Proceedings of the ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems

SMASIS2017
September 18-20, 2017, Snowbird, UT, USA

SMASIS2017-3754

Harnessing the Quasi-Zero Stiffness from Fluidic Origami
for Low Frequency Vibration Isolation

Sahand Sadeghi
Department of Mechanical Engineering
Clemson University
Clemson, SC, USA

ABSTRACT

This research investigates a quasi-zero stiffness (QZS)
property from the pressurized fluidic origami cellular solid, and
examines how this QZS property can be harnessed for low-
frequency base excitation isolation. The QZS property originates
from the nonlinear geometric relations between folding and
internal volume change, and it is directly correlated to the design
parameters of the constituent Miura-Ori sheets. Two different
structures are studied to obtain a design guideline for achieving
QZS: one is identical stacked Miura-Ori sheets (ismo) and the
other is non-identical stacked Miura-Ori sheets (nismo). Further
dynamic analyses based on numerical simulation and harmonic
balance method, indicate that the QZS from pressurized fluidic
origami can achieve effective base excitation isolation at low
frequencies. Results of this study can become the foundation of
origami-inspired metamaterials and metastructures with
embedded dynamic functionalities.

1. INTRODUCTION

Origami — the ancient Japanese paper folding art [1] — is
being transformed into a framework of design and fabrication
tools for a wide variety of engineering systems. The kinematics
of folding flat sheets into sophisticated 3D shapes offers many
desirable characteristics for creating deployable aerospace
structures [2], kinetic architectures [3,4], self-folding robots [5],
compact surgery devices [6,7], crash box impact absorbers [8],
and many others [9—11]. Recently, there is a paradigm shift from
harnessing the kinematics of origami to exploiting the energetics
or mechanics of folding. As a result, a new category of origami-
based mechanical metamaterials emerged [12]. In particular,
one can stack and connect multiple origami sheets together to
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create an architectured material, and exploit the intricate
relationships between folding and constituent sheet deformations
to achieve unique material properties. For example, negative and
flipping Poisson’s ratio can be achieved from the folding-
induced coupling among in-plane and out-of-plane strains [13—
17]. Self-locking and discrete stiffness-jump are possible via the
facet binding behaviors from non-flat foldable creases [18,19].
Elastic multi-stability is also feasible due to the nonlinear
correlations among crease and facet deformations during folding
[20-23]. Furthermore, the stacked origami architecture consists
of naturally embedded tubes that can be pressurized to create
adaptive functions. Such pressurized stacked-origami concept
is also called fluidic origami, and it has been shown that it can
exhibit shape transformation, stiffness control, and recoverable
collapse [24-26].

Despite the significant progress in the mechanics studies of
origami structures and materials, the vast majority of the
aforementioned previous works are centered on static responses.
The investigation on the dynamics of origami folding is still a
nascent field. Yasuda et al. investigated the nonlinear wave
propagation in multiple-degree-of freedom origami solid [27];
Ishida examined the feasibility of using bistable Kresling
origami for vibration isolation [28], and Fang et al. studied the
dynamic characteristics of a bistable origami structure [29].
Other than these studies, there are no other literatures on this
interesting and important subject. Therefore, this research aims
at expanding our knowledge on how to harness the folding-
induced mechanical properties for dynamic applications.
Specifically, the research examines a unique quasi-zero-stiffness
(QZS) from the pressurized fluidic origami, and investigates how
this QZS property can be used for low-frequency vibration
isolation.
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Miura Sheet Il

Figure 1. The concept of fluidic origami. (a) Miura-Ori sheets are defined by three design parameters. (b) Stacking
two compatible Miura-Ori sheets along their zig-zag creases can form a tubular structure. (c) Integration of different
pressurized origami tubes into a 3D configuration. (d) As the fluidic origami folds, its enclosed volumes change
accordingly, which is essential for achieving the quasi-zero stiffness (figure adopted from [24]).

The research presented in this paper can be divided into two
parts. The first part investigates the physical origin of the quasi-
zero stiffness and its correlation to the fluidic origami design.
Two cases are discussed: identical stacked Miura-Ori sheets
(ismo) and non-identical stacked Miura-Ori sheets (nismo). It is
shown that the QZS property arises due to the nonlinear
geometric relationships between folding and internal volume
change, and the reaction force corresponding to the QZS
configuration can be tailored via pressure control. This research
also discusses the origami design criteria to achieve QZS.

