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Abstract: The inconsistency of data terminology has imposed big challenges on integrating transportation project data from distinct sources.
Differences in meaning of data elements may lead to miscommunication between data senders and receivers. Semantic relations between
terms in digital dictionaries, such as ontologies, can enable the semantics of a data element to be transparent and unambiguous to computer
systems. However, because of the lack of effective automated methods, identifying these relations is labor intensive and time consuming. This
paper presents a novel integrated methodology that leverages multiple computational techniques to extract heterogeneous American-English
data terms used in different highway agencies and their semantic relations from design manuals and other technical specifications. The
proposed method implements natural language processing (NLP) to detect data elements from text documents and uses machine learning
to determine the semantic relatedness among terms using their occurrence statistics in a corpus. The study also consists of developing an
algorithm that classifies semantically related terms into three different lexical groups including synonymy, hyponymy, and meronymy. The
key merit in this technique is that the detection of semantic relations uses only linguistic information in texts and does not depend on other
existing hand-coded semantic resources. A case study was undertaken that implemented the proposed method on a 16-million-word corpus of
roadway design manuals to extract and classify roadway data items. The developed classifier was evaluated using a human-encoded test set,
and the results show an overall performance of 92.76% in precision and 81.02% recall. DOI: 10.1061/(ASCE)CP.1943-5487.0000701.
© 2017 American Society of Civil Engineers.
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Introduction

The implementation of advanced technologies such as three-
dimensional (3D) modeling, geographic information systems
(GISs), mobile devices, or light detection and ranging (LiDAR)
throughout the lifecycle of a transportation asset has enabled data
to be increasingly available in digital format. Because of the frag-
mented nature of the transportation industry, lifecycle data are gen-
erated individually by project partners and are archived in their own
repositories (Harrison et al. 2016). The efficiency of data sharing
and integration is crucial to enhance data reusability which will
translate into reduced data re-creation, enhanced productivity,
and better decision making. Addressing the interoperability issue
has been widely recognized as a pressing need to allow for com-
puter-to-computer data exchange and seamless integration of hetero-
geneous data from multiple sources (Karimi et al. 2003; Gallaher
et al. 2004; Bittner et al. 2005). The transportation sector, however,
has not yet successfully facilitated a high degree of interoperability
(Lefler 2014). To reuse digital data, much laborious work is required
for finding, verifying, and transforming facility and project informa-
tion from a certain format to one another (Gallaher et al. 2004).

Semantic interoperability is the highest level of interoperability
that is concerned with the issue, whereby two computer systems
may not share a common understanding of the same data item
(Heiler 1995). In the fragmented civil infrastructure domain, names
of things might vary across data sources. Polysemy and synonymy
are two major linguistic obstacles to the semantic integration of a
multitude of data sources (Noy 2004). Polysemy refers to cases in
which a unique data term has distinct meanings in different con-
texts. The difference in meaning is a result of the diversity and tem-
porary nature of definitions and the variation in data collection
methods (Walton et al. 2015). For example, ‘rail’ can mean a trans-
portation mode or a barrier structure. Synonymy, in contrast, is
associated with the disparity of names for the same data across
systems. For instance, the data element of roadway type is named
‘functional system’ in the Highway Performance Monitoring
System (HPMS), but ‘functional class’ in the Highway Safety In-
formation System (HSIS). Data integration in such a heterogeneous
environment is highly problematic (Karimi et al. 2003). Polysemy
may lead to a wrong match of two semantically different data items;
and synonymy can cause a failure of aggregating similar elements.
Explicitly specifying the semantic equivalence or relatedness be-
tween data terminologies becomes critical to proper integration
of disparate data (Ouksel and Sheth 1999).

Previous studies on semantic similarity and relatedness between
data items lie in the development of data libraries, taxonomies, and
ontologies. A semantic resource specializes the meaning of terms
through their lexical relations with each of other. Examples in this
area include the civil engineering thesaurus (Abuzir and Abuzir
2002), the e-Cognos ontology (Wetherill et al. 2003), and the buil-
dingSMART data dictionary (buildingSMART 2016). As shown in
the literature review, their coverages are still limited, especially in
the transportation sector, in spite of years of efforts because of the
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reliance on conventional methods, which are labor intensive and
time consuming. To develop a knowledge base, developers are re-
quired to manually determine important terms and their relations by
interviewing domain experts or examining technical documents.
The shortage of such semantic resources has become a bottleneck
for semantic integration. There is a need for an automated data clas-
sification method that will allow digital dictionaries to be quickly
constructed for specific needs and to keep up with the growth of
terms (Mounce et al. 2010).

To fulfill that demand, this study aims to propose a novel
linguistic approach for automatically classifying the semantic rela-
tions among heterogeneous data elements associated with a trans-
portation asset. The study leverages natural language processing
(NLP) to extract key data items and their meanings by analyzing
the statistical data of context words in technical documents. This
process generates a vector space in which each point represents the
semantics of a data item. The research also includes a new inte-
grated classification algorithm that utilizes syntactic rules, cluster
analysis, and word embedding to categorize related elements into
three different lexical groups that are similar-to (synonymy), is-a
(hyponymy), and part-of (meronymy). To demonstrate the success
of the proposed method, the framework was implemented on a cor-
pus of roadway design manuals. A Java package and several data
sets resulting from the study can be found at CeTermClassifier
(2017).

Background

Natural Language Processing

NLP is a research area developing techniques that can be used to
analyze and derive valuable information from natural languages
like text and speech. Some of the major applications of NLP in-
clude language translation, information extraction, and opinion
mining (Cambria and White 2014). These applications are embod-
ied by a rich set of NLP techniques ranging from syntactic process-
ing such as tokenization (breaking a sentence into individual
tokens) (Webster and Kit 1992; Zhao and Kit 2011), part-of-speech
(POS) tagging (assigning tags, e.g., adjective, noun, and verb, to
each token of a sentence) (Toutanova et al. 2003; Cunningham
et al. 2002), and dependency parser (identifying relationships be-
tween linguistic units) (Chen and Manning 2014), to the semantic
level, for instance word sense disambiguation (Lesk 1986;
Yarowsky 1995; Navigli 2009). NLP methods can be classified into
two main groups: (1) rule-based and (2) machine learning (ML)–
based methods. Rule-based systems, which rely solely on
hand-coded syntax rules, are not able to fully cover all human rules
(Marcus 1995); their performance, therefore, is relatively low. The
ML-based approach is independent of languages and linguistic
grammars (Costa-Jussa et al. 2012) because patterns can be quickly
learned from even unannotated training examples. Thanks to its
impressive out-performance, NLP research is shifting to statistical
ML-based methods (Cambria and White 2014).

