single Node vs Pool of Resources in Cluster: The

classical DRF algorithm [9] is designed to allocate resources

from a single node to competing users. However, Mesos pools

resources from a heterogeneous set of nodes and presents a

single view of the cluster-wide resources. After each offer has

been allocated, which could be for resources spread across

nodes, the Mesos Master recalculates the dominant share of

all the users for allocating the next offer available in the cluster.

The Master keeps allocating all the offers as long as resources

are available in the cluster. Once all the available offers

have been allocated and accepted, one cycle of allocation is

considered to be completed.

2) Resource Demands from Users: The Mesos Master’s

allocation module does not consider any demands from users.

In the classical DRF algorithm, a demand (Di) of user

(ui) is considered as a vector Di =< di,1, di,2, ..., di,m >

where ’m’ is the number of resources in the cluster. A user

receives resource offer as a multiple of the demand vector –

Offeri =⇒ Di ∗ n =< di,1 ∗ n, di,2 ∗ n, ..., di,m ∗ n >

where ’n’ is the multiplication factor. This Offeri is capable

of launching ’n’ tasks from user ui. Further, DRF assumes

that all the tasks, received form a user, have identical resource

demands.

However, unlike the classical DRF, Mesos Master allocates

resources to users only based on the dominant share and offers

all the available resources in an agent node. It allows users

to reject part of the offer, or the entire offer, based on the

requirement.

C. DRF-based Resource Allocation

Apache Mesos Master offers resources to frameworks dur-

ing each cycle of resource distribution and the framework with

minimum dominant share is served first. After the framework

uses a portion of the offered resources, the rejected and unused

portion of the offer, if any, goes back to the resource pool and



is eligible for allocation in the next cycle. After a resource is

assigned to a framework, the Mesos Master resets the priority

of the available frameworks based on their dominant share. A

framework with the lowest dominant share holds the highest

priority.

This resource allocation cycle runs against each unallocated

offer in the cluster. For each unallocated offer, picked ran-

domly from the list of offers, the allocation module finds the

framework with the lowest dominant share. If the offer is in the

filtered list of offers at that point of time, then the allocation

module picks the next available framework in the DRF-sorted

list of frameworks. Otherwise, it assign the resources to the

framework.

Algorithm 1 Resource Allocation Cycle in Mesos

for each agent in the randomSorted agents do
for each role in drfSorted roles do

for each framework in drfSorted frameworks do
if framework already filtered these resources then

continue and skip the current framework
else

allocate the resources to the framework
end if

end for
end for

end for

After each DRF cycle of resource allocation by Mesos

Master, individual frameworks can accept or reject offers

based on the 2nd level scheduling policy and more specific

resource constraints. For example, a “Bin Packing” algorithm

will utilize more offers than a “First Fit” and “One Task per

Cycle” task allocation policy.

So in a cycle, if Mesos Master allocates all the resources to

a Framework-A, which uses “One Task Per Cycle” policy, then

the majority of the allocated offers will be rejected and may be

allocated to Framework-B, which uses the Bin-Packing policy

to map tasks to offers. To counter this resource distribution

behavior, Framework-A needs more cycles to allocate more

tasks than Framework-B. User level task allocation is one

of the key attributes that drives a cluster towards unfair

resource allocation. Other factors are (1) Refuse offer cycle,

(2) Resource holding period, (3) Task completion rate, and (4)

Task arrival rate. We discuss how these attributes contribute

towards the fairness of the overall resource distribution.

1) Refuse Offer Seconds: This attribute defines the number of

seconds for which resources from an agent cannot be offered

again after the resources from the same agent were rejected

or partially used.

2) Offer Holding Period: A few frameworks hold resources

for a specified period to make better scheduling decisions.

An offer can be terminated from a framework when either

a task is launched with the offer or the offer holding period

is over. Mesos Master can also set the offer timeout and

reclaim after the timer expires If no timeout period is set,

then the framework can hold an offer as long as it wants. A

longer offer holding time decreases the resource utilization

and can make other frameworks starve.

3) Task Duration: Long-running tasks block resources for a

longer period and can make other users starve for resources.

Apache Mesos does not kill tasks once they are started; it

waits until the tasks finish even though other users may have

more tasks to run.

4) Task Arrival Rate: Frameworks keep on launching tasks

as long as the Mesos Master offers resources to them and

there are tasks waiting in the queue. So, it is beneficial to

frameworks that initiate tasks at a faster rate from a queue

of tasks. A framework that launches tasks at a slower speed

may face starvation because the resources are being blocked

by the frameworks that are launching tasks at a higher rate.

