




been also explored. Gao et al. [9] bridged bilinear pool-

ing with a linear classifier with a second order polynomial

kernel by adopting the off-the-shelf kernel approximation

methods Random MacLaurin [15] and Tensor Sketch [28]

to pool the local features in a compact way. Cui [5] gener-

alized this approach to higher order polynomials with Ten-

sor Sketch. By combining with bilinear SVM, Kong et al.

[16] proposed to impose a low-rank constraint to reduce the

number of parameters. However, none of these approaches

can be easily integrated with matrix normalization because

of the absence of a bilinear pooled matrix.

Lasserre et al. [19] proposed to use the empirical mo-

ment matrix formed by explicit in-homogeneous polyno-

mial kernel basis for outlier detection. Sznaier et al. [31]

improved the performance for the case of data subspaces,

by working on the singular values directly. In [12], the em-

pirical moments matrix was applied as a feature embedding

method for the person re-identification problem and it was

shown that the Gaussian embedding [23] is a special case

when the moment matrix order equals to 1. However, both

of these works focus on a conventional pipeline and did not

bring moments to modern CNN architectures.

Ionescu et al. [13] introduced the theory and practice

of matrix back-propagation for training CNNs, which en-

able structured matrix operations in deep neural networks

training. Both [21] and [36] used it to derive the back-

propagation of the matrix square-root and matrix logarithm

for a symmetric matrix. Li et al. [20] applied a general-

ized p-th order matrix power normalization instead of the

square-root. However, in our case, since we want to apply

the matrix normalization directly on a non-square local fea-

ture matrix, we cannot plug-in the equation directly from

previous works.

3. MoNet Architecture

The overview of the proposed MoNet architecture is

shown in Fig. 1. For an input image I, the output of the

last convolution layer after the ReLU, X, consists of local

features xi, across spatial locations i = 1, 2, . . . , n. Then,

we introduce a homogeneous mapping (HM) layer to dis-

entangle the tensor product operator. After that, a novel

sub-matrix square-root (Ssqrt) layer is applied to directly

normalize the feature vector before the tensor product. Fi-

nally, a compact bilinear pooling layer pools all n features

across all spatial locations, followed by an element-wise

square-root regularization and `2 normalization before the

final fully-connected layer. Next, we will detail the design

of each block.

3.1. Homogeneous mapping layer

Since the global Gaussian embedding layer used in

G2DeNet entangles the tensor product operator, one can-

not directly incorporate compact bilinear pooling. With the

help of the proposed HM layer, we can re-write the Gaus-

sian embedding layer with a HM layer followed by a tensor

product, as explained next.

Assume X ∈ R
n×C , corresponding to n features with

dimension C and n > C, mean µ and covariance Σ. The

homogeneous mapping of X is obtained by padding X with

an extra dimension set to 1. For the simplicity of the fol-

lowing layers, instead of applying the conventional bilinear

pooling layer as in [22], we also divide the homogeneous

feature by the square-root of the number of samples. Then,

the forward equation of the homogeneous mapping layer is:

X̃ =
1√
n
[1|X] ∈ R

n×(C+1) (1)

The tensor product of X̃ can be written as

M = X̃T X̃ =

[

1 µ
µT 1

n
XTX

]

(2)

where µ = 1
n

∑n
1 X. Since 1

n
XTX = Σ + µTµ, Eq. 2

is the Gaussian embedding method used in G2DeNet [36].

One can also show that the conventional bilinear pooling

layer is equal to the tensor product of the in-homogeneous

feature matrix.

3.2. Sub­matrix square­root layer

Matrix normalization in iBCNN and G2DeNet requires

the computation of the singular value decomposition (SVD)

of the output of the tensor product, which prevents the direct

use of compact bilinear pooling. We will address this issue

by incorporating a novel layer, named sub-matrix square-

root (Ssqrt) layer, to perform the equivalent matrix normal-

ization before the tensor product. This choice is supported

by experimental results in [36, 21] showing that the ma-

trix square-root normalization is better than the matrix loga-

rithm normalization for performance and training stability.