Vector Representation of Word Semantics

Measuring semantic similarity, which is an important NLP-related
research topic, aims at determining how much two linguistic
units (e.g., words, phrases, sentences, concepts) are semantically
alike. For example, a ‘railway’ might be more similar to a ‘road-
way’ than to a ‘train.’ The state-of-the-art methodology for this task
can be divided into two categories that are (1) thesaurus-based
methods and (2) vector space models (VSM) (also known as word
embedding) (Harispe et al. 2013). The former approach relies on a

hand-coded digital dictionary [e.g., WordNet (Princeton University
2017)] which formally structures terms in a network of semantic
relations. In this method, the semantic similarity between a given
pair of words can be measured based on the distance between them
in the hierarchical structure. The method is an ideal solution if
digital dictionaries are available. However, digital dictionaries
are typically handcrafted; they are, therefore, not available to many
domains (Kolb 2008). The latter technique assesses the meaning
of words or phrases by analyzing their occurrence frequency in
natural language text documents. VSM outperforms the dictionary-
based method, especially in terms of time saving, because a seman-
tic model can be automatically obtained from a text corpus, and
corpus collecting is much easier than manually constructing a
digital dictionary (Turney and Pantel 2010).

VSM estimates semantic similarity based on the distributional
model, which represents the meaning of a word through its context
(co-occurring words) in a corpus (Erk 2012). The distributional
model stands on the distributional hypothesis that states that two
similar terms tend to occur in the same context (Harris 1954).
The output of this approach is a vector space, in which each nu-
meric vector represents a word in the vocabulary. The similarity
between semantic units in this model can be represented by the
Euclidean distance between the corresponding points (Erk 2012).

The conventional method to construct a VSM is to use the word-
context matrix, which shows how frequently a word appears in the
context of another word in a given text corpus. These raw data of
frequencies are used to estimate the co-occurrence probabilities.
This statistical process results in a matrix in which each row is
a vector representation. Pointwise mutual information (PMI)
(Church and Hanks 1990) or its variant, positive PMI (PPMI) is
a popular method to calculate co-occurrence probabilities. A more
advanced approach uses machine learning to train representation
vectors. The two leading state-of-the-art ML-based word embed-
ding techniques are named Word2Vec and Glove. The Word2Vec
model (Mikolov et al. 2013), which is a neural network model,
learns vector representation of words from their surrounding words.
Mikolov et al. (2013) proposed two opposite network architectures,
including continuous bag-of-words (CBOW) and skip-gram.
CBOW predicts a word given a set of context words, whereas
skip-gram aims to predict the context of a given word. The training
objective of both models is to minimize the overall prediction error.
Glove or Global Vectors (Pennington et al. 2014) trains on the
global co-occurrence matrix with the objective that the probability
of co-occurrence between two words equals the dot product of their
vector representations. There are conflicting recommendations on
the wining model in the literature. The authors of Glove argue that
their model outperforms Word2Vec. However, a number of inde-
pendent benchmarking experiments provide an opposite sugges-
tion. For example, a comparative study by Levy et al. (2015) on
the accuracy in various tasks and golden standards reveals that
the skip-gram in Word2Vec is superior to Glove in most of the ex-
periments, especially on similarity evaluation. The best precision of
skip-gram is 0.793, whereas Glove achieves the highest score of
0.725. The outperformance of Mikolov’s models on the similarity
task is confirmed in another benchmarking study (Hill et al. 2015),
in which this model is also the winner.

The VSM approach has been progressively implemented in re-
cent NLP-related studies in the construction industry. Yalcinkaya
and Singh (2015) utilized VSM to extract principle research topics
related to BIM from a corpus of nearly 1,000 paper abstracts.
This approach was also used for information retrieval to search
for text documents (Lv and El-Gohary 2015) or computer-aided
design (CAD) documents (Hsu 2013). The increasing number of
successful use cases in the construction industry has evidently
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demonstrated that the VSM method can be successfully imple-
mented to tackle the issue of semantic interoperability in sharing
digital data across the lifecycle of a highway project.

Related Studies

A popular solution to semantic interoperability is to develop
taxonomies, ontologies, or other forms of digital dictionaries that
can provide machine-readable definitions of domain concepts. A
plethora of such semantic resources have been developed for the
highway industry. However, conventional development methods
require significant human efforts on knowledge retrieval, and on-
tology construction and validation. The pioneer in this line of re-
search is the e-Cognos ontology (Wetherill et al. 2003; Lima et al.
2005), which formulates the execution process of a construction
project as an explicitly interactive network of the following prin-
cipal concepts: actors, resources, products, processes and technical
topics. The ontology developers of this project reviewed existing
taxonomies and construction specific documents, and interacted
with the end users to identify relevant concepts and their semantic
relations. Industry experts were invited to validate e-Cognos’ con-
cept names and relations. Because the introduction of e-Cognos,
plenty of other ontologies have been built for various aspects
of a highway project, for instance, construction taxonomy
(El-Diraby and Kashif 2005; El-Diraby et al. 2005), freight ontol-
ogy (Seedah et al. 2015a), and the ontology of urban infrastructure
products (Osman and Ei-Diraby 2006). These studies also relied on
domain experts (El-Diraby and Kashif 2005; El-Diraby et al. 2005;
Osman and Ei-Diraby 2006) or existing knowledge bases (Seedah
et al. 2015a) to construct their semantic products. The limitations on
time and resources of the traditional knowledge-based methodology
have created a bottleneck in semantic interoperability. In addition,
existing ontologies primarily focus on concept description and
neglect the heterogeneity of concept names. Therefore, there is a
need to develop a data-driven method that can automate the process
of formulating domain concepts and also incorporate term diversity
into ontologies.

