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ABSTRACT 
   This research investigates a quasi-zero stiffness (QZS) 
property from the pressurized fluidic origami cellular solid, and 
examines how this QZS property can be harnessed for low-
frequency base excitation isolation. The QZS property originates 
from the nonlinear geometric relations between folding and 
internal volume change, and it is directly correlated to the design 
parameters of the constituent Miura-Ori sheets. Two different 
structures are studied to obtain a design guideline for achieving 
QZS: one is identical stacked Miura-Ori sheets (ismo) and the 
other is non-identical stacked Miura-Ori sheets (nismo). Further 
dynamic analyses based on numerical simulation and harmonic 
balance method, indicate that the QZS from pressurized fluidic 
origami can achieve effective base excitation isolation at low 
frequencies. Results of this study can become the foundation of 
origami-inspired metamaterials and metastructures with 
embedded dynamic functionalities. 

 
 

1. INTRODUCTION 
   Origami – the ancient Japanese paper folding art [1] – is 
being transformed into a framework of design and fabrication 
tools for a wide variety of engineering systems. The kinematics 
of folding flat sheets into sophisticated 3D shapes offers many 
desirable characteristics for creating deployable aerospace 
structures [2], kinetic architectures [3,4], self-folding robots [5], 
compact surgery devices [6,7], crash box impact absorbers [8], 
and many others [9–11]. Recently, there is a paradigm shift from 
harnessing the kinematics of origami to exploiting the energetics 
or mechanics of folding. As a result, a new category of origami-
based mechanical metamaterials emerged [12].  In particular, 
one can stack and connect multiple origami sheets together to 
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create an architectured material, and exploit the intricate 
relationships between folding and constituent sheet deformations 
to achieve unique material properties. For example, negative and 
flipping Poisson’s ratio can be achieved from the folding-
induced coupling among in-plane and out-of-plane strains [13–
17]. Self-locking and discrete stiffness-jump are possible via the 
facet binding behaviors from non-flat foldable creases [18,19]. 
Elastic multi-stability is also feasible due to the nonlinear 
correlations among crease and facet deformations during folding 
[20–23]. Furthermore, the stacked origami architecture consists 
of naturally embedded tubes that can be pressurized to create 
adaptive functions.  Such pressurized stacked-origami concept 
is also called fluidic origami, and it has been shown that it can 
exhibit shape transformation, stiffness control, and recoverable 
collapse [24–26].  
   Despite the significant progress in the mechanics studies of 
origami structures and materials, the vast majority of the 
aforementioned previous works are centered on static responses.  
The investigation on the dynamics of origami folding is still a 
nascent field. Yasuda et al. investigated the nonlinear wave 
propagation in multiple-degree-of freedom origami solid [27]; 
Ishida examined the feasibility of using bistable Kresling 
origami for vibration isolation [28], and Fang et al. studied the 
dynamic characteristics of a bistable origami structure [29].  
Other than these studies, there are no other literatures on this 
interesting and important subject. Therefore, this research aims 
at expanding our knowledge on how to harness the folding-
induced mechanical properties for dynamic applications.  
Specifically, the research examines a unique quasi-zero-stiffness 
(QZS) from the pressurized fluidic origami, and investigates how 
this QZS property can be used for low-frequency vibration 
isolation.   
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   The research presented in this paper can be divided into two 
parts. The first part investigates the physical origin of the quasi-
zero stiffness and its correlation to the fluidic origami design.  
Two cases are discussed: identical stacked Miura-Ori sheets 
(ismo) and non-identical stacked Miura-Ori sheets (nismo). It is 
shown that the QZS property arises due to the nonlinear 
geometric relationships between folding and internal volume 
change, and the reaction force corresponding to the QZS 
configuration can be tailored via pressure control. This research 
also discusses the origami design criteria to achieve QZS. 
   The second part of this research examines how such QZS 
property could be harnessed for adaptive and low-frequency 
vibration isolation. Low-frequency vibration isolation has been 
the concern of mechanical and civil engineers for many years.  
For a mass ( m ) supported by a linear spring of stiffness ( k ), it 
has been shown that vibration isolation occurs in frequencies 
over 2k m [30].  Therefore, to gain a wider usable frequency 
bandwidth for vibration isolation, it is desirable to have a smaller 
stiffness k; however, this would result in a large static 
displacement. An effective solution to this problem is to 
incorporate nonlinear springs with QZS characteristics.  For 
example, with proper spatial arrangements and stiffness 
assignments, it is possible to combine linear springs to create a 
QZS isolator with zero dynamic stiffness [31–33].  Via both 
analytical solutions and numerical simulations, this research 
shows that the QZS properties of pressurized fluidic origami can 
effectively isolate base excitations at low frequencies.  
Therefore, results for this research can open up new avenues 
towards origami-based metamaterials and structures with 
programmable dynamic applications.  
   The rest of this paper will be organized as follows. Section 2 
focuses on the nonlinear geometrical relationships between 
origami folding and QZS characteristics.  Section 3 discusses 
the dynamic analysis of utilizing the investigated QZS property 
for base excitation isolation. Approximate solutions based on the 
harmonic balance method are presented and compared to  