3.2.1 Forward propagation

Recall that given the SVD of a SPD matrix, Q =
UQSQU

T
Q, the square root of Q is defined as

Q
1

2 = UQS
1

2

QU
T
Q (3)

where S
1

2

Q is computed by taking the square root of its diag-

onal elements.

Consider now the SVD of X̃ = USVT . Then, we have

M = X̃T X̃ = VSTUTUSVT (4)

and since UTU = I and STS is a square matrix:

M
1

2 = V(STS)
1

2VT (5)

3



Note that S ∈ R
n×(C+1), n > C + 1 and hence its square

root is not well defined. We introduce a helper matrix A to

keep all non-zero singular values in S as follows:

S = AS̃,A = [IC+1|0]T (6)

where S̃ ∈ R
(C+1)×(C+1) is a square diagonal matrix and

IC+1 is the (C +1)× (C +1) identity matrix. Substituting

Eq. (6) in Eq. (5), we have

M
1

2 = V(S̃ATAS̃)
1

2VT = VS̃
1

2 S̃
1

2VT (7)

since ATA = IC+1. To keep the same number of samples

for the input and output of this layer, we finally re-write

Eq. (5) in the following tensor product format:

M
1

2 = YTY (8)

where the output Y is defined as Y = AS̃
1

2VT , allowing

us to perform matrix normalization directly on the features

X̃.

Note that because in most modern CNNs, n cannot be

much greater than C and the features after ReLU tend to be

sparse, X̃ is usually rank deficient. Therefore, we only use

the non-zero singular values and singular vectors. Then, the

forward equation of the sub-matrix square-root layer can be

written as

Y = A:,1:eS̃
1

2

1:eV
T
:,1:e (9)

where e is the index of the smallest singular value greater

than ε 2.

3.2.2 Backward propagation

We will follow the matrix back propagation techniques pro-

posed by Ionescu et al. [13] to derive the equation of the

back propagation path for the sub-matrix square-root layer.

For a scalar loss L = f(Y), we assume ∂L
∂Y

is available

when we derive the back propagation. Let X̃ = USVT

and U ∈ R
n×n. We can form U using block decom-

position as U = [U1|U2] with U1 ∈ R
n×(C+1) and

U2 ∈ R
n×(n−C−1). The partial derivatives between a given

scalar loss L and X̃ are

∂L

∂X̃
=DVT +U(

∂L

∂S
−UTD)diagV

T+

2US(KT ◦
(

VT (
∂L

∂V
−VDTUS))

)

sym

VT

(10)

where ◦ represents element-wise product, (Q)sym
.
=

1
2 (Q

T +Q) and

D =

(

∂L

∂U

)

1

S̃−1 −U2

(

∂L

∂U

)T

2

U1S̃
−1 (11)

2We will omit the subscript in the following for a concise notation

Kij =

{

1
s2
i
−s2

j

i 6= j

0 i = j
(12)

From Eq. 9, we can compute the variation of Y as

dY =
1

2
AS̃−

1

2 dS̃VT +AS̃
1

2 dVT (13)

Based on the chain rule, the total variation can be written as

∂L

∂Y
: dY =

1

2

∂L

∂Y
: AS̃−

1

2 dS̃VT +
∂L

∂Y
: AS̃

1

2 dVT

(14)

where : denotes the inner-product. After re-arrangement

with the rotation properties of inner-product, we re-write

the above equation as

∂L

∂Y
: dY =

1

2
S̃−

1

2AT ∂L

∂Y
V : dS̃+ S̃

1

2AT ∂L

∂Y
: dVT

(15)

Therefore, we have

∂L

∂S
= A

∂L

∂S̃
=

1

2
AS̃−

1

2AT ∂L

∂Y
V (16)

∂L

∂V
= (

∂L

∂VT
)T = (

∂L

∂Y
)TAS̃

1

2 (17)

Finally, substituting Eq. 16 and Eq. 17 into Eq. 10 and con-

sidering ∂L
∂U

= 0, we have

∂L

∂X̃
=U

(

1

2
AS̃−

1

2AT ∂L

∂Y
V+

2S

[

KT ◦
(

VT

(

∂L

∂Y

)T

AS̃
1

2

)]

sym



VT

(18)

3.3. Compact pooling

Following the work in [9, 8], we adopt the Tensor Sketch

(TS) method to approximate bilinear pooling due to it bet-

ter performance and lower computational and memory cost.

