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Abstract

Bilinear pooling has been recently proposed as a feature
encoding layer, which can be used after the convolutional
layers of a deep network, to improve performance in mul-
tiple vision tasks. Different from conventional global aver-
age pooling or fully connected layer, bilinear pooling gath-
ers 2nd order information in a translation invariant fash-
ion. However, a serious drawback of this family of pooling
layers is their dimensionality explosion. Approximate pool-
ing methods with compact properties have been explored
towards resolving this weakness. Additionally, recent re-
sults have shown that significant performance gains can be
achieved by adding st order information and applying ma-
trix normalization to regularize unstable higher order in-
formation. However, combining compact pooling with ma-
trix normalization and other order information has not been
explored until now. In this paper, we unify bilinear pool-
ing and the global Gaussian embedding layers through the
empirical moment matrix. In addition, we propose a novel
sub-matrix square-root layer, which can be used to normal-
ize the output of the convolution layer directly and mitigate
the dimensionality problem with off-the-shelf compact pool-
ing methods. Our experiments on three widely used fine-
grained classification datasets illustrate that our proposed
architecture, MoNet, can achieve similar or better perfor-
mance than with the state-of-art G?DeNet. Furthermore,
when combined with compact pooling technique, MoNet ob-
tains comparable performance with encoded features with
96% less dimensions.

1. Introduction

Embedding local representations of an image to form a
feature that is representative yet invariant to nuisance noise
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1404163, CMMI-1638234 and CNS-1646121; AFOSR grant FA9550-15-
1-0392; and the Alert DHS Center of Excellence under Award Number
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Table 1. Comparison of 2nd order statistical information-based
neural networks. Bilinear CNN (BCNN) only has 2nd order in-
formation and does not use matrix normalization. Both improved
BCNN (iBCNN) and G?DeNet take advantage of matrix normal-
ization but suffer from large dimensionality since they use the
square-root of a large pooled matrix. Our proposed MoNet, with
the help of a novel sub-matrix square-root layer, can normalize the
local features directly and reduce the final representation dimen-
sion significantly by substituting bilinear pooling with compact
pooling.

1st order Matrix Compact
moment normalization capacity

BONN[22,9] | X X v
iBCNN [21] x “/ x
G?DeNet [36] V V X
MoNet V W V

is a key step in many computer vision tasks. Before the
phenomenal success of deep convolutional neural networks
(CNN) [18], researchers tackled this problem with hand-
crafted consecutive independent steps. Remarkable works
include HOG [6], SIFT [24], covariance descriptor [33],
VLAD [14], Fisher vector [27] and bilinear pooling [3].
Although CNNs are trained from end to end, they can be
also viewed as two parts, where the convolutional layers are
feature extraction steps and the later fully connected (FC)
layers are an encoding step. Several works have been done
to explore substituting the FC layers with conventional em-
bedding methods in both two-stage fashion [4, 11] and end-
to-end trainable way [22, 13].

Bilinear CNN (BCNN) was first proposed by Lin et al.
[22] to pool the second order statistics information across
the spatial locations. Bilinear pooling has been proven to
be successful in many tasks, including fine-grained image
classification [16, 9], large-scale image recognition [20],
segmentation [13], visual question answering [8, 37], face
recognition [29] and artistic style reconstruction [10]. Wang
et al. [36] proposed to also include the 1st order informa-
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Figure 1. Architecture of the proposed moments-based network MoNet. With the proposed sub-matrix square-root layer, it is possible to
perform matrix normalization before bilinear pooling or further apply compact pooling to reduce the dimensionality dramatically without

undermining performance.

tion by using a Gaussian embedding in G2DeNet. It has
been shown that the normalization method is also critical to
these CNNs performance. Two normalization methods have
been proposed for the bilinear pooled matrix, M = £ XTX,
where X € R"*C represents the local features. On one
hand, because M is Symmetric Positive Definite (SPD),
Ionescu et al. [13] proposed to apply matrix-logarithm to
map the SPD matrices from the Riemannian manifold to an
Euclidean space, followed by log(M) = U s log(Sx,)U%,
with M = UMSMU?\}. On the other hand, [36, 21] pro-
posed matrix-power to scale M non-linearly with M? =
US4, UT,. In both works, matrix-power was shown to
have better performance and numerically stability than the
matrix-logarithm. In addition, Li et al. [20] provided theo-
retical support on the superior performance of matrix-power
normalization in solving a general large-scale image recog-
nition problem.

