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Efficient Video Encoding for Automatic Video Analysis

in Distributed Wireless Surveillance Systems

LINGCHAO KONG and RUI DAI, University of Cincinnati

In many distributed wireless surveillance applications, compressed videos are used for performing automatic

video analysis tasks. The accuracy of object detection, which is essential for various video analysis tasks, can

be reduced due to video quality degradation caused by lossy compression. This article introduces a video

encoding framework with the objective of boosting the accuracy of object detection for wireless surveillance

applications. The proposed video encoding framework is based on systematic investigation of the effects of

lossy compression on object detection. It has been found that current standardized video encoding schemes

cause temporal domain fluctuation for encoded blocks in stable background areas and spatial texture degra-

dation for encoded blocks in dynamic foreground areas of a raw video, both of which degrade the accuracy

of object detection. Two measures, the sum-of-absolute frame difference (SFD) and the degradation of tex-

ture in 2D transform domain (TXD), are introduced to depict the temporal domain fluctuation and the spatial

texture degradation in an encoded video, respectively. The proposed encoding framework is designed to sup-

press unnecessary temporal fluctuation in stable background areas and preserve spatial texture in dynamic

foreground areas based on the two measures, and it introduces new mode decision strategies for both intra-

and interframes to improve the accuracy of object detection while maintaining an acceptable rate distortion

performance. Experimental results show that, compared with traditional encoding schemes, the proposed

scheme improves the performance of object detection and results in lower bit rates and significantly reduced

complexity with comparable quality in terms of PSNR and SSIM.
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1 INTRODUCTION

Wireless embedded camera sensors are playing crucial roles in various distributed surveillance

applications such as border patrol, traffic monitoring, and environmental monitoring. In many
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Fig. 1. Typical architecture of distributed wireless surveillance systems.

Fig. 2. Schematic diagram of encoding distortion calculation.

distributed wireless surveillance systems [35], camera sensors report their video observations to a

central base station through wireless communication; the typical architecture is shown in Figure 1.

Due to the low computing power and limited energy and bandwidth on embedded cameras, raw

videos acquired by camera sensors are usually preprocessed, encoded, and compressed before be-

ing delivered to the base station [40]. A powerful central server or a data center at the base station

can fully utilize its powerful computing capability and perform data fusion from multiple cameras

to obtain a much better understanding of the surveillance videos than individual cameras [13, 31].

A typical automatic surveillance system includes the following stages: object detection, classifi-

cation of objects, tracking, understanding and description of behaviors, and final human identifi-

cation [13]. Object detection is the first and the most essential step of the entire procedure, because

detecting objects provides a focus of attention for later processes such as tracking and behavior

analysis. However, the inevitable degradation of video quality caused by lossy compression at em-

bedded cameras has a significant impact on object detection [16, 20]. Therefore, video encoders

for surveillance systems should be designed to improve the performance of object detection.

The block-based hybrid approach (intra-/interpicture prediction and 2D transform coding) is

employed in all modern video compression standards such as H.264/AVC [38] and the latest HEVC.

As shown in Figure 2, this approach measures the encoding distortion by comparing the encoded

video with the original video (A direction) using the metric SSD, namely, Sum of Squared Differ-

ences, which is obtained by the sum of squared differences of the intensity between the encoded

video and the original video in the macroblock (MB) unit. This strategy can result in two prob-

lems: (1) temporal domain fluctuation in the encoded video (B direction in Figure 2) when colocated

regions of consecutive frames (e.g., ft−1 to ft ) are not consistently encoded, especially when in-

traframes are periodically inserted at low and medium bitrates, and (2) spatial texture degradation,

since SSD could not effectively reflect the degradation status of spatial texture. In our preliminary
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work [19], we have studied the effects of lossy compression on object detection in depth, and we

have found that the temporal domain fluctuation in stable background areas and the spatial texture

degradation in dynamic foreground areas degrade the accuracy of object detection in a compressed

video.