Another line of research on semantic interoperability targets at
the heterogeneity of concept names rather than concept description.
A few frameworks to assist developers in precisely mapping data
labels from heterogeneous sources have been introduced for vari-
ous construction sectors. In the building sector, buildingSMART
proposed a novel framework, namely the International Framework
for Dictionaries (IFD) or ISO 12006-3 (ISO 2007) for developing a
multilingual data schema in which each concept can have multiple
names in different languages. With IFD, the identity of a concept is
defined by a global unique ID (GUID) instead of its name; hence,
an IFD-based exchange mechanism is able to avoid data mis-
matches owing to name inconsistency (Hezik 2008). The buil-
dingSMART Data Dictionary (bSDD) (buildingSMART 2016)
is the first digital library of building concepts organized in IFD
format. Each concept in bSDD consists of a set of synonymy
names not only in English but also in computer-coded languages
(e.g., IFC) and in other human languages (e.g., French, Norwe-
gian). Therefore, a complete bSDD would enable digital data
regardless of languages to be sharable and unambiguously reus-
able. Yet, its size remains limited because the identification of these
sets of synonyms is laborious and time intensive. In the transpor-
tation sector, there has been a shortage of research efforts on the
heterogeneity of data names at the database level until recently.
Seedah et al. (2015b) proposed a role-based classification schema
(RBCS) to classify data in freight databases. RBCS defines nine
distinct groups of roles that are time (year, month), place (city
name, population), commodity (liquid, value), link (roadway name,

width), mode (truck, rail), industry (company name, sales), event
(accident, number of fatalities), human (officer, driver age), and
unclassified. Seedah et al. (2015b) argue that once data elements
across separate databases are categorized using this standard sys-
tem, it becomes easier for practitioners to identify the semantic re-
latedness between items. However, even if RBCS is successfully
applied to all freight databases, much more effort is still needed
to further specify the relation type (e.g., synonym, functional-
related) between two data elements in the same category.

In attempts to reduce laborious work on defining concepts, a few
researchers have sought to propose semiautomated and automated
methods for identifying semantic relations among technical terms.
Abuzir and Abuzir (2002) developed the ThesWB system which
utilizes hand-coded syntax patterns to detect lexical relations be-
tween civil engineering terms from HTML web pages. The perfor-
mance of ThesWB was not reported, but it is not likely to be high
because rule-based approaches are repeatedly criticized for not
being able to capture all the variant ways to present relations among
terms in natural language (Marcus 1995; Navigli and Velardi 2010).
Rezgui (2007) suggested a more sophisticated approach that is
based on the statistics of word occurrence in domain text docu-
ments rather than predefined rules. This method implements term
frequency-inverse document frequency (TF-IDF) to evaluate the
importance degree of a keyword to the examined domain. The
method computes the relatedness between a given pair of important
keywords using the metric clusters measure, which estimates the
association based on the distance between them in the text. These
potential relationships are then validated and categorized by do-
main experts. Because Rezgui’s (2007) methodology detects rela-
tions between words occurring in the same sentence, equivalent
terms which are used interchangeably could not be captured. In
another study, Zhang and El-Gohary (2016) proposed a machine
learning–based methodology for identifying the semantic relation
between a new concept and the existing IFC entities. This algorithm
was reported to achieve an average precision of nearly 90%.
The algorithm identifies potentially related concepts based on the
predefined lexical relations provided in WordNet (Princeton
University 2017). Because WordNet is a generic lexicon that lacks
concepts in many construction sectors, including the civil infra-
structure, this algorithm would not be scalable well on matching
terms in those domains.

As shown in the literature review, there are numerous research
efforts in developing ontologies for the highway sector. However,
existing ontologies are mainly hand-coded through the manual
processes of knowledge acquisition and translation into a digital
format. Relying on this traditional approach has created a bottle-
neck in facilitating semantic interoperability. A few efforts have
been made to automate the process of constructing or extending
existing semantic resources. The most rigorous methodology in
the state of the art is the one developed by Zhang and El-Gohary
(2016) that has a high level of accuracy. One limitation of this al-
gorithm is the reliance on a semantic resource; therefore, it would
not be well applicable to such domains as civil infrastructure and
transportation that are beyond the vocabulary scope of existing lexi-
cal databases. Thus, it is essential to develop an automated method
that can allow for fast development of domain lexicons and also
reduce dependence on other existing semantic resources.

NLP-Based Methodology to Classification of
Heterogeneous Data Terms

The goal of this research is to propose an NLP-based methodology
that can automate the process of extracting diverse data elements
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and their semantic relations from American-English technical
guideline documents. Fig. 1 shows that the proposed method con-
sists of three major stages that are to (1) utilize NLP techniques to
extract multiword data items from a domain text corpus; (2) imple-
ment machine learning to generate vector representation of the
extracted terms; and (3) design an algorithm integrating various
linguistic patterns, clustering, and semantic vectors to detect the
semantic relation between a given pair of terms. The succeeding
sections discuss these phases in detail.

Multiword Data Element Extraction

Technical documents such as design manuals, guidelines, and spec-
ifications are great sources of domain data elements that occur as
technical terms. Linguists argue that a technical term is either a
noun [e.g., road, annual average daily traffic (AADT)] or a noun
phrase (NP) (e.g., right of way, sight distance) that frequently
occurs in domain text documents (Justeson and Katz 1995). The
meaning of a multiword term may not be directly interpreted from
the meaning of its constituents; therefore, it must be treated as an
individual word. As mentioned, a multiword term must be an NP;
thus, NPs are good multiword term candidates. To detect this type
of term, the corpus is first scanned to search for NPs, followed by
assessing their importance to the domain. The process of extracting
multiword terms is discussed in detail next.

NP Extraction

Fig. 2 illustrates how NPs are extracted from a natural language
sentence based on the Apache OpenNLP (2017) library. This pro-
cess includes the following steps:
1. Word tokenizing: In this step, the text corpus is broken down

into individual units (also called tokens) (OpenNLP 2017).
Tokenizing is to separate punctuation marks, for instance per-
iods, commas, semicolons, and parentheses, from words. The
tokenizer is capable of distinguishing between marks in acro-
nyms (e.g., r.o.w., r/w) and punctuation symbols; these kinds
of words will remain in the corpus.

2. POS tagging: The purpose of this step is to determine the part of
speech tag (e.g., NN-noun, JJ-adjective, andVB-verb) for each unit
of the tokenizedcorpusobtained fromtheprevious step.A full set of
POS tags can be found in the Penn Treebank (Marcus et al. 1993).

3. Noun phrase detection: This phase aims to collect NPs using
syntactic rules. Table 1 presents the used patterns that are refor-
mulated from the one suggested by Justeson and Katz (1995)
for better human readability. The tagged corpus is thoroughly
scanned to collect sequences matching those patterns. This

study assumes that sequences of more than six words are not
likely to be a technical term; therefore, they are automatically
discarded. In addition, to reduce the discrimination between
syntactic variants of the same term, the collected NPs need
to be normalized. This study considers the following two types
of syntactic variation:
• Type 1: Plural forms, for example ‘roadways’ and ‘roadway’.

Stemming is a popular process to reduce words to their
stems. Overstemming and understemming are two common
errors. Overstemming refers to the removal of true suffixes
(e.g., ‘divided highway’ → ‘divide highway’); understem-
ming occurs when predefined rules fail to handle irregular
forms, for instance ‘foot’ and ‘feet’. Despite the fact that
none of the existing algorithms can completely eliminate
these errors, they are good enough to not degrade the overall
performance of NLP applications (Jivani 2011). This study
implements the PlingStemmer (Suchanek et al. 2006), which
stems an English noun to its singular form, to normalize
plural nouns in the corpus. One advantage of this algorithm
is the utilization of both syntactic rules and dictionaries.