Building up on count sketch and FFT, one can generate a

tensor sketch function s.t. 〈TS1(x), TS2(y)〉 ≈ 〈x, y〉2,

using Algorithm 1. The back-propagation of a TS layer is

given by [9].

As shown in Table 2, with the techniques mentioned

above, the proposed MoNet is capable to solve the prob-

lem with much less computation and memory complexity

than the other BCNN based algorithms.

4. Experiments

Aligned with other bilinear CNN based papers, we also

evaluate the proposed MoNet with three widely used fine-

grained classification datasets. The experimental setups

and the algorithm implementation are described in detail in

Sec. 4.1. Then, in Sec. 4.2, the experimental results on fine-

grained classification are presented and analyzed.

4



Table 2. Dimension, computation and memory information for the networks we compared in this paper. H,W and C represent the height,

width and number of feature channels for the output of the final convolution layer, respectively. k and D denote the number of classes and

projected dimensions for Tensor Sketch, respectively. Numbers inside brackets indicate the typical value when the corresponding network

was evaluated with VGG-16 model [30] on a classification task with 1,000 classes. In this case, H = W = 13, C = 512, k = 1, 000, D =

10, 000 and all data was stored with single precision.
BCNN [22] iBCNN [21] iBCNN TS G2DeNet [36] MoNet MoNet TS

Dimension C2 [262K] C2 [262K] D [10K] (C+1)2 [263K] (C+1)2 [263k] D [10k]

Parameter Memory 0 0 2C 0 0 2C

Computation O(HWC2) O(HWC2) O(HW (C +D logD)) O(HWC2) O(HWC2) O(HW (C +D logD))
Classifier Memory kC2 [1000MB] kC2 [1000MB] kD [40MB] k(C + 1)2 [1004MB] k(C + 1)2 [1004MB] kD [40MB]

Algorithm 1 Tensor Sketch approximation pooling

Require: x, projected dimension D
1: Generate randomly selected (but fixed) two pairs of

hash functions ht ∈ R
D and st ∈ R

D where

t = 1, 2 and ht(i), st(i) are uniformly drawn from

{1, 2, · · · , D} and {−1,+1}, respectively.

2: Define count sketch function Ψ(x, ht, st) =
[ψ1(x), ψ2(x), · · · , ψD(x)]T where ψj(x) =
∑

i:ht(i)=j st(i)xi
3: Define TS(x) = FFT−1(FFT (Ψ(x, h1, s1) ◦

(Ψ(x, h2, s2)))) where ◦ denotes element-wise multi-

plication.

Table 3. Basic statistics of the datasets used for evaluation
Datasets # training # testing # classes

CUB [35] 5,994 5,794 200

Aircraft [25] 6,667 3,333 100

Cars [17] 8,144 8,041 196

Figure 2. Sample images from the fine-grained classification

datasets. From left to right, each column corresponds to CUB,

Aircraft and Cars, respectively.

4.1. Experimental setup

We evaluated MoNet on three widely used fine-grained

classification datasets. Different from general object recog-

nition tasks, fine-grained classification usually tries to dis-

tinguish objects at the sub-category level, such as different

makes of cars or different species of birds. The main chal-

lenge of this task is the relatively large inter-class and rela-

tively small intra-class variations.

In all experiments, the 13 convolutional layers of VGG-

16 [30] are used as the local feature extractor, and their out-

puts are used as local appearance representations. These 13

convolution layers are trained with ImageNet [7] and fine

tuned in our experiments with three fine-grained classifica-

tion datasets.

4.1.1 Datasets

Caltech-UCSD birds (CUB) [35] contains 200 species,

mostly north-American, of birds. Being consistent with

other works, we also use the 2011 extension with doubled

number samples.

FGVC-Aircraft Benchmark (Aircraft) [25] is a bench-

mark fine-grained classification dataset with different air-

crafts with various models and manufacturers.

Stanford cars (Cars) [17] contains images of different

classes of cars at the level of make, model and year.