The second part of this research examines how such QZS
property could be harnessed for adaptive and low-frequency
vibration isolation. Low-frequency vibration isolation has been
the concern of mechanical and civil engineers for many years.
For a mass (m ) supported by a linear spring of stiffness ( k), it
has been shown that vibration isolation occurs in frequencies

over /2k/m [30]. Therefore, to gain a wider usable frequency

bandwidth for vibration isolation, it is desirable to have a smaller
stiffness k; however, this would result in a large static
displacement. An effective solution to this problem is to
incorporate nonlinear springs with QZS characteristics. For
example, with proper spatial arrangements and stiffness
assignments, it is possible to combine linear springs to create a
QZS isolator with zero dynamic stiffness [31-33]. Via both
analytical solutions and numerical simulations, this research
shows that the QZS properties of pressurized fluidic origami can
effectively isolate base excitations at low frequencies.
Therefore, results for this research can open up new avenues
towards origami-based metamaterials and structures with
programmable dynamic applications.

The rest of this paper will be organized as follows. Section 2
focuses on the nonlinear geometrical relationships between
origami folding and QZS characteristics. Section 3 discusses
the dynamic analysis of utilizing the investigated QZS property
for base excitation isolation. Approximate solutions based on the
harmonic balance method are presented and compared to

numerical simulations. Finally, section 4 concludes this paper
with summary and discussions.

2. Geometry of Folding and the Physical Principle of
Achieving QZS

A set of kinematically compatible tubular cells, made by
stacking two Miura-Ori folded sheets along their zig-zag crease
lines, are the building blocks of fluidic origami (Figures 1)
[24,25]. Miura-Ori is a periodic tessellation, thus it is possible to
study the unit cell shown in Figure 2 as a representative of the
whole structure. The governing geometrical relations of Miura-
Ori have been studied before and they are briefly reviewed here.
The design of Miura-Ori can be described by three parameters
that remain constants regardless of folding. They are the length
of two adjacent crease lines («¢ and b), and the angle between
these two lines ( y ) (Figure 1a).

Miura-Ori is rigid foldable, thus one can assume that the
facet material is rigid and the crease lines behave like ideal
hinges. Therefore, the folding motion of Miura-Ori has a one-
degree-of-freedom and it can be described by the dihedral
folding angle (@) defined between the x-y reference plane and
the constituent facets (Figure 2).

In order to satisfy the kinematical compatibility of the Miura-
Ori and prevent any separation of the two sheets during folding,
two conditions need to be satisfied [13]:

b, =b, =b, M

a,cosy, =a, cosy,. (2)

In addition, the folding angles of two Miura-Ori sheets are
related by the following equation:
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Figure 2. 'The geometry of the unit cell. 6 and 6, are the
dihedral folding angles of Miura-Ori sheet | and Il, respectively
(Figure adopted from [24])

cos@, tany, =cosd, tany, 3)

As aresult of these kinematic constraints, rigid folding of the
fluidic origami is still a one degree of freedom mechanism, and
the corresponding kinematic characteristics could be described
based on one independent variable. In this paper we choose the
folding angle 6, for such a purpose. Therefore, the unit cell

length, width and height can be calculated as follows, [24]:

2bcosd, tany,

L= 4)

\/1 +cos’ 0, tan’ y,

W=2a1\[l—sin2 91 Sin2 7/19 (5)

H=a,sing,siny, —a,sind,siny,. (6)

Based on these variables, the enclosed volume of a unit cell
can be calculated as follows [24]:

V =2a,’bsin’ y, cos 0, ( i —cos’ 6, +sind,). (7
tan’ 7,

Equations (4-7) elucidate the kinematic connections between
the external geometries and internal volume of fluidic origami.
Based on these relationships, one can predict that the fluidic
origami will fold to a configuration with maximum enclosed
volume when it is subject to internal pressure [26]. This is due to
the entropy increase from inner energy reduction by volume
expansion [34]. Pressurization can also imparts nonlinear
stiffness to the structure (pressure-induced stiffness) [26]. If
the fluidic origami structure is subjected to external mechanical
loads along the -x direction (defined in Figure 2), the reaction
force due to internal pressure can be calculated as follows based
on virtual work principle:

Fop@ _ pdVfdL ) ®)
dL do,\ do,

where dL is the change in origami length along the
external force exertion direction. The corresponding pressure-
induced stiffness is defined as the variation of the reaction force
with respect to infinitesimal deformation [26]:

K, = oF, )
oL

In order to investigate the feasibility of reaching QZS
characteristics, we consider the following scenario in this
research. The fluidic origami is pressurized at first based on an
initial pressure ( P ) until it folds and settles at the configuration

with maximum possible internal volume (V). Then the fluidic

origami is sealed so that the total amount of pressurized gas
inside is kept constant. After this, if the fluidic origami deforms
via folding due to external forces, its internal pressure ( P ) and
enclosed volume (V) will change accordingly. The ideal gas law
states that:

PV =nRT, (10)

where n is the amount of substance of gas (in moles), R is the
universal gas constant,and 7 is the absolute temperature of the
gas. If the change in internal volume due to folding occurs
slowly, the gas temperature can be assumed constant so that:

PV = PV, = const, (11)

and the reaction force equation (8) can be updated as,

-1
J AL B (12)
v de, | de,
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Equation (8,9) and (12) reveal that the pressure-induced
reaction force and stiffness is strongly nonlinear and they are
dictated by the kinematics of folding. Therefore, with
appropriate origami design, it is possible to achieve the desired
quasi-zero stiffness for vibration isolation. In the following
subsections, two different design cases are considered to
illustrate how to harness the origami folding and internal
pressure to achieve quasi-zero stiffness. The first case is
Identical Stacked Miura-Ori sheets (ISMO) and the second one
is Non-Identical Stacked Miura-Ori sheets (NISMO).

2.1 Case 1: Identical Stacked Miura-Ori sheets (ISMO)

If the two Miura-Ori sheets are identical, the geometric
relationships discussed previously are simplified because
Vy=7,=y and a, =a, =a. Figure 3 shows the different

reaction force-deformation curves of a ISMO cell assuming
either 1) constant pressure, which was previously studied by the
authors for recoverable collapse [26], or 2) constant PJV. The
initial pressure of both cases are the same at 13.8 kPa. The
nonlinearity governed by folding is evident in these force-
deformation curves. Especially, the curve with constant P} has
a segment of negative stiffness (dashed line in Figure 3) between
two segments with positive stiffness.

80 - T T T

(o2}
o

PV=const. |

\\ Y~ - i
. Negative
., stiffness

Reaction Force (N)
S 5

.....
.............

80 60 40 20 0
Origami Length (mm)

Figure 3. Reaction force-deformation curve of a fluidic
origami with a=b=38mm, and y=75°.

Results in Figure 3 also imply that it would be possible to
achieve quasi-zero-stiffness by choosing proper design
parameters for the origami when PV = const. Indeed, figure 4
shows the force-deformation curves of different ISMO cells
based on the same crease lengths (a =b =38mm) but different

y angles. It can be seen that when the sector angle y is less
than 69°, the reaction force increases monotonically with

deformation, implying a nonlinear positive stiffness. When
y > 69", the reaction force curve has a segment of negative
stiffness. The critical, quasi-zero-stiffness can be achieved when
the sector angle equals to 69°. At this particular sector angle,
the length of the negative stiffness segment in the reaction force
curve converges to zero. In another word, the tangent stiffness of
the fluidic origami is positive throughout its deformation range,
except that at the QZS configuration the tangent stiffness equals
to zero.
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Figure 4. The influence of y angle on the force-

deformation relationship
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Figure 5. Reaction force-deformation curve of a fluidic

origami with PV=const. based on different initial
pressures (P).

There are several interesting properties from the ISMO fluidic
origami with » =69". First of all, it can achieve the QZS
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property regardless of the initial pressure (£). Secondly, the
magnitude of reaction force at the QZS point (F,,) is linearly
proportional to the magnitude of initial pressure. Finally, the
deformation at the QZS point is only a function of origami
geometry (Figure 5). Later in this paper, we will discuss how
these properties can be beneficial for vibration isolation. In order
to find a comprehensive design criteria to obtain QZS
characteristics, a non-dimensional parameter w is introduced
as follows:

wo A (13)

where A/ is the deformation range with negative stiffness in
the reaction force-deformation curves (Figure 3, 4), and b is
the common crease length of the two Miura-Ori sheets (Figure
1). For reaching the QZS, it is desirable to have Al equal to
zero. The parametric study result in Figure 6 illustrates the
correlation between w and the Miura-Ori design parameters.
It can be concluded that when the two Miura-Ori sheets are
identical, the magnitude of w is independent of k& (=a/b)

and only depends on the y angle. That is, QZS is reachable

only when y =69 regardless of the a and b crease lengths.