numerical simulations. Finally, section 4 concludes this paper 
with summary and discussions. 
 
2. Geometry of Folding and the Physical Principle of 
Achieving QZS 
   A set of kinematically compatible tubular cells, made by 
stacking two Miura-Ori folded sheets along their zig-zag crease 
lines, are the building blocks of fluidic origami (Figures 1) 
[24,25]. Miura-Ori is a periodic tessellation, thus it is possible to 
study the unit cell shown in Figure 2 as a representative of the 
whole structure. The governing geometrical relations of Miura-
Ori have been studied before and they are briefly reviewed here.  
The design of Miura-Ori can be described by three parameters 
that remain constants regardless of folding.  They are the length 
of two adjacent crease lines (a and b), and the angle between 
these two lines ( γ ) (Figure 1a).  
   Miura-Ori is rigid foldable, thus one can assume that the 
facet material is rigid and the crease lines behave like ideal 
hinges. Therefore, the folding motion of Miura-Ori has a one-
degree-of-freedom and it can be described by the dihedral 
folding angle ( )θ  defined between the x-y reference plane and 
the constituent facets (Figure 2).  
   In order to satisfy the kinematical compatibility of the Miura-
Ori and prevent any separation of the two sheets during folding, 
two conditions need to be satisfied [13]: 
 

,II Ib b b= =  (1) 

 
cos cos .I I II IIa aγ γ=  (2) 

In addition, the folding angles of two Miura-Ori sheets are 
related by the following equation: 

 

 
 

Figure 1. The concept of fluidic origami. (a) Miura-Ori sheets are defined by three design parameters. (b) Stacking 
two compatible Miura-Ori sheets along their zig-zag creases can form a tubular structure. (c) Integration of different 
pressurized origami tubes into a 3D configuration. (d) As the fluidic origami folds, its enclosed volumes change 
accordingly, which is essential for achieving the quasi-zero stiffness (figure adopted from [24]). 
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cos tan cos tanII II I Iθ γ θ γ=  (3) 

   As a result of these kinematic constraints, rigid folding of the 
fluidic origami is still a one degree of freedom mechanism, and 
the corresponding kinematic characteristics could be described 
based on one independent variable. In this paper we choose the 
folding angle Iθ   for such a purpose. Therefore, the unit cell 
length, width and height can be calculated as follows, [24]: 

 

2 2

2 cos tan ,
1 cos tan

I I

I I

bL θ γ

θ γ
=

+
 (4) 

 
2 22 1 sin sin ,I I IW a θ γ= −  (5) 

 
sin sin sin sin .II II II I I IH a aθ γ θ γ= −  (6) 

      

   Based on these variables, the enclosed volume of a unit cell 
can be calculated as follows [24]: 

 
2

2 2 2
2

tan
2 sin cos ( cos sin ).

tan
II

I I I I I
I

V a b
γ

γ θ θ θ
γ

= − +  (7) 

   Equations (4-7) elucidate the kinematic connections between 
the external geometries and internal volume of fluidic origami.  
Based on these relationships, one can predict that the fluidic 
origami will fold to a configuration with maximum enclosed 
volume when it is subject to internal pressure [26]. This is due to 
the entropy increase from inner energy reduction by volume 
expansion [34]. Pressurization can also imparts nonlinear 
stiffness to the structure (pressure-induced stiffness) [26].  If 
the fluidic origami structure is subjected to external mechanical 
loads along the -x direction (defined in Figure 2), the reaction 
force due to internal pressure can be calculated as follows based 
on virtual work principle: 

 
1

,L
I I

dV dV dLF P P
dL d dθ θ

−
 

= − = −  
 

 (8) 

   where dL   is the change in origami length along the 
external force exertion direction. The corresponding pressure-
induced stiffness is defined as the variation of the reaction force 
with respect to infinitesimal deformation [26]:  

 

.L
L

FK
L

∂
=
∂

 (9) 