We use the provided train/test splits for all three datasets.

Detailed information is given in Table 3 and Fig. 2 shows

sample images.

4.1.2 Different pooling methods

Bilinear pooling (BCNN): The VGG-16 based BCNN [22]

is utilized as the baseline pooling method, which applies

the tensor product on the output of the conv5 3 layer with

ReLU activation. The dimension of the final representation

is 512×512 ≈ 262K and the number of the linear classifier

parameters is k × 262K, where k is the number of classes.

To be fair, the latest results from the authors’ project page

[1] are compared.

Improved bilinear pooling (iBCNN): Lin et al. [21]

improved the original BCNN by adding the matrix power

normalization after the bilinear pooling layer. We compare

the results reported in [21] with VGG-16 as the back-bone

network.

Global Gaussian distribution embedding (G2DeNet):

Instead of fully bilinear pooling, G2DeNet pools the lo-

cal features with a global Gaussian distribution embedding

method, followed by a matrix square-root normalization.

5



Since it includes the first order moment information, the di-

mension of the final feature is slightly greater than BCNN

and iBCNN. The experiment results with “w/o BBox” con-

figuration in [36] are compared in this paper.

Proposed moment embedding network (MoNet) and

its variants: We implemented the proposed MoNet archi-

tecture with structure as shown in Fig. 1 and fine-tuned the

whole network in an end-to-end fashion. When using bi-

linear pooling, the feature dimensionality, computation and

memory complexity are the same as G2DeNet. To evaluate

the effectiveness of the proposed layers HM and Ssqrt, we

also tested MoNet variants. Depending on the left-out layer,

we can have four different variants in total. Modifiers ‘2’

and ’U’ indicate that only 2nd order moments are incorpo-

rated during feature embedding, and that no normalization

was used, respectively.

Tensor Sketch compact pooling (TS): When building

the network with compact pooling, the TS layer [9] was

added after the sub-matrix square-root layer. The projec-

tion dimension D was selected empirically for MoNet and

its variants.

4.1.3 Implementation details

Using a large enough number of samples is important to

estimate stable and meaningful statistical moment informa-

tion. The input images are resized to 448 × 448 in all the

experiments, which produces a 28 × 28 × 512 local fea-

ture matrix after conv5 3 for each image. Following com-

mon practice [36, 5], we first resize the image with a fixed

aspect-ratio, such as the shorter edge reaches to 448 and

then utilized a center crop to resize the image to 448× 448.

During training, random horizontal flipping was applied as

data augmentation. Different from [21] with VGG-M, no

augmentation is applied during testing.

To avoid rank deficiency, the singular value threshold σ
was set to 10−5 for both forward and backward propaga-

tion, which results in 10−10 for the singular value thresh-

old of the tensor product matrix. The projected dimension

in Tensor Sketch was fixed to D = 104, which satisfies

C < D � C2. For a smooth and stable training, we ap-

plied gradient clipping[26] to chop all gradients in the range

[−1, 1].

As suggested by [21, 36], all pooling methods were

followed by an element-wise sign kept squre-root ys =
sign(y)

√
y and `2 normalization yn = ys/||ys||. For the

sake of a smooth training, the element-wise square-root is

also applied on local appearence features [36].

The weights of the VGG-16 convolutional layers are

pretrained on ImageNet classification dataset. We first

warm-started by fine-tuning the last linear classifier for 300

epochs. Then, we fine-tuned the whole network end-to-end

with the learning rate as 0.001 and batch size as 16. The

momentum was set to 0.9 and the weight decay was set to

0.0005. Most experiments converged to a local optimum

after 50 epochs.

The proposed MoNet was implemented with MatCon-

vNet [34] and Matlab 2017a3. Because of the numerical

instability of SVDs, as suggested by Ionescu et al. [13], the

sub-matrix square-root layer was implemented on CPU with

double precision. The whole network was fine-tuned on a

Ubuntu PC with 64GB RAM and Nvidia GTX 1080 Ti.

4.2. Experimental results

In Table 4 and Table 5, the classification accuracy for

each network is presented in a row. Bilinear and TS denote

fully bilinear pooling and tensor sketch compact pooling,

respectively.