Highway
corpora

NLP

1-Term detection

Term extraction

roadwayattribute

hyponym

synonym
section

shoulder

adjacent
roadway

mainline
roadway

undivided
roadway

highway

road

traveled
way

traffic lane

m

Term List

profile

cross-section

crest

Rd-VSM

Machine Learning

2-Terms to vectors

3-
R

el
at

io
n

 c
la

ss
if

ic
at

io
n

Fig. 1. Overview of the proposed methodology

Spirals are used to transition the horizontal alignment from
tangent to curve.

Spirals are used to transition the horizontal alignment from
tangent to curve .

Spirals/NPs are/VBP used/VBN to/TO transition/VB the/DT
horizontal/JJ alignment/NN from/IN tangent/JJ to/TO
curve/MD ./.

Spirals/NPs are/VBP used/VBN to/TO transition/VB the/DT
horizontal/JJ alignment/NN from/IN tangent/JJ to/TO
curve/MD ./.

tokenizing

tagging

NP extraction

Fig. 2. Linguistic processing procedure to detect NPs

Table 1. Term Candidate Filters

Pattern Examples

(Adj|N)*N Road, roadway shoulder, vertical alignment
(Adj|N)*N Prep (Adj|N)*N Right of way, type of roadway

Note: Prep = preposition; | and *, respectively, denote ‘or’, and ‘zero or
more’.
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Dictionaries are to verify the outcomes from purely
pattern-based stemming and allow for the inclusion of irre-
gular plural nouns; therefore, stemming errors can be re-
duced. Furthermore, because only nouns are impacted,
mis-stemming on such terms as ‘divided highway’ can be
prevented.

• Type 2: Prepositional noun phrases, for example ‘type of
roadway’ and ‘roadway type’. To normalize this type of var-
iation, the form with a preposition is converted into the non-
preposition form by removing the preposition and reversing
the order of the remaining portions. For example, ‘type of
roadway’ will become ‘roadway type.’ However, blindly ap-
plying normalization will create unreal instances because
not every prepositional NP is paraphrasable. ‘Right of
way’ is one example of such non paraphrasable NPs. There-
fore, this study implements paraphrasing for only those NPs
whose reversed form also exists in the extracted list.

The instances obtained from the preceding process may include
errors. To eliminate incorrectly extracted sequences, the following
two discard criteria are used. First, a valid NP must not contain any
minimal stop word. The minimal stop list consists of frequent
words and phrases that carry obviously no meaning for a technical
term, including determiners (e.g., another, any, particular), coordi-
nating conjunctions (e.g., nor, or, and), comparative adjectives
(e.g., largest, longest, best), and stop phrases (e.g., lack of, set of,
kind of). The list is called a minimal stop list to distinguish it from
the large stop list commonly used in NLP applications. The second
constraint for filtering out bad NPs is occurrence frequency. This
study assumes that instances that are not a randomly combined se-
quence appear at least twice in the corpus. Items that appear only
once are eliminated. This hypothesis might be not applicable for a
small corpus (e.g., 10,000 words) because the frequency of true
NPs tends to be low.

NP Ranking and Term Selection

Multiword term definition varies among authors, and there is a lack
of formal and widely accepted rules to determine if an NP is a mul-
tiword term (Frantzi et al. 2000). There are a number of methods for
estimating termhood (the degree that a linguistic unit is a domain-
technical concept), such as TF-IDF (Sparck Jones 1972; Salton and
Buckley 1988), C-Value (Frantzi et al. 2000), and Termex (Sclano
and Velardi 2007). Of these methods, Termex outperforms others
on the Wikipedia corpus, and C-Value is the best on the GENIA
medical corpus (Zhang et al. 2008). One notable observation from
these studies is that C-Value is more suitable for term extraction
from a domain corpus rather than a generic one. For this reason,
C-Value has been used in various studies in the biomedical
field, for instance works conducted by Ananiadou et al. (2000),
Lossio-Ventura et al. (2013), and Nenadić et al. (2002). Because
the methodology proposed in this paper aims to extract data ele-
ments from highway guidelines and manuals which are domain
specific documents, C-Value would be the most suitable for the
termhood determination task. The C-Value measure, as formulated
in Eq. (1), suggests that the longer an NP is, the more likely that is a
term; and the more frequently it appears in a domain corpus, the
more likely it will be a domain term

C-ValueðaÞ

¼
8<
:

log2jaj · fðaÞ; if a is not nested

log2jaj
�
fðaÞ− 1

PðTaÞ
X
b∈Ta

fðbÞ
�
; otherwise ð1Þ

where a = candidate noun phrase; jaj = length of noun phrase a;
f = frequency of a in the corpus; Ta = set of extracted noun phrases
that contain a; and PðTaÞ = size of Ta set.

The C-Value measure is used to compute termhood for every
term candidate generated from the previous stage. This process
results in a data set of terms along with their C-Value scores. These
term candidates are ranked by C-Value.

To automatically remove candidates that are unlikely to be a
domain term, a C-Value threshold can be used as an acceptance
limit. However, choosing a proper absolute threshold is challenging
because it typically depends on the corpus size. A high limit can
help to significantly reduce bad candidates, but real terms that ap-
pear at the bottom owing to their low frequency will be excluded.
Manual evaluation of the entire sorted list would avoid the removal
of real terms with low C-Values, but it might be too laborious es-
pecially for large corpora. To minimize both laborious work and the
number of true terms wrongly discarded, this study adopts a relative
cut-off policy proposed by Lopes and Vieira (2015) that is based on
the optimal trade-off point between a wrong discard of true domain
terms and the wrong inclusion of irrelevant ones. The policy sug-
gests that the bottom 85% of the ranked list should be discarded.

Data Element Vector Space Model

This phase aims at converting the vocabulary of a domain corpus
into a vector space that presents the semantics of a term as a vector.
This study uses the unsupervised Word2Vec model (Mikolov et al.
2013) to learn representation vectors. As discussed previously,
Word2Vec and Glove are the two leading state-of-the-art word
embedding techniques. Word2Vec is usually outperforms Glove,
despite the fact that there is a lack of conclusive evidence in the
literature for the superiority of one over the other. Because the ob-
jective of this research is not to propose an optimized embedding
method, Word2Vec was arbitrarily selected for the vector represen-
tation learning task in the proposed classifier.