 
   In order to investigate the feasibility of reaching QZS 
characteristics, we consider the following scenario in this 
research. The fluidic origami is pressurized at first based on an 
initial pressure ( iP ) until it folds and settles at the configuration 
with maximum possible internal volume ( iV ). Then the fluidic 
origami is sealed so that the total amount of pressurized gas 
inside is kept constant. After this, if the fluidic origami deforms 
via folding due to external forces, its internal pressure ( P ) and 
enclosed volume (V ) will change accordingly. The ideal gas law 
states that: 
 

,PV nRT=  (10) 

where n  is the amount of substance of gas (in moles), R is the 
universal gas constant, and T  is the absolute temperature of the 
gas.  If the change in internal volume due to folding occurs 
slowly, the gas temperature can be assumed constant so that: 
 

,i iPV PV const= =  (11) 

and the reaction force equation (8) can be updated as, 
 

1

.i i
L

I I

PV dV dLF
V d dθ θ

−
 

= −  
 

 (12) 

 
Figure 2. The geometry of the unit cell. θI and θII are the 
dihedral folding angles of Miura-Ori sheet I and II, respectively 
(Figure adopted from [24])   
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   Equation (8,9) and (12) reveal that the pressure-induced 
reaction force and stiffness is strongly nonlinear and they are 
dictated by the kinematics of folding. Therefore, with 
appropriate origami design, it is possible to achieve the desired 
quasi-zero stiffness for vibration isolation.  In the following 
subsections, two different design cases are considered to 
illustrate how to harness the origami folding and internal 
pressure to achieve quasi-zero stiffness.  The first case is 
Identical Stacked Miura-Ori sheets (ISMO) and the second one 
is Non-Identical Stacked Miura-Ori sheets (NISMO). 

2.1 Case 1: Identical Stacked Miura-Ori sheets (ISMO) 

   If the two Miura-Ori sheets are identical, the geometric 
relationships discussed previously are simplified because 

II Iγ γγ= =   and .II Ia a a= =  Figure 3 shows the different 
reaction force-deformation curves of a ISMO cell assuming 
either 1) constant pressure, which was previously studied by the 
authors for recoverable collapse [26], or 2) constant .PV  The 
initial pressure of both cases are the same at 13.8 kPa.  The 
nonlinearity governed by folding is evident in these force-
deformation curves. Especially, the curve with constant PV has 
a segment of negative stiffness (dashed line in Figure 3) between 
two segments with positive stiffness. 
 

 
   Results in Figure 3 also imply that it would be possible to 
achieve quasi-zero-stiffness by choosing proper design 
parameters for the origami when .PV const=  Indeed, figure 4 
shows the force-deformation curves of different ISMO cells 
based on the same crease lengths ( 38mm)a b= =  but different 
γ  angles. It can be seen that when the sector angle γ  is less 
than 69°, the reaction force increases monotonically with 

deformation, implying a nonlinear positive stiffness. When 
69 ,γ >    the reaction force curve has a segment of negative 

stiffness. The critical, quasi-zero-stiffness can be achieved when 
the sector angle equals to 69°.  At this particular sector angle, 
the length of the negative stiffness segment in the reaction force 
curve converges to zero. In another word, the tangent stiffness of 
the fluidic origami is positive throughout its deformation range, 
except that at the QZS configuration the tangent stiffness equals 
to zero.   
 

   
 

 
 
 There are several interesting properties from the ISMO fluidic 
origami with 69 .γ =   First of all, it can achieve the QZS 

 
Figure 3. Reaction force-deformation curve of a fluidic 
origami with a=b=38mm, and γ=75°. 
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Figure 5. Reaction force-deformation curve of a fluidic 
origami with PV=const. based on different initial 
pressures (Pi). 
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Figure 4. The influence of γ angle on the force-
deformation relationship 
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property regardless of the initial pressure ( ).iP   Secondly, the 
magnitude of reaction force at the QZS point ( )crF  is linearly 
proportional to the magnitude of initial pressure. Finally, the 
deformation at the QZS point is only a function of origami 
geometry (Figure 5). Later in this paper, we will discuss how 
these properties can be beneficial for vibration isolation. In order 
to find a comprehensive design criteria to obtain QZS 
characteristics, a non-dimensional parameter w  is introduced 
as follows: 
 

lw
b
∆

=  (13) 

 
where l∆  is the deformation range with negative stiffness in 
the reaction force-deformation curves (Figure 3, 4), and b  is 
the common crease length of the two Miura-Ori sheets (Figure 
1). For reaching the QZS, it is desirable to have l∆  equal to 
zero. The parametric study result in Figure 6 illustrates the 
correlation between w  and the Miura-Ori design parameters.  
It can be concluded that when the two Miura-Ori sheets are 
identical, the magnitude of w  is independent of k ( )a b=  
and only depends on the γ  angle. That is, QZS is reachable 
only when 69γ =   regardless of the a and b crease lengths. 
 