In this article, we propose an efficient video encoding framework for distributedwireless surveil-

lance systems with the objective to improve the performance of object detection on compressed

videos. The proposed framework uses the sum-of-absolute frame difference (SFD) to depict the

temporal domain fluctuation, and the degradation of texture (TXD) to quantify the degree of spa-

tial texture degradation in an encoded video. Both measures have been demonstrated to be highly

correlated with the accuracy of object detection in our previous work [19]. For the encoding of

background areas in a raw video, we introduce a Temporal-Fluctuation-Reduced video Encoding

scheme (TFRE) based on the SFD, and for the encoding of dynamic foreground areas, we introduce

a Spatial-Texture-Preserved video Encoding scheme (STPE) based on the TXD in the 2D transform

domain (TXDSIT ). Both schemes are standard compliant, in which new mode decision strategies

are incorporated in the standardized encoding procedure to optimize the performance of object

detection. Our preliminary results on the TFRE scheme have been presented in our recent work

[17, 18]. Unique contributions of this article include (1) the STPE scheme is designed based on a

new spatial textual descriptor in the 2D transform domain, which is presented for the first time

in this article; (2) the STPE scheme is integrated with the TFRE scheme to a standard-compliant

video encoding framework; (3) in addition to the original dataset in our preliminary work, a new

dataset is introduced to evaluate the proposed algorithms; and (4) using both the original dataset

and the new dataset, the performance of the proposed algorithms is thoroughly evaluated in terms

of computational complexity, pixel-level detection accuracy, and object-level detection accuracy.

The rest of this article is organized as follows. In Section 2, we review the related video encoding

algorithms in the literature. In Section 3, we investigate systematically the impact of lossy com-

pression on object detection. Based on these findings, we propose the efficient standard-compliant

video encoding framework in Section 4. In Section 5, the performance of the proposed framework

is evaluated. Finally, we present concluding remarks in Section 6.

2 RELATEDWORK

There exist several encoding algorithms especially designed for improving the performance of

object detection. In [1], regions of individual frames containing high-frequency spatial features,

corners, and edges, which are detected by FAST and Sobel detectors, are preserved while other

regions are smoothed in the encoding process. For efficient video processing and analysis in the

compressed domain, a coding method is proposed that optimizes the accuracy of motion informa-

tion embedded in a code stream based on the affine motion model [28]. In [22], two typical usages

of task-based video, license plate recognition and medical diagnosis, are studied, and a task-based

video quality optimization approach is proposed, which is driven by object recognition rates dur-

ing the encoding process. Amodel of human detection accuracy based on the object area and video

compression ratio is established in [5], and based on this model, an appropriate amount of bitrate

is allocated to each moving camera in mobile surveillance networks. Although these existing en-

coding algorithms could improve the performance of object detection, they have not addressed

the problem of temporal fluctuation in background areas, which can reduce the accuracy of object

detection.

On the other hand, the problem of temporal fluctuation has been investigated with the objective

to improve the perceptual quality of compressed videos. The temporal fluctuation perceived by

humans is defined as flicker, which usually refers to frequent luminance or chrominance perceptual

changes that do not appear in uncompressed raw videos [15]. A temporal low-pass filtering scheme
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Fig. 3. Snapshots of video sequences.

is proposed that smooths the luminance changes on a block-by-block basis in [15]. A two-pass

coding scheme is proposed in [39], which involves a first pass of simplified P-frame coding to

derive a no-flicker reference of the current frame, and a second pass of actual I-frame coding with

small QPs for closely approaching the no-flicker reference. A modified distortion measure that

considers the distortions in both A and B directions in Figure 2 to reduce flicker is applied during

the intraprediction mode rate distortion optimized selection process in [6]. For the flicker artifact

in HEVC, a region-classification-based rate control for Coding Tree Units in I-frames is proposed

to improve the reconstructed quality of I-frames to suppress flicker in [36]. Different from these

methods that are designed to optimize human visual perception, our proposed work addresses the

temporal fluctuation problem to improve the performance of object detection. It is worthwhile to

address this problem since the human vision system and the computer vision system may have

different responses to an encoded video.