A critical weakness of the above feature encoding is the
extremely high dimensionality of the encoded features. Due
to the tensor product‘, the final feature dimension is C?
where C' is the number of feature channels of the last con-
volution layer. Even for relatively low C' = 512 as in VGG-
16 [30], the dimensionality of the final feature is already
more than 262K. This problem can be alleviated by us-
ing random projections [9], tensor sketching [9, 5], and the
low rank property [16]. However, because the matrix-power
normalization layer is applied on the pooled matrix M, it is
non-trivial to combine matrix normalization and compact
pooling to achieve better performance and reduce the final
feature dimensions at the same time.

In this paper, we propose a new architecture, MoNet,
that integrates matrix-power normalization with Gaussian
embedding. To this effect, we re-write the formulation

'We show that the Gaussian embedding can be written as a tensor prod-
uct in sec. 3.2.1 In the following sections, we will use tensor product and
bilinear pooling interchangeably.

of G2DeNet using the tensor product of the homogeneous
padded local features to align it with the architecture of
BCNN so that the Gaussian embedding operation and bilin-
ear pooling are decoupled. Instead of working on the bilin-
ear pooled matrix M, we derive the sub-matrix square-root
layer to perform the matrix-power normalization directly on
the (in-)homogeneous local features. With the help of this
novel layer, we can take advantage of compact pooling to
approximate the tensor product, but with much fewer di-
mensions.
The main contributions of this work are three-fold:

e We unify the G?DeNet and bilinear pooling CNN us-
ing the empirical moment matrix and decouple the
Gaussian embedding from bilinear pooling.

e We propose a new sub-matrix square-root layer to di-
rectly normalize the features before the bilinear pool-
ing layer, which makes it possible to reduce the dimen-
sionality of the representation using compact pooling.

e We derive the gradient of the proposed layer using ma-
trix back propagation, so that the whole proposed mo-
ments embedding network ‘“MoNet” architecture can
be optimized jointly.

2. Related work

Bilinear pooling was proposed by Tenenbaum et al. [32]
to model two-factor structure in images to separate style
from content. Lin et al. [22] introduced it into a convo-
lutional neural network as a pooling layer and improved it
further by adding matrix power normalization in their recent
work [21]. Wang et al. [36] proposed G?DeNet with Gaus-
sian embedding, followed by matrix normalization to incor-
porate 1st order moment information and achieved the state-
of-the-art performance. In a parallel research track, low di-
mension compact approximations of bilinear pooling have



been also explored. Gao et al. [9] bridged bilinear pool-
ing with a linear classifier with a second order polynomial
kernel by adopting the off-the-shelf kernel approximation
methods Random MacLaurin [15] and Tensor Sketch [28]
to pool the local features in a compact way. Cui [5] gener-
alized this approach to higher order polynomials with Ten-
sor Sketch. By combining with bilinear SVM, Kong et al.
[16] proposed to impose a low-rank constraint to reduce the
number of parameters. However, none of these approaches
can be easily integrated with matrix normalization because
of the absence of a bilinear pooled matrix.

Lasserre et al. [19] proposed to use the empirical mo-
ment matrix formed by explicit in-homogeneous polyno-
mial kernel basis for outlier detection. Sznaier et al. [31]
improved the performance for the case of data subspaces,
by working on the singular values directly. In [12], the em-
pirical moments matrix was applied as a feature embedding
method for the person re-identification problem and it was
shown that the Gaussian embedding [23] is a special case
when the moment matrix order equals to 1. However, both
of these works focus on a conventional pipeline and did not
bring moments to modern CNN architectures.

Tonescu et al. [13] introduced the theory and practice
of matrix back-propagation for training CNNs, which en-
able structured matrix operations in deep neural networks
training. Both [21] and [36] used it to derive the back-
propagation of the matrix square-root and matrix logarithm
for a symmetric matrix. Li et al. [20] applied a general-
ized p-th order matrix power normalization instead of the
square-root. However, in our case, since we want to apply
the matrix normalization directly on a non-square local fea-
ture matrix, we cannot plug-in the equation directly from
previous works.