In the Word2Vec model, a training data point is corresponding
to a target word and its context words in the corpus. Consider
the sentence, “The minimum [bike lane width on a roadway with
no curb and gutter] is 4 feet,” with ‘roadway’ as the target word.
Surrounding words are captured using a context window, indicated
by the brackets, which limits how may words appear to the left and
to the right of the target word. In the example, the context of the
term ‘roadway’ with the window size of 5 will be {bike, lane,
width, on, a, with, no, curb, and, gutter}. Any contextual word in
the stop list (frequent words in English with little meaning, such as
a, an, and the) will be neglected, and the context set becomes {bike,
lane, width, curb, gutter}.

Before data collection, an additional step is needed to handle
the issue related to multiword terms. Because document scanning
is on a word-by-word basis, the tokenized and stemmed corpus re-
sulted from the NP extraction phase must be adjusted so that multi-
word data elements can be treated as single words. To meet that
requirement, white spaces within a multiword term are replaced
by hyphens to connect its individual words into a single unit.
For instance, ‘vertical alignment’ becomes ‘vertical-alignment.’

This study trains vector representation using both CBOW and
skip-gram network types of Word2Vec. Fig. 3 illustrates these
learning networks, in which V and N respectively denote the size
of the corpus vocabulary and the hidden layer. In CBOW, context
words are at the input layer and target words are at the output layer,
whereas skip-gram reverses the role of the data components.
Word2Vec encodes a word as a one-hot vector in which only one
element at the index of the word in the vocabulary is set to one,
and all other items are zero. For example, the one-hot vector of
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the kth word in the vocabulary with the size of V will be
fx1 ¼ 0; x2 ¼ 0; : : : ; xk ¼ 1; : : : ; xV ¼ 0g. The outcome of this
machine learning process is a set of N-dimensional representation
vectors each of which is corresponding to a row in the learned
parameter matrix, WN: V . The similarity between a pair of vectors
represents the similarity in context between their corresponding
words and can be measured by the angle between word represen-
tation vectors [Eq. (2)] or the distance between word points
[Eq. (3)]

cosine similarity¼ A ·B
jjAjj jjBjj ð2Þ

dis similarity¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxA1−xB1Þ2þðxA2− xB2Þ2 þ · · ·þðxAn−xBnÞ2

q

ð3Þ

where n = vector dimension which is also the hidden layer size.
The learning model includes three major parameters—

frequency threshold, hidden layer size, and context window size
(Table 2). Frequency threshold is used in this phase to eliminate
from the training data those input words that are unimportant to
the domain. As discussed earlier in the NP extraction stage,
low-frequency words are unlikely to be a technical term. Words
with the occurrence below a threshold will be excluded from
the input vocabulary. Radim (2014) suggests a frequency limit
ranging from 0 to 100 depending on the corpus size, where 0 means
to accept everything. Setting this parameter high can enhance the
accuracy, but many true technical terms would be out of vocabu-
lary. The second important parameter is layer size, which deter-
mines the number of nodes in the hidden layer. This parameter
highly affects the training accuracy and processing time. A larger
layer size is better in terms of accuracy, but this will be paid off by
the running time. A reasonable figuration for this parameter is from
tens to hundreds (Radim 2014). The final major parameter, context

window size, decides how many context words to be considered.
Google recommends a size of 10 for the skip-gram model. In the
present experiments, these parameters are subject to be changed so
that the best model can be achieved. The selection of an optimal
parameter setting is discussed later in “Implementation and Perfor-
mance Evaluation.”

Semantic Relation Classification Algorithm

This section explains a designed classification algorithm for auto-
mated identification of semantic relations among data terms. This
study focuses on the following three semantic relations: similar-to
(synonymy), is-a (hyponymy), and part-of (meronymy). The
similar-to relation refers to a pair of terms that share similar mean-
ings. Because very few instances have exactly the same meaning, in
this study, the similar-to category also includes near synonyms that
can be used interchangeably to a certain extent (Inkpen and Hirst
2006). For example, two terms, ‘highway’ and ‘street,’ are equiv-
alent in the context in which geometry is the only attribute consid-
ered. Another type to be detected is the is-a tag, which relates
to concept–superconcept pairs, for instance ‘highway-facility.’
Finally, part-of is associated with instances in which a concept
represents a component (or a property) of another concept,
e.g., ‘shoulder-road’ and ‘volume-traffic.’

Terms that relate to each other through one of the aforemen-
tioned semantic relations are expected to have a high similarity
score. Thus, a collection of nearest terms generated by the vector
space model is an excellent source of semantically related terms. To
support automated detection of relation type, this study designs a
classifying algorithm of which the pseudocode is shown in Algo-
rithm 1. Given a pair of the target t and a near term n, the algorithm
returns one of the following tags: similar-to, is-a, part-of, and non-
related. First, a surfacing rule-based checking is performed. The
rule in this study is that if the target word t (e.g., ‘road’) is the head
noun of a near term n (e.g., ‘public road’), a triple (n is-a t) is cor-
respondingly harvested. In cases in which t (e.g., ‘road’) matches
the modifier component of n (e.g., ‘road facility’), the modifier is
eliminated from n. Second, the algorithm detects the relation be-
tween pairs (n − t) by checking its occurrence in a syntactically
related pair data set. The syntactic resource consists of is-a and
part-of term pairs that are extracted from the input corpus using
a minimally supervised training method (explained in the next sec-
tion). The algorithm also considers reverse is-a (hypernym) and

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

CBOW Skip-gram

w(t-n)

w(t)

w(t-1)

w(t+1)

w(t+n)

w(t)

w(t-n)

w(t-1)

w(t+1)

w(t+n)

. . .
. . .

. . .
. . .

WVxN

WVxN

WVxN

WVxN

WNxV

WNxV

WNxV

WNxV

WNxV

WVxN

Fig. 3. Word2Vec neural network structures

Table 2. Skip-Gram Model Parameters

Parameter Value

Frequency threshold 0–100
Hidden layer size 100–500
Context window size 5–15
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reverse part-of (whole-of) when the input pair in reverse order ex-
ists in the syntactic resources. If the input pair does not belong to
those categories, it is temporarily tagged as similar-to. Clustering is
then applied on the temporary similar-to list after being sorted by
similarity in descending order. Because similar terms tend to have a
high similarity score, accepting only items occurring in the top c
clusters helps to eliminate other nonrelated terms. Subsequent sec-
tions discuss in detail the collection of is-a and part-of instances and
the clustering of similar-to items.