The conservation of spatial texture has been studied in several video encoding solutions. A

region-based rate control scheme for better subjective quality is proposed in [12], in which each

frame is first divided into complex textural regions, flat regions, andmoving regions, based on their

interframe rate distortion behaviors. Then, the regions containing complex textures are treated as

one basic unit for rate control. In [41], a perspective motion model is employed to warp static tex-

tures and utilize texture synthesis to encode dynamic textures, which results in bitrate savings at

the same video quality. For facilitating visual retrieval, textural features in spatial domains, such

as gradient-based features like SIFT and SURF, are better preserved by designing specific rate con-

trol strategies in [4]. An HEVC framework of jointly compressing the visual feature descriptors

and video content is proposed for visual retrieval in [42], in which the high-efficiency coding is

achieved by exploiting the interactions between video features and visual content. While the pur-

poses of these methods are to improve either objective and subjective quality or the performance

of visual retrieval, our proposed work utilizes the relationship between spatial texture and the

2D transform encoding to preserve spatial texture for the better performance of automatic video

analysis.

3 THE IMPACT OF LOSSY COMPRESSION ON OBJECT DETECTION

We constructed a distorted video database to study the impact of lossy compression on the perfor-

mance of object detection [19]. Eight video sequences with different spatial and temporal details

were chosen. The snapshots of these videos are shown in Figure 3. Among them, container,GR, and
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GRHD are typical test videos for trafficmonitoring; hall, horizontal, and overlook are indoor scenes;

and people and vehicle are outdoor scenes. The open-source H.264/AVC encoder x264 [25] was used

to compress the raw videos. The one-pass constant QP mode was applied in the x264 encoder, and

the length of GOP was set to 20 with the IPPP structure. Each raw video was compressed using 19

different QPs ranging from 22 to 40, which resulted in a total number of 152 compressed videos.

Object detection algorithms can be classified into twomain groups: optical flow and background

subtraction [13, 37]. Background-subtraction-based object detection algorithms attract the most

attention due to their high accuracy and moderate complexity. As suggested in [32], background

subtraction algorithms can be summarized into several categories based on their principles. Three

algorithms from different categories were selected to be executed on the compressed videos: the

Gaussian Mixture Model (GMM) algorithm from the statistical category, the algorithm that com-

bines statistical background estimation and per-pixel Bayesian segmentation (referred to as the

GMG algorithm) from the nonparametric category, and the Adaptive Background Learning (ABL)

algorithm from the basic category.

One is unlikely to have prior knowledge on what object detection algorithm will be used by a

certain surveillance application. Therefore, it is hard to estimate the absolute accuracy of object

detection at the encoder side. We propose to estimate the relative performance of object detection

on compressed videos in comparison to uncompressed raw videos. Object detection results from

the raw videos are regarded as Ground Truth (GT), and results from the compressed videos are

Algorithm Results (AR). Recall and Precision are common metrics to evaluate the performance of

object detection [2]. Recall denotes the percentage of correctly detected foreground pixels in the

total foreground pixels in GT, and Precision denotes the ratio of correctly detected foreground

pixels to the total number of pixels detected in AR, which are given by

Recall =
TP

TP + FN

Precision =
TP

TP + FP
,

(1)

where TP, FN, and FP stand for the amount of true-positive pixels, false-negative pixels, and false-

positive pixels, respectively. Since Recall and Precision selectively assess the level of missing TP and

mistaking TP, it is hard to evaluate the performance of algorithms using one of these metrics alone.

Therefore, the overall performance of detection algorithms could be measured by their harmonic

mean F1 [2], which is given by

F1 = 2 ·
Recall · Precision

Recall + Precision
. (2)

Based on the definition of Recall and Precision, the accuracy of object detection is related to

TP, FN, and FP, and the union of TP and FN is the ground truth, a constant value if given the

raw video and the detection algorithm. Therefore, it is sufficient to characterize the relative object

detection performance of a compressed video by estimating the average values of FP and FN over

different detection algorithms. To enable such estimation, in the following analysis, we consider

the scenario that a coarse-grained classification of foreground and background MBs can be done

on the encoder side. A simple frame differencing method was applied before encoding to label

coarse-grained foreground and background MBs in our distorted video database.