3. MoNet Architecture

The overview of the proposed MoNet architecture is
shown in Fig. 1. For an input image I, the output of the
last convolution layer after the ReLLU, X, consists of local
features x;, across spatial locations 7 = 1,2, ..., n. Then,
we introduce a homogeneous mapping (HM) layer to dis-
entangle the tensor product operator. After that, a novel
sub-matrix square-root (Ssqrt) layer is applied to directly
normalize the feature vector before the tensor product. Fi-
nally, a compact bilinear pooling layer pools all n features
across all spatial locations, followed by an element-wise
square-root regularization and /5 normalization before the
final fully-connected layer. Next, we will detail the design
of each block.

3.1. Homogeneous mapping layer

Since the global Gaussian embedding layer used in
G?DeNet entangles the tensor product operator, one can-
not directly incorporate compact bilinear pooling. With the

help of the proposed HM layer, we can re-write the Gaus-
sian embedding layer with a HM layer followed by a tensor
product, as explained next.

Assume X € R™* ¢ corresponding to n features with
dimension C' and n > C, mean p and covariance 3. The
homogeneous mapping of X is obtained by padding X with
an extra dimension set to 1. For the simplicity of the fol-
lowing layers, instead of applying the conventional bilinear
pooling layer as in [22], we also divide the homogeneous
feature by the square-root of the number of samples. Then,
the forward equation of the homogeneous mapping layer is:

1
X = —[1]X] € R?*(E+D (1)

NG

The tensor product of X can be written as

M=X"X = { i iRy ] @
where 1 = 237X, Since 1XTX = ¥ + 4Ty, Eq. 2
is the Gaussian embedding method used in G2DeNet [36].
One can also show that the conventional bilinear pooling
layer is equal to the tensor product of the in-homogeneous
feature matrix.

3.2. Sub-matrix square-root layer

Matrix normalization in iBCNN and G?DeNet requires
the computation of the singular value decomposition (SVD)
of the output of the tensor product, which prevents the direct
use of compact bilinear pooling. We will address this issue
by incorporating a novel layer, named sub-matrix square-
root (Ssqrt) layer, to perform the equivalent matrix normal-
ization before the tensor product. This choice is supported
by experimental results in [36, 21] showing that the ma-
trix square-root normalization is better than the matrix loga-
rithm normalization for performance and training stability.

3.2.1 Forward propagation

Recall that given the SVD of a SPD matrix, Q =
UQSQUg, the square root of Q is defined as

Q: = UgSaUj 3)
where Sé is computed by taking the square root of its diag-
onal elements. ~

Consider now the SVD of X = USV7. Then, we have
M= X"X = vsTuTusv” 4)
and since UTU = I and S”'S is a square matrix:

M: =V (s7S): V7 (5)



Note that S € R"*(€+1) > C + 1 and hence its square
root is not well defined. We introduce a helper matrix A to
keep all non-zero singular values in S as follows:

[Iciq]0]” (6)

where S € R(CTDX(C+1) jg a square diagonal matrix and
Icyiisthe (C'+1) x (C 4+ 1) identity matrix. Substituting
Eq. (6) in Eq. (5), we have

S=AS A=

M? = V(SATAS): VT =V§2:8: V7 7)
since AT A = Io41. To keep the same number of samples
for the input and output of this layer, we finally re-write
Eq. (5) in the following tensor product format:

Mz =YTY 8)

where the output Y is defined as Y = AS=VT, allowing
us to perform matrix normalization directly on the features
X.

Note that because in most modern CNNs, n cannot be
much greater than C and the features after ReL.U tend to be
sparse, X is usually rank deficient. Therefore, we only use
the non-zero singular values and singular vectors. Then, the
forward equation of the sub-matrix square-root layer can be

written as 1
Y = A:,l:esli:evl:ljlze (9)

where e is the index of the smallest singular value greater
than € 2.

3.2.2 Backward propagation

We will follow the matrix back propagation techniques pro-
posed by Ionescu et al. [13] to derive the equation of the
back propagation path for the sub-matrix square-root layer.