Comparison with different variants: The variants

MoNet-2U, MoNet-2, and MoNet, when using bilinear

pooling, are mathematically equivalent to BCNN, iBCNN,

and G2DeNet, respectively. Aligned with the observation

in [21, 36], we also see a consistent performance gain for

both MoNet and MoNet-2 by adding the normalization sub-

matrix square root (SSqrt) layer. Specifically, MoNet-2 out-

performs MoNet-2U by 0.6% to 1% with bilinear pooling

and 0.6% to 0.8% with TS. Whereas MoNet outperforms

MoNet-U by 3% to 4.9% with bilinear pooling and 0.8% to

0.9% with TS. This layer is more effective on MoNet than

on MoNet-2. The reason for this, is that mixing different or-

der moments may make the embedded feature numerically

unstable but a good normalization helps overcome this is-

sue. By adding the HM layer to incorporate 1st order mo-

ment information, MoNet can achieve better results consis-

tently when compared to MoNet-2, in all datasets with both

bilinear and compact pooling. Note that MoNet-U performs

worse than MoNet-2U, which actually illustrates the merit

of a proper normalization.

Comparison with different architectures: Consistent

with [21], matrix normalization improves the performance

by 1-2% on all three datasets. Our equivalent MoNet-

2 achieves slightly better classification accuracy (0.2%)

on CUB dataset but performs worse on Airplane and Car

datasets when compared with iBCNN. We believe that this

is due to the different approaches used to deal with rank de-

ficiency. In our implementation, the singular value is hard

thresholded as shown in Eq. 9, while iBCNN [21] dealt

with the rank deficiency by adding 1 to all the singular val-

ues, which is a relatively very small number compared to

the maximum singular value (106). By adding the 1st or-

der moment information, G2DeNet outperforms iBCNN by

around 1%, on all three datasets. By re-writing the Gaus-

sian embedding with tensor product of the homogeneous

padded local features, our proposed MoNet can obtain sim-

ilar or slightly better classification accuracy when compar-

3Code is available at https://github.com/NEU-Gou/MoNet

6



Table 4. Experimental results for MoNet variants. Modifiers ‘2’ and ’U’ indicate that only 2nd order moments are incorporated during

feature embedding, and that no normalization was used, respectively. The abbreviations for proposed layers are denoted as: SSqrt: sub-

matrix square root; HM: Homogeneous mapping. The best result in each column is marked in red.

New name Missing layers CUB Airplane Cars

Bilinear TS Bilinear TS Bilinear TS

MoNet-2U HM, Ssqrt 85.0 85.0 86.1 86.1 89.6 89.5

MoNet-2 HM 86.0 85.7 86.7 86.7 90.5 90.3

MoNet-U Ssqrt 82.8 84.8 84.4 87.2 88.8 90.0

MoNet - 86.4 85.7 89.3 88.1 91.8 90.8

Table 5. Experimental results on fine-grained classification. Bilinear and TS represent fully bilinear pooling and Tensor Sketch compact

pooling respectively. The best performance in each column is marked in red.

CUB Airplane Car

Bilinear TS Bilinear TS Bilinear TS

BCNN [22, 9] 84.0 84.0 86.9 87.2 90.6 90.2

MoNet-2U 85.0 85.0 86.1 86.1 89.6 89.5

iBCNN [21] 85.8 - 88.5 - 92.1 -

MoNet-2 86.0 85.7 86.7 86.7 90.5 90.3

G2DeNet [36] 87.1 - 89.0 - 92.5 -

MoNet 86.4 85.7 89.3 88.1 91.8 90.8

Other higher KP [5] - 86.2 - 86.9 - 92.6

order methods HOHC [2] 85.3 88.3 91.7

State-of-the-art MA-CNN [38] 86.5 89.9 92.8

ing against G2DeNet. Specifically, the classification accu-

racy of MoNet is 0.3% higher on Airplane dataset, but 0.7%

lower on both CUB and Car datasets.