 

 
 
2.2 CASE 2: NON-IDENTICAL STACKED MIURA-ORI 
SHEETS (NISMO) 
 
   To study the case that two Miura-Ori sheets are not identical, 
we introduce a non-dimensional parameter Γ   as follows to 

characterize the differences between the two Miura sheet 
designs: 
 

.II

I

a
a

Γ =  (14) 

 
 
   Following the similar approach as in the ISMO case, it is 
possible to analyze the design parameters and the feasibility of 
reaching QZS. Figure 7 illustrates the correlation between 
Miura-Ori design parameter and the non-dimensional parameter 
w. In the NISMO case, the designs that can provide QZS depend 
both on the sector angles and the crease line lengths. The 
parametric study results in Figure 6 and 7 can serve as design 
guidelines for the dynamic analyses discussed in the following 
section. 
 

 
3. Base Excitation Isolation via the QZS property of 
fluidic origami 
   After investigating the physical origins and design guidelines 
of the pressure induced QZS in fluidic origami, the following 
section of this paper turns to examine the effectiveness of 
harnessing the QZS for low-frequency base excitation isolation.  
Figure 8a illustrates the schematic of fluidic origami being used 
for vibration isolation, where the fluidic origami itself is 
assumed massless and a lumped mass (m) is attached at the top. 
 In this setup, the origami structure can be described as a 
combination of a nonlinear spring and damping between the base 
and lumped mass (Figure 8b). The governing dynamic equation 
of motion can be written as: 
 

22 cosu u F Y tζ+ + = Ω Ω   (15) 

 
 

 
Figure 6. The relationship between the deformation 
range with negative stiffness and ISMO design 
parameters. Gray region represent designs that would 
not generate any negative stiffness. 
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Figure 7.  The relationship between the deformation 
range with negative stiffness and NISMO design 
parameters. Gray region represent designs that would 
not generate any negative stiffness. 
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   where, u x y= −  is the relative displacement between the 
lumped mass and base, F  is the reaction force of the fluidic 
origami, ζ  is the damping ratio, Ω  is the excitation 
frequency, and Y  is the base excitation amplitude. The reaction 
force ( )F  is determined based on the constitutive relationship 
of the fluidic origami (Equation (12)). In this section, we adopt 
a base-line ISMO design with 38 mma b= = and 69 .γ =   
 
 

    
   In order to harness the QZS property for low-frequency 
vibration isolation, the static equilibrium of the mass-spring-
damper system shown in Figure 8 needs to occur at the QZS 
configuration.  In other words, the weight of the lumped mass 
needs to equate the reaction force at the QZS point ( ).crmg F=
To achieve this, one can exploit the unique property of 
pressurized fluidic origami mentioned in figure 5: that is, the 
magnitude of the reaction force at QZS configuration is linearly 
proportional to the magnitude of the initial pressure.  Therefore, 
one can supply the initial pressure according to the following 
equation: 
 

1

.i
i

QZS

V dVP mg
V dL

−
  = −  
  

 (16) 

 
 
   To perform the dynamic analysis, the origin of reaction force-
deformation curve is moved to the QZS point on the curve 
(Figure 9).  Near this point, a cubic polynomial fitting can be 
applied to approximate force-deformation relationship as 
follows: 
 

3 ,F xα≈  (17) 

  where the cubic stiffness coefficient α can be found via least 
square method.  With the cubic stiffness approximation, the 
governing equation of motion (Equation (15)) is simplified to: 
 

3 22 cos ,u u u Y tζ α+ + = Ω Ω   (18) 

 
 
   which essentially represents a Duffing oscillator with a zero 
linear stiffness term. For the base line study and initial pressure 
of 13.8 kPa,iP =  α  turns out to be 381020 N m . 
 