Unlike human beings who can easily extract and focus on a moving object from a blurred back-

ground, the performance of computer vision algorithms can be affected by the quality of the back-

ground. The background should be stable in the temporal domain to facilitate object detection;

however, the procedure of video coding might introduce temporal fluctuations of the background
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Fig. 4. The trends of FP versus SFD and FN versus TXD.

that can cause FP. We conducted statistical analysis on the relationship between temporal fluctu-

ations and FP [19]. To describe the degree of temporal fluctuation in stable background areas, we

have introduced SFD, the Sum-of-absolute Frame Difference in MB unit between the current frame

and the previous frame, which is given by

SFD =

i, j=16∑

i, j=1

|mt (i, j ) −mt−1 (i, j ) |, (3)

wheremt (i, j ) is the reconstructed pixel value at location (i, j ) in an MB of the current frame and

mt−1 (i, j ) is the reconstructed pixel value in the corresponding MB of the previous frame.

To understand how SFD is related to FP, we applied three different object detection algorithms

on a large number of videos that have different content characteristics and were compressed under

different quantization steps [19]. We collected SFD and FP samples from stable background areas

in all the encoded videos. The relationships between FP and SFD for the three detection algorithms

are similar, and the averages for the three algorithms are shown in Figure 4(a). From the figure,

we can find that FP grows when SFD increases, and higher compression (larger QP) can result in

higher FP levels, indicating that FP is closely associated with SFD.

Edge and texture are the key elements for object detection. If there is no clear boundary between

the foreground and the background, it is difficult to detect an object accurately. After comparing

algorithm results with ground truth in our entire dataset, we find that foreground areas with large

texture deterioration are highly likely to be detected as FN. Based on this phenomenon, we in-

troduce TXD [19], the absolute difference of texture in MB unit between the encoded frame and the

original frame, to describe texture degradation:

TXD =

�
�
�
�
�
�
�

i, j=16∑

i, j=1

дt (i, j ) −

i, j=16∑

i, j=1

Gt (i, j )

�
�
�
�
�
�
�

, (4)

where
∑i, j=16

i, j=1 дt (i, j ) is the texture information in an MB of the encoded frame and
∑i, j=16

i, j=1 Gt (i, j )

is the texture information in the corresponding MB of the original frame.

To obtain texture information, we have applied a simple texture analysis method that uses the

range value of the 3-by-3 neighborhood around the corresponding pixel to represent the pixel’s

texture [14]. Values of TXD and FN were obtained for each foreground MB in our entire dataset.

Similar to FP versus SFD, the average of the three algorithms is shown in Figure 4(b), in which
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Fig. 5. Flow chart of proposed video encoding framework.

FN increases when TXD grows, and the curve looks like a quadratic function. When QP becomes

larger, the curve’s starting point is higher, and FN grows slower. In a small QP mode (high bit rate),

the encoded video has less distortion, the overall level of FN is low, and a little texture degradation

would cause a relatively large increase of FN,whereas in a largeQPmode (low bit rate), the encoded

video has higher distortion, the overall degree of FN is high, and the growth ratio of FN is slow.

4 PROPOSED VIDEO ENCODING FRAMEWORK

To obtain better performance of object detection on compressed videos, we propose an efficient

video encoding framework for distributed wireless surveillance systems. This framework includes

a Temporal-Fluctuation-Reduced video Encoding scheme (TFRE) for the encoding of stable back-

ground areas and a Spatial-Texture-Preserved video Encoding scheme (STPE) for the encoding of

dynamic foreground areas. Both schemes are designed to comply with the hybrid block-based

video encoding architecture, in which newmode decision and Rate Distortion Optimization (RDO)

strategies are applied for intra- and interframes. The current implementation of this framework

is based on the H.264/AVC standard. We consider the case that a coarse-grained classification of

dynamic foreground and stable background MBs is obtained by a simple frame-differencing-based

method at the encoder. The entire process for the proposed video encoding framework is illustrated

in the flow chart in Figure 5, which includes twomain branches, intra- and inter-MB encoding pro-

cesses, for encoding the current MB of an input frame. Depending on whether the current MB is a
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stable background block or a dynamic foreground block, the TFRE scheme (gray color blocks) or

the STPE scheme (black color blocks) is applied.