Comparison with fully bilinear pooling and compact

pooling: As shown in [9], compact pooling can achieve

similar performance compared to BCNN, but with only 4%

of the dimensionality. We also see a similar trend in MoNet-

2U and MoNet-2. The classification accuracy difference

between the bilinear pooling and compact pooling version

is less than 0.3% on all three datasets. However, the per-

formance gaps are relatively greater when we compare the

different pooling schemes on MoNet. Bilinear pooling im-

prove the classification accuracy by 0.7%, 1.2% and 1%

than compact pooling on CUB, Airplane and Car datasets,

respectively. However, with compact pooling, the dimen-

sionality of the final representation is 96% smaller. Al-

though the final fully bilinear pooled representation dimen-

sions of MoNet-2 and MoNet are roughly the same, MoNet

utilizes more different order moments, which requires more

count sketch projections to approximate it. Thus, when fix-

ing D = 10, 000 for both MoNet-2 and MoNet, the per-

formance of MoNet with compact pooling degraded. How-

ever, MoNet TS still out-performs MoNet-2 TS by 1.4%

and 0.5% on the Airplane and Car datasets, respectively.

Comparison with other methods: [5] and [2] are two

other recent works that also take into account higher order

statistic information. Cui et al. [5] applied Tensor Sketch

repetitively to approximate up to 4th order explicit polyno-

mial kernel space in a compact way. They obtained better

results for CUB and Car datasets compared against other

compact pooling results, but notably worse (1.2%) on the

Airplane dataset. This may be due to two factors. First,

directly utilizing higher order moments without proper nor-

malization leads to numerically instabilities. Second, ap-

proximating higher order moments with limited number of

samples is essentially an ill-posed problem. Cai et al. [2]

only utilize higher order self-product terms but not the in-

teraction terms, which leads to worse performance in all

three datasets. Finally, the state-of-the-art MA-CNN [38]

achieves slightly better results on Airplane and Car datasets.

5. Conclusion

Bilinear pooling, as a recently proposed 2nd order mo-

ment pooling method, has been shown effective in sev-

eral vision tasks. iBCNN [21] improves the performance

with matrix square-root normalization and G2DeNet [36]

extends it by adding 1st order moment information. One

key limitation of these approaches is the high dimension of

the final representation. To resolve this, compact pooling

methods have been proposed to approximate the bilinear

pooling. However, two factors make using compact pool-

ing on iBCNN and G2DeNet non-trivial. Firstly, the Gaus-

sian embedding formation entangles the bilinear pooling.

Secondly, matrix normalization needs to be applied on the

bilinear pooled matrix. In this paper, we reformulated

the Gaussian embedding using the empirical moment ma-

trix and decoupled the bilinear pooling step out. With the

help of a novel sub-matrix square-root layer, our proposed

7



network MoNet can take advantages of different order mo-

ments, matrix normalization as well as compact pooling.

Experiments on three widely used fine-grained classifica-

tion datasets demonstrate that MoNet can achieve similar

or better performance when comparing with G2DeNet and

retain comparable results with only 4% of the feature di-

mensions.

References

[1] Bilinear CNNs project. http://vis-www.cs.umass.

edu/bcnn/. Accessed: 2018-03-27.

[2] S. Cai, W. Zuo, and L. Zhang. Higher-order integration of

hierarchical convolutional activations for fine-grained visual

categorization. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 511–520,

2017.

[3] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-

mantic segmentation with second-order pooling. Computer

Vision–ECCV 2012, pages 430–443, 2012.

[4] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for

texture recognition and segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3828–3836, 2015.

[5] Y. Cui, F. Zhou, J. Wang, X. Liu, Y. Lin, and S. Belongie.

Kernel pooling for convolutional neural networks. In Com-

puter Vision and Pattern Recognition (CVPR), 2017.

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In Computer Vision and Pattern Recogni-

tion, 2005. CVPR 2005. IEEE Computer Society Conference

on, volume 1, pages 886–893. IEEE, 2005.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[8] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell,

and M. Rohrbach. Multimodal compact bilinear pooling

for visual question answering and visual grounding. arXiv

preprint arXiv:1606.01847, 2016.

[9] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact

bilinear pooling. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 317–326,

2016.

[10] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm

of artistic style. arXiv preprint arXiv:1508.06576, 2015.