V. EVALUATION AND EXPERIMENTAL RESULTS

We ran experiments to determine the effect of various frame-

work configurations and attributes on resource distribution

and fairness. We used two off-the-shelf popular Mesos frame-

works, Apache Aurora and Marathon, along with our MPI

framework Scylla [8] to study and analyze the experimental

results. Our experimental cluster has four nodes with a pool

of 32 CPUs and 64 GBs of RAM. All tasks sent to the

frameworks are identical in terms of resource requirements

but in some experiments they differ in runtime.

Software Version

Ubuntu Ubuntu 16.04.2 LTS (Xenial)

Apache Aurora 17.06.0-ce

Marathon 1.4.0

Apache Mesos 1.3.0

Table 1. Software Stack and Version

A. DRF based fairness on a multi-user cluster

In this experiment, we ran two instances of Scylla (Scylla-

A and Scylla-B), each with a queue of 100 tasks. Each task

required 〈1CPU, 1GB memory〉 and runtime of 100 seconds.

We first launched Scylla-A and waited for all its tasks to be

launched on the cluster before launching Scylla-B.

We can observe that after some fluctuations, the resource

distribution is fair and both the frameworks are using close to

1/n of the cluster resources (which is 50% in this case). In the

cluster, for the requested configurations by the frameworks,

at most 32 tasks can be launched. The fair share for each

framework is 32 tasks. Figure 4 shows that each framework

is running 10 to 20 tasks. This setup achieves fair distribution

compared to the results shown in Figures 1 and 2.

The Refuse Offer seconds attribute of one framework in-

creases the opportunity for other frameworks to use resources

that were rejected or partially used by a framework. So,

to achieve better allocation, we ran the same experiment as

Figure 4 but changed the Refusal Offer seconds by gradually

increasing it from zero to five seconds. In Figure 5, we can

observe that both the frameworks are executing around 15-16

tasks for longer period time, which again maintains a better

resource distribution compared to the previous experimental



Figure 4. Moderate Distribution: Number of tasks running

every second by each Scylla instances setup with similar

configurations. This setup has a moderate resource distribution

among the frameworks when offer refusal period for both the

Scylla instances is set to none.

Figure 5. Preferred Distribution: Number of tasks running

every second by each Scylla instances setup with similar

configurations. The refuse offer period is set to 5 seconds.

setup shown in Figure 4. We continued the experiment to

further increase the offer refusal seconds to 7 and 10 seconds,

but did not see much improvement. So, in our experimental

cluster, we kept the configuration of 5 seconds as the offer

refusal period is optimal.

B. Fairness with Marathon and Scylla Frameworks

The second level scheduling policy can impact the clus-

ters resource distribution and lead to unfair distribution of

resources. For this experiment, we deployed Marathon and

Scylla, wherein Scylla employs First-Fit scheduling policy.

Both the frameworks were given a queue with 100 tasks, each

requiring 1 CPU and 1 GB of RAM.

In Figure 1, we can observe how Marathon’s greedy re-

source consumption policy consumes more resources and

launches more tasks even though another framework was

waiting for resources. Marathon used resources that exceeded

the fair share, whereas Scylla received a smaller share. This

greedy approach of Marathon caused a 38% reduction in

fair resource allocation to Scylla, as shown in Figure 1. We

changed the configuration and instantiated Scylla with Bin-

Packing as second level scheduling policy. In Figure 6, we

can see how each framework started using close to fair share

of the cluster resources. Due to Scylla’s Bin-Packing policy,

it receives 5% more resources than the fair share limit, which

Figure 6. Moderate Distribution: Marathon and Scylla are vy-

ing for resources in a Mesos cluster when Scylla is configured

with Bin-Packing as the second level task allocation policy.

This resource distribution is moderately better compared to

the unfair distribution we noticed in Figure 1.

Figure 7. Preferred Distribution: Marathon and Scylla are vy-

ing for resources in a Mesos cluster when Scylla is configured

with Bin-Packing as second level task allocation policy and 5

second refuse offer period is set as a framework attribute of

Scylla, for better resource distribution.

is better than the loss of 38% fairness in allocation shown

in Figure 1. This situation is further improved to 3% above

the fair share limit by increasing the offer refusal period to 5

seconds, which was previously determined to be the optimal

value for this cluster in Figure 7.