Algorithm 1. Semantic Relation Classification Algorithm
1: Inputs: term t, list of nearest terms N, list of part-of pairs P, list

of is-a pairs I
2: Outputs: list of Parts, list of Wholes, list of Hyponyms, list of

Hypernyms, list of Synonyms
3: Procedure Term classification procedure
4: for all n ∈ N do
5: x← pair n: t
6: h ← headOfðnÞ;m ← modifierOfðnÞ
7: if h ¼ t then
8: add x to Hyponyms
9: else
10: if m ¼ t then
11: n← h
12: if n∶t ∈ P then
13: add x to Parts
14: else if t∶n ∈ P then
15: add x to Wholes
16: else if n∶t ∈ I then
17: add x to Hyponyms
18: else if t∶n ∈ I then
19: add x to Hypernyms
20: else
21: add x to Synonyms
22: Clusters←K-meanðSynonymsÞ
23: Synonyms← instances in top c clusters of Clusters

Part-of and is-a Instance Extraction
Using syntactic patterns like those developed by Hearst (1992) is a
popular method for automated detection of lexical relations. This
method is straightforward in that instances can be quickly captured
and can yield a high precision. However, a typical issue of using
predefined rules is the low recall because generic patterns are usu-
ally ignored (Pantel and Pennacchiotti 2006). Generic patterns are
those that are applicable to multiple types of relations. For instance,
the pattern ‘X of Y’ can be found in both part-of (e.g., ‘shoulder of
roadway’) and is-a (e.g., ‘facility of highway’). In addition, existing
patterns are usually induced from generic corpora and might not be
well applicable for a domain corpus. This study adopts a widely
used minimal-supervised technique proposed by Pantel and
Pennacchiotti (2006) to learn reliable patterns for is-a and part-
of relations from the highway corpus. The selection of this particu-
lar method results from its computational efficiency and recall
improvement because more patterns can be discovered from
domain-specific texts. The pattern learning is an iterative procedure
of the following steps: (1) pattern induction, (2) pattern ranking/
selection, and (3) instance extraction.

Pattern learning starts with extracting word sequences connect-
ing the constituents of each pair instance for a certain relation
(e.g., part-of). To initiate the first iteration, seed pairs, which are
found by examining engineering glossaries from various state
DOTs, are used. For example, with the seed ‘median-roadway’

of part-of, one extracted sequence is ‘roadway without a median,’
which correspondingly yields a pattern ‘WHOLE without a PART.’
Along with good chains, bad chains (e.g., ‘of the roadway when
median is’) are also collected. Similar to the NP extraction task, a
frequency threshold of 2 is used to reduce random sequences. The
reliability of a pattern p in P patterns collected is measured as the
average association with all instances in I using the following:

rπðpÞ ¼
X
i∈I

pmiði;pÞ
max∀ i∈I pmiði;pÞ � rlðiÞ

I
ð4Þ

where rlðiÞ = instance reliability score which is defined later in
Eq. (6). The reliability of initial seed pairs is set to 1. The associ-
ation between instance i and pattern p, pmiði;pÞ, is based on their
occurrence frequencies as follows:

pmiði;pÞ ¼ log
jx;p; yj

jx; �; yjj�;p; �j ð5Þ

where the asterisk represents a wildcard.
The patterns induced in Step 1 are ranked according to their

reliability scores, and only the top k are accepted, in which k is
set to 1 in the first iteration and increases by 1 over each iteration.
The algorithm runs until k meets a given desired number of pat-
terns, τ , which is 5 for all experiments in this study.

In Step 3, instances of related pairs are extracted from the corpus
using those patterns accepted in Step 2. The reliability of an in-
stance i is measured based on an equation analogous to the pattern
reliability, as in

rlðiÞ ¼
X
p∈P

pmiði;pÞ
maxpmi � rπðpÞ

P
ð6Þ

Subsequent iterations will use the top m instances extracted for
the pattern induction phase. In these experiments, m ¼ 100. At the
last iteration when τ patterns are induced, the extracted pairs
are accepted as lexical-syntactic resources that will be used by
the relation classifier.

Similar-to Instance Clustering
In this phase of the classification algorithm, the system implements
cluster analysis on the temporary list to separate similar-to terms
from other ‘non-related’ items. This study uses a k-means cluster-
ing algorithm (MacQueen 1967) to split the list into multiple clus-
ters according to their similarity scores with the target word. The
objective of k-means clustering, as illustrated in Eq. (7), is to min-
imize the sum of squared distances between words and the corre-
sponding cluster centroid

arg min
C

Xk
i¼1

X
x∈Ci

jjx − μijj2 ð7Þ

where μi = mean of points in the cluster Ci; and k = number of
clusters. Because similar words tend to have a higher similarity
score than other nonrelated words, items in the top clusters are
more likely to be similar to the target word. Those terms beyond
the top c clusters are unlikely to be a similar term; they are, thus,
removed from the temporary similar-to list and are classified as
non-related. Because increasing kwould provide a better separation
of near words, the value of kwas chosen as high as the total similar-
to candidates divided by 2 in these experiments.
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Implementation and Performance Evaluation

This section presents an implementation case study on classifying
roadway transportation data terms using the domain text. An em-
pirical comparison between the proposed model and several base-
line methods are also discussed.

Experiment Setup

Experiments were performed on a highway corpus composed of 48
engineering manuals and guidelines from 30 state DOTs. The con-
tent in a manual document in the civil engineering field is com-
monly presented in various formats such as plain text, tables,
and equations. Because the structures of words in tables and equa-
tions are not yet supported by the state-of-the-art NLP techniques,
they were removed from the text corpus. The removal may slightly
reduce the corpus size, and accordingly affects the training data set.
However, because sequences of words in tables and equations
are not organized in the formal structure of a sentence, many unreal
noun phrases would be captured when applying NP patterns
on those features. The final plain text corpus consists of nearly
16 million words. This data set was utilized to extract multiword
technical terms, which were then trained and transformed into
representation vectors.

In this study, a Java prototype was built to assist researchers in
implementing the proposed methodology to extract heterogeneous
domain data elements and their semantic relations from plain text
technical documents. The implementation procedure was according
to the phases described in the proposed methodology. Specifically,
the plain text roadway corpus was first fed into the system to gen-
erate a bag of roadway data elements, a data set of their represen-
tation vectors, and a collection of syntactically related pairs. This
was followed by an evaluation of the semantic classifier algorithm
and a comparison to several baseline models. The classifier was
also tested with different parameter settings.