10 ; . . :
- No negative stiffness
8 -
o 6
®
U
< 4l
QZS achievable
2¢ only when y=69°

20 30 40 50 60 70 80
y (%)

Figure 6. The relationship between the deformation

range with negative stiffness and ISMO design

parameters. Gray region represent designs that would
not generate any negative stiffness.

2.2 CASE 2: NON-IDENTICAL STACKED MIURA-ORI
SHEETS (NISMO)

To study the case that two Miura-Ori sheets are not identical,
we introduce a non-dimensional parameter I’ as follows to

characterize the differences between the two Miura sheet
designs:

=% (14)

a

Following the similar approach as in the ISMO case, it is
possible to analyze the design parameters and the feasibility of
reaching QZS. Figure 7 illustrates the correlation between
Miura-Ori design parameter and the non-dimensional parameter
w. In the NISMO case, the designs that can provide QZS depend
both on the sector angles and the crease line lengths. The
parametric study results in Figure 6 and 7 can serve as design
guidelines for the dynamic analyses discussed in the following
section.

10 T T T 10
| No negative
g| stiffness 0.8
T 5 0.6
:F_
= ' 0.4
ar QZS designs
I 0.2
2t
Il I I 0

10 20 30 40 50 60
y (%)
Figure 7. The relationship between the deformation
range with negative stiffness and NISMO design
parameters. Gray region represent designs that would

not generate any negative stiffness.

70 80

3. Base Excitation Isolation via the QZS property of
fluidic origami
After investigating the physical origins and design guidelines

of the pressure induced QZS in fluidic origami, the following
section of this paper turns to examine the effectiveness of
harnessing the QZS for low-frequency base excitation isolation.
Figure 8a illustrates the schematic of fluidic origami being used
for vibration isolation, where the fluidic origami itself is
assumed massless and a lumped mass (m) is attached at the top.

In this setup, the origami structure can be described as a
combination of a nonlinear spring and damping between the base
and lumped mass (Figure 8b). The governing dynamic equation
of motion can be written as:

ii+2C1+F = QY cos Qi (15)
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where, u =x—y is the relative displacement between the

lumped mass and base, F is the reaction force of the fluidic
origami, ¢ is the damping ratio, Q is the excitation

frequency, and Y isthe base excitation amplitude. The reaction
force (F) is determined based on the constitutive relationship

of the fluidic origami (Equation (12)). In this section, we adopt
a base-line ISMO design with a=b=38 mmand y =69".

(a) X (b)

y =Y cosQt =

/
Nonlinear \ .
. Damping
spring
2 375?7775/777/

Figure 8. Setup for dynamic analysis. a) Schematic
diagram of using fluidic origami for base vibration
isolation. b) An equivalent system.

In order to harness the QZS property for low-frequency
vibration isolation, the static equilibrium of the mass-spring-
damper system shown in Figure 8 needs to occur at the QZS
configuration. In other words, the weight of the lumped mass
needs to equate the reaction force at the QZS point (mg =F, ).

To achieve this, one can exploit the unique property of
pressurized fluidic origami mentioned in figure 5: that is, the
magnitude of the reaction force at QZS configuration is linearly
proportional to the magnitude of the initial pressure. Therefore,
one can supply the initial pressure according to the following
equation:

-1
{5

To perform the dynamic analysis, the origin of reaction force-
deformation curve is moved to the QZS point on the curve
(Figure 9). Near this point, a cubic polynomial fitting can be
applied to approximate force-deformation relationship as
follows:

(16)

078

Frax’, 17)

where the cubic stiffness coefficient « can be found via least
square method. With the cubic stiffness approximation, the
governing equation of motion (Equation (15)) is simplified to:

i+ 21 +au’ = QY cos Q, (18)

which essentially represents a Duffing oscillator with a zero
linear stiffness term. For the base line study and initial pressure

of P=13.8kPa, a turnsouttobe 81020 N/m’ .