C. Fairness on Apache Aurora and Scylla based cluster

Figures 8, 9 and 10 show how we can gradually achieve

better resource distribution with Apache Aurora and Scylla.

With Apache Aurora, we faced some challenges in attaining

fairness as it holds all the offered resources for a specified

period. When a framework holds resources for a while, even

if it does not launch any tasks, those held offers are weighed

against the framework in computing the dominant share of

the framework. Due to the increment of dominant share,

Aurora’s priority to receive further offers goes down, and

another framework gets those offers.

To explain this scenario in more detail, consider the follow-

ing example – a cluster with four nodes, each one contain-

ing the following resource configuration: 8 CPUs, 16GB of

memory, and 32GB of disk space. Mesos Master will receive

advertisement of offers from all the Agents in the following

manner:



Table 2. 100% CPU and Memory resource is consumed

CPU Memory Disk

100% 100% 2.5%

Table 3. Resource allocation in presence of both frameworks

Framework CPU Memory Disk

Framework-A 87% 87% 2.8%

Framework-B 0% 0% 97.81%

• Offer 1 〈8CPU, 16GB memory, 32000MB disk〉
• Offer 2 〈8CPU, 16GB memory, 32000MB disk〉
• Offer 3 〈8CPU, 16GB memory, 32000MB disk〉
• Offer 4 〈8CPU, 16GB memory, 32000MB disk〉

Now consider Framework A launches 32 tasks, each

〈1CPU, 2GB memory, 100MB disk〉, in the cluster be-

fore Framework B is started. Table 2 shows the current

status of the cluster where we can see that it is 100%

occupied by framework A, for CPU and memory resources,

and exhibits a dominant share of 100%. As a result, any

available resources should subsequently go to framework

B. During this period there will be resource offers like

〈0CPU, 0GB memory, 31200MB disk〉. Let us consider

that we have framework B, which holds resources for a

specified amount of time hoping to make better task allocation

in its internal scheduling. During this offer holding period,

let us say framework A completes 4 tasks and as a result a

total offer of 〈4cpu, 8gb−mem, 400gb− disk〉 will be freed.

Mesos Master will then allocate the offers through next DRF

cycle. Mesos Master will compute the resource share of each

framework as shown in Table 3.

Now any framework that has a lower dominant share will get

the opportunity to use these available offers before framework

A acquires it. Framework B’s CPU and memory share is

0%, and disk share is 97.81%. Even though Framework B

is not launching any tasks, due to the disk resource on hold,

Mesos Master will determine its dominant (disk) share to be

97.81%, which is higher than frameworks A’s dominant share.

So framework A gets the chance to use the available offers

before framework B. This causes starvation for framework B

until framework A is done with executing all the tasks.

To demonstrate with an experiment, we setup a cluster with

the same resource configuration and used Scylla as Framework

A. We deployed Apache Aurora as framework B, which holds

resources for 5 minutes by default [10]. In Figure 8 we can

see that Aurora is able to launch less number of tasks in the

presence of Scylla as Aurora faces 89% fairness reduction in

resource allocation. Scylla receives more CPU and memory

resources and is able to launch all the tasks ahead of Aurora.

Table 4. 100% Disk Resource is Allocated

CPU Memory Disk

100% 100% 100%

Figure 8. Poor Distribution: Apache Aurora is launching a

small number of tasks in the presence of Scylla. Entire cluster’s

resources are being used by Scylla to launch most of its tasks,

which is leading to poor resource distribution.

Figure 9. Better Distribution: Resource distribution is im-

proved between Apache Aurora and Scylla by addressing the

problem due to Aurora’s resource holding feature.

Figure 10. Improved Distribution: Increased offer refusal

period of Scylla improves resource distribution to Aurora.

To improve resource distribution, we tried to reduce the free

disk resource in the cluster. Instead of launching tasks with

〈1CPU, 2GB memory, 100MB disk〉, we launched each

task with 〈1CPU, 2GB memory, 4096MB disk〉 to combine

more disk resources in the task requirements. Now, at the

beginning when Scylla is running 32 tasks, its resource share

metric will be as shown in Table 4. As there exist no offers

due to the unavailability of resources, Aurora will not receive

offers with big disk space like in the previous case. As Aurora

is not holding any resources, any freed up resources will be

offered to it, which will bring a better resource distribution in

the cluster.