[11] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale

orderless pooling of deep convolutional activation features.

In European conference on computer vision, pages 392–407.

Springer, 2014.

[12] M. Gou, O. Camps, and M. Sznaier. mom: Mean of moments

feature for person re-identification. In The IEEE Interna-

tional Conference on Computer Vision Workshop (ICCVW),

2017.

[13] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix back-

propagation for deep networks with structured layers. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 2965–2973, 2015.

[14] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregat-

ing local descriptors into a compact image representation.

In Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on, pages 3304–3311. IEEE, 2010.

[15] P. Kar and H. Karnick. Random feature maps for dot product

kernels. In International conference on artificial intelligence

and statistics, pages 583–591, 2012.

[16] S. Kong and C. Fowlkes. Low-rank bilinear pooling for fine-

grained classification. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), July 2017.

[17] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object rep-

resentations for fine-grained categorization. In Proceedings

of the IEEE International Conference on Computer Vision

Workshops, pages 554–561, 2013.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[19] J.-B. Lasserre and E. Pauwels. Sorting out typicality with the

inverse moment matrix sos polynomial. In Neural Informa-

tion Processing Systems (NIPS 2016), 2016.

[20] P. Li, J. Xie, Q. Wang, and W. Zuo. Is second-order informa-

tion helpful for large-scale visual recognition? In The IEEE

International Conference on Computer Vision (ICCV), Oct

2017.

[21] T.-Y. Lin and S. Maji. Improved bilinear pooling with cnns.

In BMVC, 2017.

[22] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear cnn mod-

els for fine-grained visual recognition. In The IEEE Inter-

national Conference on Computer Vision (ICCV), December

2015.

[23] M. Lovrić, M. Min-Oo, and E. A. Ruh. Multivariate normal

distributions parametrized as a riemannian symmetric space.

Journal of Multivariate Analysis, 74(1):36–48, 2000.

[24] D. G. Lowe. Object recognition from local scale-invariant

features. In Computer vision, 1999. The proceedings of the

seventh IEEE international conference on, volume 2, pages

1150–1157. Ieee, 1999.

[25] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.

Fine-grained visual classification of aircraft. Technical re-

port, 2013.

[26] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of

training recurrent neural networks. In International Confer-

ence on Machine Learning, pages 1310–1318, 2013.

[27] F. Perronnin, J. Sánchez, and T. Mensink. Improving the

fisher kernel for large-scale image classification. Computer

Vision–ECCV 2010, pages 143–156, 2010.

[28] N. Pham and R. Pagh. Fast and scalable polynomial kernels

via explicit feature maps. In Proceedings of the 19th ACM

SIGKDD international conference on Knowledge discovery

and data mining, pages 239–247. ACM, 2013.

[29] A. RoyChowdhury, T.-Y. Lin, S. Maji, and E. Learned-

Miller. Face identification with bilinear cnns. arXiv preprint

arXiv: 1506.01342, 2015.

[30] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

8



[31] M. Sznaier and O. Camps. Sos-rsc: A sum-of-squares poly-

nomial approach to robustifying subspace clustering algo-

rithms. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018.

[32] J. B. Tenenbaum and W. T. Freeman. Separating style and

content. In Advances in neural information processing sys-

tems, pages 662–668, 1997.

[33] O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via

classification on riemannian manifolds. IEEE transactions

on pattern analysis and machine intelligence, 30(10):1713–

1727, 2008.

[34] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural

networks for matlab. In Proceeding of the ACM Int. Conf. on

Multimedia, 2015.

[35] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical re-

port, 2011.

[36] Q. Wang, P. Li, and L. Zhang. G2denet: Global gaussian

distribution embedding network and its application to visual

recognition. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), July 2017.

[37] Z. Yu, J. Yu, J. Fan, and D. Tao. Multi-modal factorized bi-

linear pooling with co-attention learning for visual question

answering. arXiv preprint arXiv:1708.01471, 2017.

[38] H. Zheng, J. Fu, T. Mei, and J. Luo. Learning multi-attention

convolutional neural network for fine-grained image recog-

nition. In Int. Conf. on Computer Vision, 2017.

9