To evaluate the system performance, a test data set consisting of
22,500 pairs was developed, of which, there are 332 related pairs of
words (88 is-a, 176 part-of, and 68 similar-to) and 22,168 nonre-
lated instances. The vocabulary of the test pairs was extracted from
1,000 sentences randomly selected from the highway corpus. By
manually reviewing the automatically generated terms from the test
sentences, 150 domain technical terms that appear two or more
times were collected. Three Ph.D. students in civil engineering, in-
cluding the first author, worked as annotators who independently
identified and labeled the semantic relations among 150 words in
the test vocabulary. The annotators were asked to assign one of the
following three tags to a certain semantically related pair: part-of,
is-a, and similar-to. Other pair combinations among 150 words

beyond those discovered and tagged by annotators were automati-
cally assigned the non-related tag. The knowledge base WordNet
and various DOT roadway transportation glossaries were used dur-
ing the annotation process. As a result, 332 pairs that at least two
annotators agreed upon were obtained for the validation purpose.
For a given pair of terms, the system returns one of the following
tags: is-a, part-of, similar-to, and non-related. In this study, the fol-
lowing three measures are used to evaluate the semantic classifier:
precision, recall, and F-measure. Let Si denote a set of true pairs
labeled with relation i in the test set, and S 0

i is a set of pairs clas-
sified as relation i by the system. The evaluation metrics for a cer-
tain relation are defined in Eqs. (8)–(10). The overall system
performance is evaluated using the same equations, but is based
on the total correctly classified pairs for all types of relations

Precisioni ¼
Si ∩ S 0

i

S 0
i

ð8Þ

Recalli ¼
Si ∩ S 0

i

Si
ð9Þ

Fi ¼
2 · Precisioni · Recalli
Precisioni þ Recalli

ð10Þ

To evaluate the success of the system, experiments were con-
ducted to compare the performance between the proposed classifier
and two other baseline methods. The first baseline model is one that
purely uses lexical patterns learned in this study to detect the se-
mantic relation between a given pair of terms. Because this uses
only rules, similar-to is not applicable. The second baseline method
uses Word2Vec without integrating pattern features. This model is
basically the same as the proposed method, but all near words gen-
erated by Word2Vec are accepted as similar terms. Therefore, the
comparison with this baseline method was only on the similar-to
relation.

Output from Interim Steps

The first output from the system is a domain terminology set. There
are almost 288,000 NPs extracted, of which more than 17,000 were
accepted as technical terms after removing instances with stop
words and applying the 15% cut-off policy. Table 3 shows the dis-
tribution of terms by sequence length along with the top five ex-
amples for each category. As shown, the majority are bigrams
(65.62%), whereas lengthy NPs account for a relatively small por-
tion in the corpus, i.e., 1.75 and 0.39%, respectively, for 5 and 6
grams. Using this terminology data set, the corpus was modified by

Table 3. Total Number of Extracted Terms

N-gram Count Percentage Top 5 (C-Value)

Bigrams 11,446 65.62 Sight distance (9,701); design speed (9,376); traffic control (6,142); cross section (5,280); clear zone (4,837)
Trigrams 4,421 25.35 Right of way (7,945); traffic control device (3,188); contract unit price (2,836); left turn lane (1,976); portland

cement concrete (1,930)
4-grams 1,180 6.76 Right of way line (1,147); uniform traffic control device (924); highway right of way (907); portland cement

concrete pavement (737); right of way acquisition (564)
5-grams 306 1.75 Two way left turn lane (303), mdt statewide integrated roadside vegetation (241); portable precast concrete

barrier rail (163); right of way control section (149); effective modulus of subgrade reaction (130)
6-grams 68 0.39 Positional accuracy of as built record (65); right turn fixed object pedestrian night (46); bridge rehabilitation

technique steel superstructure reference (46); air void of compacted bituminous mixture (38); continuous two way
left turn lane (38)

Total 17,443 100

Note: C-Values are in parentheses.
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connecting the tokens in the multiple-word terms with the minus
sign to ensure that they are treated as single tokens.

The system was then applied on the modified corpus to extract
lexical pairs. Table 4 shows the patterns learned and examples of
instances harvested for the part-of and is-a relations. To collect
pairs related through the two relations, 10 and 7 seeds, respectively,
were used. Those seeds were obtained by reviewing various road-
way transportation glossaries. As shown in Table 4, three groups of
patterns were induced for each relation part-of and is-a. Using these
patterns, approximately 30,000 part-of and 8,000 is-a pairs were
collected.

Another important product generated by the system is a term
space. Fig. 4 presents the vector space of roadway data elements
derived from the word embedding training process when the
parameters—frequency threshold, hidden layer size, and window
size—were set to 5, 100, and 5, respectively. To present those
high-dimensional vectors in a two-dimensional graph, principle
component analysis (PCA) was used to reduce the dimension.
Based on the distance between terms visualized in Fig. 4, the most
related data elements for a certain data type can be quickly iden-
tified. For example, an inlet can be inferred to be more similar to an
outlet, because they are grouped nearer to each other, than to a
pavement. Table 5 shows a partial ranked list of the nearest terms
of ‘street’ in order of similarity score.

System Performance

Before evaluating the system and comparing the performance with
baseline methods, several experiments were carried out to identify
the optimal value for three model parameters, frequency threshold,

vector size, and context window size, and to select a better network
type (CBOW or skip-gram) of the Word2Vec training model. To
examine the effect of a certain parameter, its value in the standard
setting was increased (5, 100, 5), while other parameters stayed
unchanged. The training network type was also changed to deter-
mine the optimal setting. Table 6 shows the results from those ex-
periments when the top synonym cluster parameter, c, was set to 2.
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Fig. 4. PCAs representation of roadway term vectors

Table 5. Examples of the Top Nearest Words

Target term Nearest words Cosine Rank

Street Highway 0.658 1
Direct-access 0.583 2
Collector-road 0.557 3
Public-street 0.533 4
Local-street 0.561 5

Curb-extension 0.526 13
On-street-parking 0.491 23

Table 6. Overall System Performance with Different Parameter Settings
and Training Network Type

Model Precision (%) Recall (%) F (%)

CBOW 5-100-5 92.76 81.02 86.50
CBOW 5-300-5 93.70 77.37 84.76
CBOW 50-100-5 84.44 85.71 85.07
Skip-gram 50-100-5 80.60 65.06 72.00
Skip-gram 50-100-15 76.15 54.82 63.75

Table 4. Patterns Learned and Examples of Pairs Extracted

Relation Seeds Patterns learned Extracted pairs

X part-of Y Alignment::roadway X (of|at|in) (a|an|the) Y Curb::roadway
Median::roadway Y (with|with no|without) (a|an) X Sidewalk::bridge
Ramp::interchange Y (‘s|where) X Radius::horizontal curve
(Total seeds: 10) — (Total pairs: 30,423)

X is-a Y Highway::facility X (, NP)*(,)? (and|or) other Y Cracking::damage
Culvert::drainage facility Y (,)? such as (NP,)* X Bridge::structure
Sign::traffic control device Y, including (NP,)* X Crane::equipment

(Total seeds: 7) — (Total pairs: 8,339)

Note: NP = noun phrase; | = or; * = zero or more; ? = zero or one.
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The results indicate that neither increasing frequency threshold,
hidden layer size, nor window size necessarily improves the system
performance. In addition, CBOW shows its strong superiority to
skip-gram in the classifying system. Thus, in the comparative test-
ing with other baseline methods, the standard parameter set was
used with the CBOW structure.