4.1 Temporal-Fluctuation-Reduced Video Encoding Scheme

The TFRE scheme is designed to encode stable background areas to suppress unnecessary temporal

fluctuation in these areas. For stable background MBs in intraframes, during the RDO process for

deciding type mode and prediction mode, SFD is calculated and jointly optimized with the RDO

cost. For the interframe analysis process, new strategies are introduced in the analysis of P_SKIP-

and P_16×16-type modes, which are highlighted in the dashed box in Figure 5, with the objective

to reduce temporal fluctuation for interblocks while maintaining acceptable distortion.

4.1.1 Intraframe Coding/Mode Selection. The intraframe RDO process of H.264/AVC consists

of two steps: type mode decision from I_16×16, I_8×8, I_4×4, and I_PCM based on RDO cost, and

then prediction mode decision from nine prediction options, such as vertical prediction, horizontal

prediction, and so forth, based on RDO cost. And the RDO cost C is calculated by

C = D + λ × R, (5)

where D denotes the distortion of a candidate encoding option, R denotes the total bits of this

option, and λ is the Lagrange multiplier that controls the tradeoff of rate and distortion.

We formulate a joint Temporal-fluctuation and RD (joint T-RD) mode selection problem as

follows:
Given: {Mi ,Ci , SFDi }

Find: M∗

Minimize: C

Subject to: SFDi ≤ SFDth ,

(6)

where Mi denotes the ith available type mode or prediction mode, Ci is the corresponding RDO

cost, and SFDi is the SFD value of mode i . The problem seeks to minimize the RDO cost C from a

set of available modes that satisfy the SFD constraint SFDi ≤ SFDth . SFDth is the Ntop -th SFD in

the ascending-order sorted array of SFDi , and Ntop is given by

Ntop = �N × Ptop�, (7)

where N is the total number of available modes, and Ptop is a custom parameter that stands for

the percentage of total available modes will be considered in joint T-RD selection.

Algorithm 1 is designed to solve this problem for both type mode and prediction mode selection.

For a stable background MB, first, all available type modes are tried, the corresponding RDO costs

and SFD values are recorded (lines 2–5 in Algorithm 1), and then the best type mode is determined

based on the SFD threshold (lines 6–9); second, all available prediction modes of the selected type

mode are tried, the corresponding RDO costs and SFD values are recorded (lines 10–13), and then

the best prediction mode is determined based on the SFD threshold (lines 14–17). We take the

x264 encoder [25] as our reference encoder. From the above description, the complexity of our

proposed Algorithm 1 can stay comparable with the corresponding algorithm in the reference

encoder, since the extra computations related with SFD are embedded in the original loops of the

reference encoder.

4.1.2 Interframe Coding/Mode Selection. A typical interframe analysis process includes three

steps: (1) Probe P_SKIP mode—that is, encode the current MB assuming no encoding residuals and

noMotion Vector (MV) difference, and use only the predictive MV. The decimate score is computed,

which indicates whether we could set the DCT coefficients to 0 given the DCT coefficients after the
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Fig. 6. Fluctuation of P_SKIP distribution.