Figure 9 shows a comparatively better resource distribution



where Aurora has 35% reduction in fairness. We have seen in

previous experiments (see Figures 5 and 7) an increment of

Refuse Offer seconds of a framework improves the chances

of another framework to get relatively better resources. Figure

10 shows relatively better results than Figure 9 and unfairness

is reduced to 28% for Aurora.

D. Impact of Idle Users on Resource Distribution

In this experiment, we study how the presence of idle frame-

works in a Mesos cluster can cause low resource utilization.

We launched a single instance of Scylla and recorded the time

it takes to complete 100 tasks. We launched all the tasks in

a fixed interval of two seconds throughout these experiments.

Next, we increased the number of framework instances and

observed how the makespan increases, in presence of other

idle frameworks, due to the DRF resource allocation policy.

Figure 11. Impact of Idle Frameworks: The required time

to launch all the tasks of an active framework rises as the

number of idle frameworks in the cluster increase. This could

be addressed by increasing the offer refusal period of idle

frameworks.

Figure 11 shows how makespan increases as we increase the

number of idle frameworks. From Figure 11A to Figure 11C,

we increased the number of idle frameworks in the cluster and

observed that the makespan doubles when the number of idle

framework goes up to five.

DRF allocation favors the framework that has received less

resource allocations. Thus, Mesos Master offers the resources

to the idle framework in the current cluster environment even

though these frameworks do not have any tasks to launch.

Their dominant share is 0%. DRF fairness always prefers

framework with the lower dominant share and this can cause

starvation for a framework that has a pending list of tasks

to launch. To avoid starvation of an active framework, we can

increase the offer refusal duration for the idle frameworks that

do not have pending tasks. When a task appears on those idle

framework, the filter can be removed for it to accept offers for

the pending tasks. To study this case, we increased the offer

refuse duration of the idle frameworks from five to 10 seconds,

and reduced the active frameworks’ offer refuse duration to

two seconds. We can observe in Figures 11D and 11E how

this change improves the makespan. Any further reduction in

the offer refusal period for the active framework, however, did

not produce further improvements.

E. Long running tasks towards unfair distribution

Mesos lets a framework exceed its fair share if the lower

share framework does not want the resources. As Mesos does

not revoke resources until a task is completed, a framework

may have to wait for those resources to be released before it

can get its share. Thus, improvement in utilization comes at

the cost of not providing a guarantee that a user can get its

fair share without waiting. Mesos allows the use of a quota,

for role-based static and dynamic reservation of resources, to

ensure that a framework will always get its share no matter

what is being requested by other frameworks. However, the use

of quota can lead to underutilization of the cluster resources

if a reserved resource is not being used by a framework.

Figure 12. Poor Distribution: Resource distribution when two

identical frameworks launch tasks of different durations but at

the same launching rate.

Figure 13. Worse Distribution: Cluster with long and short

Resource distribution scenario when long running tasks are

launched at a higher rate and short running tasks are launched

at a slower rate.

In this experiment, we setup two instances of the Scylla

framework with similar configuration (Scylla-L and Scylla-

S). Scylla-L launches long-running tasks whereas Scylla-S

runs short-running tasks. Both the frameworks allocate tasks

with “First-Fit” as the second level scheduling policy and

receive tasks in an interval of 5 seconds. Short running tasks

required 1CPU and 1GB of memory resources and run for 100

seconds. Whereas, long running tasks required similar amount



Figure 14. Improved Distribution: Cluster with long and short

running tasks. This figure illustrates an improved resource

distribution when long running tasks are launched at a slow

rate and short running tasks are launched at a high rate.

of resources but run for 200 seconds. We launched a total of

100 short running tasks and only 50 long running tasks. As

the runtime of long running tasks is double that of the short

running tasks, it keeps the total runtime of both the types of

tasks the same. Our experimental results in Figure 12 show

how this experiment results in an unfair distribution in the

cluster. Framework-S starves for a longer period in the Mesos

cluster as it receives 23% unfair resource allocation.

To observe how this resource distribution is impacted

by task arrival rate, we changed the frequency at which

tasks appear in the queue for each framework. Figure 13

shows how resources are distributed among frameworks when

Framework-L launches long-running tasks every 5 seconds

and Framework-S launches tasks every 10 seconds. The lower

task arrival rate of Framework-S results in 37% reduction in

fairness. To improve the scenario, we interchanged the task

arrival rate of both the frameworks. We see an improvement

in the resource distribution shown in Figure 14 where the

unfairness is reduced to 7% for Framework-S.