For a scalar loss L = f(Y), we assume % is available
when we derive the back propagation. Let X = Usv”
and U € R" . We can form U using block decom-
position as U = [U;|Uy] with U; € R™(C+1) and
U, € R ("=C=1) The partial derivatives between a given
scalar loss L and X are

af( =DV” + U(a— —U'D)giag VI +

oS
oL
T
2US(K” o (V (5v

VDTUS))) vT
sym

(10)

where o represents element-wise product, (Q)sym

1(QT+ Q) and

(0L iy OL\" - <
b (%) s -n(2) ust

2We will omit the subscript in the following for a concise notation

1 i .
K- 7 (12)
0 i= g

From Eq. 9, we can compute the variation of Y as

1 -~ - -
dY = §AS‘%dSVT + ASzqVT (13)
Based on the chain rule, the total variation can be written as
oL 10L oL
Y = == : AS 2dSVT + 2= : ASz2qV7

7Y o d 59y S~ 2dS + Y Sz4
(14)
where : denotes the inner-product. After re-arrangement

with the rotation properties of inner-product, we re-write
the above equation as

oL B _1,70L 7 OL T
7Y :dY = S TA 7Y V. dS+SA aY.dV
(15)
Therefore, we have
OL OL 1, 4_1,70L
—_— = _— = = 75 16
oS Aas 2AS aYV (16)
oL OL OL
—_— = — 2 17
ov (QVT) (8Y) AS? a7

Finally, substituting Eq. 16 and Eq. 17 into Eq. 10 and con-
sidering ‘g—é = 0, we have

ol _y <1AS%AT oLy
oX 2 oY
oL 1
T T 1 T
QSlK o<V <8Y> AS )] vV
sym
(18)
3.3. Compact pooling

Following the work in [9, 8], we adopt the Tensor Sketch
(TS) method to approximate bilinear pooling due to it bet-
ter performance and lower computational and memory cost.
Building up on count sketch and FFT, one can generate a
tensor sketch function s.t. (T'Si(z),T'S2(y)) ~ (z,)2,
using Algorithm 1. The back-propagation of a TS layer is
given by [9].

As shown in Table 2, with the techniques mentioned
above, the proposed MoNet is capable to solve the prob-
lem with much less computation and memory complexity
than the other BCNN based algorithms.

4. Experiments

Aligned with other bilinear CNN based papers, we also
evaluate the proposed MoNet with three widely used fine-
grained classification datasets. The experimental setups
and the algorithm implementation are described in detail in
Sec. 4.1. Then, in Sec. 4.2, the experimental results on fine-
grained classification are presented and analyzed.



Table 2. Dimension, computation and memory information for the networks we compared in this paper. H, W and C represent the height,
width and number of feature channels for the output of the final convolution layer, respectively. £ and D denote the number of classes and
projected dimensions for Tensor Sketch, respectively. Numbers inside brackets indicate the typical value when the corresponding network
was evaluated with VGG-16 model [30] on a classification task with 1,000 classes. In this case, H = W = 13,C = 512,k = 1,000, D =

10, 000 and all data was stored with single precision.

BCNN [22] iBCNN [21] iBCNN TS G?DeNet [36] MoNet MoNet TS
Dimension C? [262K] C2 [262K] D [10K] (C+1)? [263K] (C+1)? [263K] D [10k]
Parameter Memory 0 0 2C 0 0 2C
Computation O(HWC?) O(HWC?) O(HW(C + Dlog D)) O(HWC?) O(HWC?) O(HW(C + Dlog D))
Classifier Memory | kC? [1000MB] | kC? [1000MB] kD [40MB] k(C +1)2 [1004MB] | k(C + 1)? [1004MB] kD [40MB]

Algorithm 1 Tensor Sketch approximation pooling

Require: z, projected dimension D

1: Generate randomly selected (but fixed) two pairs of
hash functions h; € RP and s; € RP where
t = 1,2 and hy(4), s¢(7) are uniformly drawn from
{1,2,---,D} and {—1, +1}, respectively.

2: Define count sketch function W(z,hys:) =
[1(2), ¢2(2), -+ ,¥p(x)]"  where  1;(z) =
Dichy (iy=g St(0)Ti

3: Define TS(x) = FFT YFFT(¥(x,hi,s1) o
(U(x, ha, s2)))) where o denotes element-wise multi-
plication.