 
 

 
   To measure the performance of the base excitation isolation, 
a transmissibility index (TR) is introduced as the ratio of the root 
mean squares of mass and base displacements, x  and ,y
respectively: 
 
 

( ( )) .
( ( ))

RMS x tTR
RMS y t

=  (19) 

 
 
   The actual governing equation of motion (Equation (15)), 
based on the actual force-displacement curve, is solved 
numerically using MATLAB “ode45” solver, and the steady-
state time response solutions (shown in Figure 10) can be used 
to calculate the transmissibility index ( TR ).  Beside numerical 
simulations, approximate solution based on the harmonic 
balance method (HBM) is also obtained in this research to 
provide a more efficient way to investigate the dynamic behavior 
of the fluidic origami with QZS property. HBM is a powerful 

 
 

Figure 8. Setup for dynamic analysis. a) Schematic 
diagram of using fluidic origami for base vibration 
isolation. b) An equivalent system. 
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Figure 9. Applying cubic fitting to approximate the 
actual reaction force-deformation relationship of the 
fluidic origami 
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method applicable to strongly nonlinear systems [33,35,36].  
The solution of the equation of motion can be approximated as: 
 

1 2cos sin .u U t U t= Ω + Ω  (20) 

 
Plugging this approximate solution into the dynamic equation 
(Equation (18)) and discarding higher order harmonic terms 
yield the following nonlinear polynomial equations: 
 

2 3 2 2
1 2 1 1 2

2 3 2
2 1 2 2 1

3 32 0
4 4
3 32 0
4 4

U U U U U Y

U U U U U

ζ α α

ζ α α

−Ω + Ω + + −Ω =

−Ω − Ω + + =


 (21) 

 
 
   These two equations can be solved numerically to obtain the 
two unknown coefficients ( 1 2,  U U  ), and transmissibility.  
Figure 11 shows the transmissibility index obtained by numerical 
simulation and HBM, which shows a good agreement.   
 
   Results of Figure 11 indicate that the pressure-induced quasi-
zero stiffness from fluidic origami can indeed provide effective 
base excitation isolation at low frequency.  The transmission 
index is consistently below 1 throughout the examined excitation 
frequency range (from 0 to 10Hz), indicating that the vibration 

amplitude of the lumped-mass is always attenuated compared to 
the base. Furthermore, the static reaction force at QZS 
configuration ( )crF   is directly proportional to the initial 
pressure, which opens up the possibility to control fluidic 
origami on-demand according to any changes in the lumped 
mass. It can be seen that there exists some discrepancies between 
the numerical solution and the approximate HMB results for the 
medium frequencies. Further analysis shows that in that range of 
frequencies, dominant subharmonic oscillations have a 
significant role in the behavior of the system (figure 12). 
However, they have been neglected in the approximate solution 
based on the harmonic balance method. Nonetheless, such 
discrepancy does not negate the purpose using fluidic origami as 
vibration isolator because the transmissivity index remains well 
below one even with the discrepancy. 
 

 
4. Conclusion 
   This research investigates the idea of harnessing the quasi-
zero stiffness (QZS) property from the fluidic origami cellular 
solid for dynamic functionalities.  Fluidic origami consists of 

 
Figure 10. Sample time responses of base excitation 
isolation based on the actual force-displacement 
curve. (a) Ω=0.1 Hz and (b) Ω=1 Hz. The input 
amplitude of the base excitation is Y =10mm, and the 
initial condition of u(t) is [0,0]. 

  

 
Figure 11. Transmission index of the fluidic origami. 
Solid line represents the results based on HBM, and 
solid dots represent simulation solution. 

  

 
Figure 12. Time response of base excitation isolation 
based on the actual force-displacement curve for Ω=3 
Hz. The input amplitude of the base excitation is Y 
=10mm, and the initial condition of u(t) is [0,0]. 
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stacked Miura-Ori sheets, which have naturally embedded tubes 
that can be pressurized to induce unique stiffness properties.  
This research shows that if the pressurized air is sealed inside 
fluidic origami, the intricate and nonlinear relationship between 
folding and internal volume change can induce the quasi-zero 
stiffness. Two different design cases are studied to obtain the 
origami design guidelines for achieving QZS: One is identical 
stacked Miura-Ori sheets (ismo) and the other is non-identical 
stacked Miura-Ori. This study then turns its focus to the 
feasibility of harnessing the acquired quasi-zero stiffness for 
low-frequency base excitation isolation.  Dynamic analyses 
based on approximate solutions (with harmonic balance method) 
are presented and compared to the numerical simulations.  It is 
shown that QZS property from fluidic origami can provide 
effective base excitation isolation at low-frequencies.  The 
internal pressure of fluidic origami can also be adjusted to 
accommodate any changes in the system mass.  Therefore, 
results of this study can become the foundation of origami-
inspired metamaterials and meta-structures with embedded 
dynamic functionalities. 
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