40} Fluidic origami reaction force
= 20¢ Cubic fitting
Z N
R 22
o Of
o
o
L 20t
-40

40 0 40 80 120
Displacement u (mm)

Figure 9. Applying cubic fitting to approximate the
actual reaction force-deformation relationship of the
fluidic origami

To measure the performance of the base excitation isolation,
a transmissibility index (7R) is introduced as the ratio of the root
mean squares of mass and base displacements, x and y,

respectively:

_ RMS(x(1))

- : (19)
RMS(y(2))

The actual governing equation of motion (Equation (15)),
based on the actual force-displacement curve, is solved
numerically using MATLAB “ode45” solver, and the steady-
state time response solutions (shown in Figure 10) can be used
to calculate the transmissibility index (7R ). Beside numerical
simulations, approximate solution based on the harmonic
balance method (HBM) is also obtained in this research to
provide a more efficient way to investigate the dynamic behavior
of the fluidic origami with QZS property. HBM is a powerful
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Figure 10. Sample time responses of base excitation
isolation based on the actual force-displacement
curve. (a) Q=0.1 Hz and (b) Q=1 Hz. The input
amplitude of the base excitation is Y =10mm, and the
initial condition of u(t) is [0,0].

method applicable to strongly nonlinear systems [33,35,36].
The solution of the equation of motion can be approximated as:

u=U, cosQt+U,sin Q. (20)

Plugging this approximate solution into the dynamic equation
(Equation (18)) and discarding higher order harmonic terms
yield the following nonlinear polynomial equations:

_Q, + 200U, + 30U} +2aU U} -Q7Y =0
4 4

3 3 (21)
—QZUZ —ZQé’Ul +ZaU23 +ZaU2U]2 =0

These two equations can be solved numerically to obtain the
two unknown coefficients ( U,, U, ), and transmissibility.

Figure 11 shows the transmissibility index obtained by numerical
simulation and HBM, which shows a good agreement.

Results of Figure 11 indicate that the pressure-induced quasi-
zero stiffness from fluidic origami can indeed provide effective
base excitation isolation at low frequency. The transmission
index is consistently below 1 throughout the examined excitation
frequency range (from 0 to 10Hz), indicating that the vibration

0.7

Numerical Solution

0.5}

03l _ HBM Prediction

TR Index

0.1¢

0 2 4 6 8 10
Frequency (Hz)
Figure 11. Transmission index of the fluidic origami.
Solid line represents the results based on HBM, and
solid dots represent simulation solution.

amplitude of the lumped-mass is always attenuated compared to
the base. Furthermore, the static reaction force at QZS
configuration (F,) is directly proportional to the initial

pressure, which opens up the possibility to control fluidic
origami on-demand according to any changes in the lumped
mass. [t can be seen that there exists some discrepancies between
the numerical solution and the approximate HMB results for the
medium frequencies. Further analysis shows that in that range of
frequencies, dominant subharmonic oscillations have a
significant role in the behavior of the system (figure 12).
However, they have been neglected in the approximate solution
based on the harmonic balance method. Nonetheless, such
discrepancy does not negate the purpose using fluidic origami as
vibration isolator because the transmissivity index remains well
below one even with the discrepancy.

2
e
g 1t IIHM \#\rl‘
= o -“lellllw|\|| x(t) IUHH'IHH
= Ny
_fgl;_ 1 i L |\|hlf|||”|||”.\|l llllh'nmlHhUnIJ\nMLWhml\h“\h]lmlj\lmhl
2
-2 SR S W S S S SR S
250 260 270 280 290 300

Time (sec)
Figure 12. Time response of base excitation isolation
based on the actual force-displacement curve for Q=3
Hz. The input amplitude of the base excitation is Y
=10mm, and the initial condition of u(f) is [0,0].

4. Conclusion

This research investigates the idea of harnessing the quasi-
zero stiffness (QZS) property from the fluidic origami cellular
solid for dynamic functionalities. Fluidic origami consists of
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stacked Miura-Ori sheets, which have naturally embedded tubes
that can be pressurized to induce unique stiffness properties.
This research shows that if the pressurized air is sealed inside
fluidic origami, the intricate and nonlinear relationship between
folding and internal volume change can induce the quasi-zero
stiffness. Two different design cases are studied to obtain the
origami design guidelines for achieving QZS: One is identical
stacked Miura-Ori sheets (ismo) and the other is non-identical
stacked Miura-Ori. This study then turns its focus to the
feasibility of harnessing the acquired quasi-zero stiffness for
low-frequency base excitation isolation. Dynamic analyses
based on approximate solutions (with harmonic balance method)
are presented and compared to the numerical simulations. It is
shown that QZS property from fluidic origami can provide
effective base excitation isolation at low-frequencies. The
internal pressure of fluidic origami can also be adjusted to
accommodate any changes in the system mass. Therefore,
results of this study can become the foundation of origami-
inspired metamaterials and meta-structures with embedded
dynamic functionalities.
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