Table 3. Basic statistics of the datasets used for evaluation

Datasets # training # testing  # classes

CUB [35] 5,994 5,794 200
Aircraft [25] 6,667 3,333 100

Cars [17] 8,144 8,041 196

Figure 2. Sample images from the fine-grained classification
datasets. From left to right, each column corresponds to CUB,
Aircraft and Cars, respectively.

4.1. Experimental setup

We evaluated MoNet on three widely used fine-grained
classification datasets. Different from general object recog-
nition tasks, fine-grained classification usually tries to dis-
tinguish objects at the sub-category level, such as different

makes of cars or different species of birds. The main chal-
lenge of this task is the relatively large inter-class and rela-
tively small intra-class variations.

In all experiments, the 13 convolutional layers of VGG-
16 [30] are used as the local feature extractor, and their out-
puts are used as local appearance representations. These 13
convolution layers are trained with ImageNet [7] and fine
tuned in our experiments with three fine-grained classifica-
tion datasets.

4.1.1 Datasets

Caltech-UCSD birds (CUB) [35] contains 200 species,
mostly north-American, of birds. Being consistent with
other works, we also use the 2011 extension with doubled
number samples.

FGVC-Aircraft Benchmark (Aircraft) [25] is a bench-
mark fine-grained classification dataset with different air-
crafts with various models and manufacturers.

Stanford cars (Cars) [17] contains images of different
classes of cars at the level of make, model and year.

We use the provided train/test splits for all three datasets.
Detailed information is given in Table 3 and Fig. 2 shows
sample images.

4.1.2 Different pooling methods

Bilinear pooling (BCNN): The VGG-16 based BCNN [22]
is utilized as the baseline pooling method, which applies
the tensor product on the output of the convs 3 layer with
ReLU activation. The dimension of the final representation
is 512 x 512 ~ 262K and the number of the linear classifier
parameters is k x 262K, where k is the number of classes.
To be fair, the latest results from the authors’ project page
[1] are compared.

Improved bilinear pooling iBCNN): Lin ef al. [21]
improved the original BCNN by adding the matrix power
normalization after the bilinear pooling layer. We compare
the results reported in [21] with VGG-16 as the back-bone
network.

Global Gaussian distribution embedding (G2DeNet):
Instead of fully bilinear pooling, G?DeNet pools the lo-
cal features with a global Gaussian distribution embedding
method, followed by a matrix square-root normalization.



Since it includes the first order moment information, the di-
mension of the final feature is slightly greater than BCNN
and iBCNN. The experiment results with “w/o BBox” con-
figuration in [36] are compared in this paper.

Proposed moment embedding network (MoNet) and
its variants: We implemented the proposed MoNet archi-
tecture with structure as shown in Fig. 1 and fine-tuned the
whole network in an end-to-end fashion. When using bi-
linear pooling, the feature dimensionality, computation and
memory complexity are the same as G2DeNet. To evaluate
the effectiveness of the proposed layers HM and Ssqrt, we
also tested MoNet variants. Depending on the left-out layer,
we can have four different variants in total. Modifiers ‘2’
and *U’ indicate that only 2nd order moments are incorpo-
rated during feature embedding, and that no normalization
was used, respectively.

Tensor Sketch compact pooling (TS): When building
the network with compact pooling, the TS layer [9] was
added after the sub-matrix square-root layer. The projec-
tion dimension D was selected empirically for MoNet and
its variants.

4.1.3 Implementation details

Using a large enough number of samples is important to
estimate stable and meaningful statistical moment informa-
tion. The input images are resized to 448 x 448 in all the
experiments, which produces a 28 x 28 x 512 local fea-
ture matrix after convs_3 for each image. Following com-
mon practice [36, 5], we first resize the image with a fixed
aspect-ratio, such as the shorter edge reaches to 448 and
then utilized a center crop to resize the image to 448 x 448.
During training, random horizontal flipping was applied as
data augmentation. Different from [21] with VGG-M, no
augmentation is applied during testing.