VI. RELATED WORK

The work on evaluation of DRF is in its early stages.

Ghodi et al. [2] introduced DRF as a generalization of the

well-known Max-Min traditional problem. Our work comple-

ments their research as we are evaluating how the implementa-

tion of DRF in Apache Mesos differs from the proposed DRF,

and how framework policies affect resource distribution.

Dimopoulos et al. [11] show how big data frameworks

(Hadoop, Spark, and Storm) hinder each other in a Mesos

cluster under resource constraints. They compare the frame-

works with different data sizes to see how performance varies

with data volume.

Wang et al. [1] generalized DRF to work on multiple

heterogeneous servers. Saha et al. [12] show how Apache

Mesos can be integrated into a scientific cluster to leverage

DRF based fair resource distribution. A Mesos framework,

Scylla [8], was developed to orchestrate scientific MPI tasks

on a Mesos cluster.

VII. CONCLUSION

• The DRF based allocation module may not provide enough

resources to frameworks such as Apache Aurora, which

holds on to resources instead of immediately using them.

Framework specific attributes, like offer holding period, are

critical and informed decisions based on the existence of

other frameworks can reduce an unfair allocation from 90%

to 28%.

• Frameworks can refuse to accept offers from the Mesos

allocation module for a configurable period of time. This

offer refusal period increases the opportunity for other

frameworks to use the refused offer, and in turn leads to

better resource distribution. For a change in offer refusal

period from 0 to 5 seconds, the gains in fairness range can

from 85% to 99%.

• The second level scheduling policy of a framework can

incorporate greediness and make other frameworks starve

for resources. In such cases, competing frameworks that

allow change in their scheduling policy, to bin packing for

example, can reduce the unfairness from 38% to just 3%.

• Once Mesos launches tasks, it does not terminate them even

if the frameworks’ dominant share exceeds the fair share

limit of the cluster. This feature can lead other frameworks

to starve. Increased arrival rate of short running tasks and

decreased arrival rate of long-running tasks from two differ-

ent frameworks respectively can reduce the unfair resource

distribution from 23% to 7%.

REFERENCES

[1] W. Wang, B. Li, and B. Liang, “Dominant resource fairness in cloud
computing systems with heterogeneous servers,” in INFOCOM, 2014

Proceedings IEEE. IEEE, 2014, pp. 583–591.
[2] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and

I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types.” in NSDI, vol. 11, no. 2011, 2011, pp. 24–24.

[3] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: a platform for fine-grained
resource sharing in the data center,” pp. 295–308, 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=1972488

[4] “Mesos has been simulated to scale to 50,000 nodes, although
it is not clear ho... — Hacker News.” [Online]. Available:
https://news.ycombinator.com/item?id=10228820

[5] “Apache Aurora.” [Online]. Available: http://aurora.apache.org/
[6] “Marathon: A container orchestration platform for Mesos and DC/OS.”

[Online]. Available: https://mesosphere.github.io/marathon/
[7] “Chronos: Fault tolerant job scheduler for Mesos.” [Online]. Available:

https://mesos.github.io/chronos/
[8] P. Saha, A. Beltre, and M. Govindaraju, “Scylla: A Mesos Framework

for Container Based MPI Jobs,” in MTAGS17: 10th Workshop on Many-

Task Computing on Clouds, Grids, and Supercomputers, Denver, 2017.
[9] “Dominant Resource Fairness: Fair Allocation of Heterogeneous

Resources in Datacenters — EECS at UC Berkeley.” [Online].
Available: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-
2010-55.html

[10] “Aurora Scheuler Configuration.” [Online]. Avail-
able: http://aurora.apache.org/documentation/latest/reference/scheduler-
configuration/

[11] S. Dimopoulos, C. Krintz, and R. Wolski, “Performance
Interference of Multi-tenant, Big Data Frameworks in
Resource Constrained Private Clouds.” [Online]. Available:
https://www.cs.ucsb.edu/sites/cs.ucsb.edu/files/docs/reports/paper 6.pdf

[12] P. Saha, M. Govindaraju, S. Marru, and M. Pierce, “Integrating
Apache Airavata with Docker, Marathon, and Mesos,” Concurrency and

Computation: Practice and Experience, vol. 28, no. 7, pp. 1952–1959,
5 2016. [Online]. Available: http://doi.wiley.com/10.1002/cpe.3708