Table 7 shows the performance of the proposed method in com-
parison to the other two baseline models. The performance for
similar-to in this table is in accordance with the best case (F-score
reaching the maximum) when varying the number of top c clusters
accepted (see Figs. 5 and 6, respectively, for CBOWand CBOWþ
Pattern models). The integration between syntactic patterns and
semantic word vectors significantly improves both recall and pre-
cision for the is-a and similar-to relations (Table 7). A slight F en-
hancement is also observed for the part-of relation. Among those
three relations, is-a has the best performance with a precision of
nearly 95% and a recall of approximately 85%. These impressive
figures yield a 14% F improvement over the pattern-based ap-
proach, in which a major contribution is from the precision. It is

evident that once semantic relatedness is considered, incorrect
instances matching the syntactic is-a patterns can be effectively
eliminated. Detecting synonymy, which is the most challenging
task, also achieves a relative F-score of 79.69% compared with
65.63% when solely using CBOW. With respect to part-of detec-
tion, the integrated method greatly enhances the precision from 80
to 94.74%; however, because of a considerable drop in recall, the
overall F improvement is just 0.75%. This result indicates that the
induced part-of patterns are highly reliable; thus, the inclusion of
semantic features gives only a slight improvement.

Research Findings, Implications, and Limitations

This paper provides many important contributions to the area of
integrating transportation asset data. The disparity of data names
and semantics is a major hurdle to merging disconnected transpor-
tation data sources. This study provides a novel linguistic method-
ology to assist in classifying heterogeneous data items using
linguistic information in technical text documents. Specifically, this
study contributes to the body of knowledge by (1) developing an
NLP-based method for automated extraction of data types and their
name variants from design manuals; (2) introducing a machine-
learning approach that can learn the similarity in meaning among
data items using their context words in texts; and (3) designing an
algorithm that integrates syntactic rules, clustering, and word em-
bedding to classify lexical relations among heterogeneous terms.
The main merit of the study lies in the detection of linguistic in-
consistency in naming the same data element. This capability en-
ables data integration to precisely combine similar data even given
different terms in different systems. Another key advantage is the
use of only linguistic information in domain texts for semantic
relatedness identification. By purely using the occurrence of data
elements in domain documents, the classifying algorithm over-
comes the limitations of costly handcrafted rules as used by Abuzir
and Abuzir (2002) and Rezgui (2007), and eliminates the reliance
on other existing dictionaries such as in the work by Zhang and
El-Gohary (2016).

The present framework is not to completely eliminate human
involvement, but it is expected to offer an enabling tool to assist
researchers in developing supporting ontologies, taxonomies,
and other forms of semantic resources with the inclusion of alter-
native names for a concept. Using the method presented in this
paper, less effort is required because the only major requirement
is collecting domain documents. Researchers may need to pay
some effort toward validating the automatically generated data
sets, but it is much less time-consuming than interviewing domain
experts or manually examining written documents. Although the
methodology has been tested only on a roadway corpus, it is
generic and its applicability is broad. For example, the developed
system can be implemented to extend the buildingSmart building
data dictionary (buildingSMART 2016). The findings of this study
would accelerate the process of removing the current bottleneck of

Fig. 5. Synonym detection performance for the CBOW model

Fig. 6. Synonym detection performance for the CBOWþ pattern
model

Table 7. System Performance

Model

Part-of Is-a Similar-to

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

Pattern only 80.00 95.45 87.05 81.93 77.27 79.53 — — —
CBOW only — — — — — — 70.0 61.76 65.63
CBOW + pattern 94.74 81.82 87.80 94.87 84.09 89.16 85.0 75.0 79.69

Note: P, R, and F = precision, recall, and F measure, respectively.
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machine readable dictionaries, which are required for unambiguous
data sharing, integration, and exchange.

In addition to theoretical implications, the outcome of this study
offers practical value to the highway industry. The data sets result-
ing from the experiment in this study provide name variants and
related items for more than 17,000 roadway data elements. For
example, some of the alternative ways to present ‘right of way’
include ‘row’, ‘r/w’, or ‘r.o.w.’. Several other examples of synonym
sets generated from the system are shown in Table 8. The full li-
brary of terminology network generated from this study provides
practitioners with suggestions on data keywords, their variations,
and related data when finding data from external databases.

The current study has a number of limitations. The classifying
algorithm covers only three types of semantic relations that are
synonymy, hyponymy, and meronymy. Several other important re-
lations that are not considered include siblings and functional
associations, among others. The inclusion of these relations into
the classifier would reduce incorrect synonym matching, which
will enhance the precision value. In addition, this study only targets
the synonymy issue; the polysemy obstacle is not yet addressed.
Further research is needed to detect different senses of terms. Be-
cause a term that has multiple meanings would occur in different
contexts, one potential solution is to cluster the instances of context
words. A spread of contexts is a strong indication that a given term
may refer to multiple things.

Conclusions

Data manipulation from multiple sources is a challenging task in
transportation asset management because of the inconsistency of
data terminology. The key contribution of this study is a novel ap-
proach for automated classification of semantic relations among
heterogeneous data elements. In the proposed framework, machine
learning was used to train the semantic similarity between technical
terms. An algorithm was also designed to classify the nearest terms
resulting from the semantic similarity model into distinct groups in
accordance with their lexical relationships.

The developed system was tested and evaluated on a 16-million-
word corpus of roadway design manuals collected from 30 state
DOTs across the United States. The system performance was as-
sessed by comparing automatically classified relations with those
in a human-crafted gold standard. The result shows an overall per-
formance of 92.76% in precision and 81.02% in recall. The best
model is associated with the CBOW training structure and a param-
eter setting of 5, 100, and 5, respectively, for frequency threshold,
hidden layer size, and window size. One area for future studies is to
improve the recall score, which can be done by considering addi-
tional relation types. In addition, this paper focuses only on syn-
onymy; research is needed to address the polysemy issue among
data elements.

The proposed automated methodology for detecting seman-
tic relations between data elements from texts is expected to

significantly reduce human efforts in developing semantic resour-
ces for specific use cases in, but not limited to, the field of trans-
portation asset management. Once digital data dictionaries become
readily available, the level of semantic interoperability can be fully
achieved in the construction industry.
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