To avoid rank deficiency, the singular value threshold o
was set to 10~° for both forward and backward propaga-
tion, which results in 10719 for the singular value thresh-
old of the tensor product matrix. The projected dimension
in Tensor Sketch was fixed to D = 10%, which satisfies
C < D < C?. For a smooth and stable training, we ap-
plied gradient clipping[26] to chop all gradients in the range
[—1,1].

As suggested by [21, 36], all pooling methods were
followed by an element-wise sign kept squre-root ys =
sign(y)./y and {3 normalization y, = y,/||ys||. For the
sake of a smooth training, the element-wise square-root is
also applied on local appearence features [36].

The weights of the VGG-16 convolutional layers are
pretrained on ImageNet classification dataset. We first
warm-started by fine-tuning the last linear classifier for 300
epochs. Then, we fine-tuned the whole network end-to-end
with the learning rate as 0.001 and batch size as 16. The

momentum was set to 0.9 and the weight decay was set to
0.0005. Most experiments converged to a local optimum
after 50 epochs.

The proposed MoNet was implemented with MatCon-
vNet [34] and Matlab 2017a. Because of the numerical
instability of SVDs, as suggested by Ionescu et al. [13], the
sub-matrix square-root layer was implemented on CPU with
double precision. The whole network was fine-tuned on a
Ubuntu PC with 64GB RAM and Nvidia GTX 1080 Ti.

4.2. Experimental results

In Table 4 and Table 5, the classification accuracy for
each network is presented in a row. Bilinear and TS denote
fully bilinear pooling and tensor sketch compact pooling,
respectively.

Comparison with different variants: The variants
MoNet-2U, MoNet-2, and MoNet, when using bilinear
pooling, are mathematically equivalent to BCNN, iBCNN,
and G?DeNet, respectively. Aligned with the observation
in [21, 36], we also see a consistent performance gain for
both MoNet and MoNet-2 by adding the normalization sub-
matrix square root (SSqrt) layer. Specifically, MoNet-2 out-
performs MoNet-2U by 0.6% to 1% with bilinear pooling
and 0.6% to 0.8% with TS. Whereas MoNet outperforms
MoNet-U by 3% to 4.9% with bilinear pooling and 0.8% to
0.9% with TS. This layer is more effective on MoNet than
on MoNet-2. The reason for this, is that mixing different or-
der moments may make the embedded feature numerically
unstable but a good normalization helps overcome this is-
sue. By adding the HM layer to incorporate 1st order mo-
ment information, MoNet can achieve better results consis-
tently when compared to MoNet-2, in all datasets with both
bilinear and compact pooling. Note that MoNet-U performs
worse than MoNet-2U, which actually illustrates the merit
of a proper normalization.

Comparison with different architectures: Consistent
with [21], matrix normalization improves the performance
by 1-2% on all three datasets. Our equivalent MoNet-
2 achieves slightly better classification accuracy (0.2%)
on CUB dataset but performs worse on Airplane and Car
datasets when compared with iBCNN. We believe that this
is due to the different approaches used to deal with rank de-
ficiency. In our implementation, the singular value is hard
thresholded as shown in Eq. 9, while iBCNN [21] dealt
with the rank deficiency by adding 1 to all the singular val-
ues, which is a relatively very small number compared to
the maximum singular value (10°). By adding the 1st or-
der moment information, G?DeNet outperforms iBCNN by
around 1%, on all three datasets. By re-writing the Gaus-
sian embedding with tensor product of the homogeneous
padded local features, our proposed MoNet can obtain sim-
ilar or slightly better classification accuracy when compar-

3Code is available at ht tps: //github.com/NEU-Gou/MoNet



Table 4. Experimental results for MoNet variants. Modifiers ‘2’ and "U’ indicate that only 2nd order moments are incorporated during
feature embedding, and that no normalization was used, respectively. The abbreviations for proposed layers are denoted as: SSqrt: sub-
matrix square root; HM: Homogeneous mapping. The best result in each column is marked in red.

New name | Missing layers CUB Airplane Cars
Bilinear TS | Bilinear TS | Bilinear TS
MoNet-2U HM, Ssqrt 85.0 85.0 86.1 86.1 89.6 89.5
MoNet-2 HM 86.0 85.7 86.7 86.7 90.5 90.3
MoNet-U Ssqrt 82.8 84.8 84.4 87.2 88.8 90.0
MoNet - 86.4 85.7 89.3 88.1 91.8 90.8

Table 5. Experimental results on fine-grained classification. Bilinear and TS represent fully bilinear pooling and Tensor Sketch compact
pooling respectively. The best performance in each column is marked in red.

CUB Airplane Car
Bilinear TS | Bilinear TS | Bilinear TS
BCNN [22, 9] 84.0 84.0 86.9 87.2 90.6 90.2
MoNet-2U 85.0 85.0 86.1 86.1 89.6 89.5
iBCNN [21] 85.8 - 88.5 - 92.1 -
MoNet-2 86.0 85.7 86.7 86.7 90.5 90.3
G?DeNet [36] 87.1 - 89.0 - 92.5 -
MoNet 86.4 85.7 89.3 88.1 91.8 90.8
Other higher KP [5] - 86.2 - 86.9 - 92.6
order methods HOHC [2] 85.3 88.3 91.7
State-of-the-art MA-CNN [38] 86.5 89.9 92.8

ing against G?DeNet. Specifically, the classification accu-
racy of MoNet is 0.3% higher on Airplane dataset, but 0.7%
lower on both CUB and Car datasets.

Comparison with fully bilinear pooling and compact
pooling: As shown in [9], compact pooling can achieve
similar performance compared to BCNN, but with only 4%
of the dimensionality. We also see a similar trend in MoNet-
2U and MoNet-2. The classification accuracy difference
between the bilinear pooling and compact pooling version
is less than 0.3% on all three datasets. However, the per-
formance gaps are relatively greater when we compare the
different pooling schemes on MoNet. Bilinear pooling im-
prove the classification accuracy by 0.7%, 1.2% and 1%
than compact pooling on CUB, Airplane and Car datasets,
respectively. However, with compact pooling, the dimen-
sionality of the final representation is 96% smaller. Al-
though the final fully bilinear pooled representation dimen-
sions of MoNet-2 and MoNet are roughly the same, MoNet
utilizes more different order moments, which requires more
count sketch projections to approximate it. Thus, when fix-
ing D = 10,000 for both MoNet-2 and MoNet, the per-
formance of MoNet with compact pooling degraded. How-
ever, MoNet TS still out-performs MoNet-2 TS by 1.4%
and 0.5% on the Airplane and Car datasets, respectively.

Comparison with other methods: [5] and [2] are two
other recent works that also take into account higher order
statistic information. Cui et al. [5] applied Tensor Sketch
repetitively to approximate up to 4th order explicit polyno-
mial kernel space in a compact way. They obtained better

results for CUB and Car datasets compared against other
compact pooling results, but notably worse (1.2%) on the
Airplane dataset. This may be due to two factors. First,
directly utilizing higher order moments without proper nor-
malization leads to numerically instabilities. Second, ap-
proximating higher order moments with limited number of
samples is essentially an ill-posed problem. Cai et al. [2]
only utilize higher order self-product terms but not the in-
teraction terms, which leads to worse performance in all
three datasets. Finally, the state-of-the-art MA-CNN [38]
achieves slightly better results on Airplane and Car datasets.

5. Conclusion

Bilinear pooling, as a recently proposed 2nd order mo-
ment pooling method, has been shown effective in sev-
eral vision tasks. iBCNN [21] improves the performance
with matrix square-root normalization and G2DeNet [36]
extends it by adding 1st order moment information. One
key limitation of these approaches is the high dimension of
the final representation. To resolve this, compact pooling
methods have been proposed to approximate the bilinear
pooling. However, two factors make using compact pool-
ing on iBCNN and G?DeNet non-trivial. Firstly, the Gaus-
sian embedding formation entangles the bilinear pooling.
Secondly, matrix normalization needs to be applied on the
bilinear pooled matrix.  In this paper, we reformulated
the Gaussian embedding using the empirical moment ma-
trix and decoupled the bilinear pooling step out. With the
help of a novel sub-matrix square-root layer, our proposed



network MoNet can take advantages of different order mo-
ments, matrix normalization as well as compact pooling.
Experiments on three widely used fine-grained classifica-
tion datasets demonstrate that MoNet can achieve similar
or better performance when comparing with G?DeNet and
retain comparable results with only 4% of the feature di-
mensions.
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