ALGORITHM 1: Intraframe Joint T-RD Selection

if current MB belongs to stable background then

for available type mode Mti do

encode current MB and store Cti ;

calculate and store SFDti ;

end

sort records in ascending order based on SFD value, and obtain valid number of records (Nt );

obtain SFDtth based on Nttop = �Nt × Ptop �;

find the minimum Ct , subject to SFDti ≤ SFDtth ;

output the correspondingM∗t as the selected type mode;

for available prediction modeMpi of the selected typeM
∗
t do

encode current MB and store Cpi ;

calculate and store SFDpi ;

end

sort records in ascending order based on SFD value, and obtain valid number of records (Np );

obtain SFDpth based on Nptop = �Np × Ptop �;

find the minimum Cp , subject to SFDpi ≤ SFDpth ;

output the correspondingM∗p as the selected prediction mode;

end

actual encoding of this inter-MB [24]. If the decimate score of the current MB is less than 6, then

the current MB can be encoded as P_SKIP and return [25]. (2) Otherwise, other intertype modes,

including P_16×16, P_8×16, P_16×8, P_8×8, P_4×8, P_8×4, and P_4×4 modes, are all tried and the

corresponding MVs are estimated, and also search is performed on those intramodes. (3) Run the

RDO process and determine the best mode from all available modes.

However, the typical interframe analysis process can result in temporal fluctuation for stable

background areas, which will reduce the accuracy of object detection. For example, three consec-

utive interframes (frames 8, 9, and 10) of the GR video clip is shown in the first row of Figure 6.

In this figure, each block represents one MB unit, and yellow, blue, and red colors denote P_SKIP
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ALGORITHM 2: Interframe Probe P_SKIP

Input: decimate score of current MB.

if decimate score of current MB < 6 then

current MB is set as P_SKIP;

return
else if current MB belongs to stable background then

encode current MB based on predictive MV;

calculate SSDr and SFDr based on the reconstructed MB;

calculate SSDs and SFDs assume current MB as P_SKIP;

if SSDs ≤ d_w × SSDr and SFDs ≤ s_w × SFDr then

current MB is set as P_SKIP;

return
end

end

mode, other intermode, and intramode, respectively. Obviously, there is fluctuation of P_SKIP loca-

tion distribution in these consecutive interframes. For an MB in the stable background area, when

the intermode changes between P_SKIP and other interprediction modes in consecutive frames,

there will be temporal fluctuation in the encoded frames, and such fluctuation might result in FP

for object detection due to mistaking for new objects appearing.

We propose to reduce temporal fluctuation in interframes by designing new criteria in the anal-

ysis of intertype modes. Specifically, we expect to classify more MBs in stable background areas

as P_SKIP or set the MVs of these MBs to zeros; meanwhile, we expect to maintain acceptable tra-

ditional distortion SSD, the Sum of Squared Differences between the intensities of an original MB

and the intensities of an encoded MB. Based on the typical inter-MB analysis process, we design

new schemes in the probe P_SKIP process and the analysis of P_16×16 mode.

In the probe P_SKIP process, for MBs dissatisfied with the original criterion in [24], we compare

the encoding option of P_SKIP with the encoding option of using predictive MV, and if the P_SKIP

option brings less SFD while maintaining acceptable SSD, the current MB will be set as P_SKIP.

The detailed steps are described in Algorithm 2, where SSDr and SFDr are SSD and SFD of the

reconstructed MB based on predictive MV, SSDs and SFDs are SSD and SFD of the current MB

assuming P_SKIP encoding, and d_w and s_w are weight variables that can be customized by en-

coders. Compared with the x264 reference encoder, Algorithm 2 is additional; however, the overall

computational complexity of interframe coding/mode selection can be reduced because more MBs

can be set as P_SKIP that do not need any other intertype modes analysis and RDO.

Furthermore, for the analysis of P_16×16 mode, we design an interframe P_16×16 Direct Copy

mode: direct copy from the corresponding MB in the previous frame due to negligible motion in the

stable background area. If the distortion brought by assuming no motion is comparable with the

distortion of reconstructed MB after motion estimation, the process will skip other intermode

analyses and jump to Encode the current MB process without RDO, as shown in the flow chart

in Figure 5. The detailed steps of the interframe P_16×16 Direct Copy mode are described in

Algorithm 3, where SSDme is the distortion of the MB based on MVme after motion estimation,

SSDdc is the distortion of the MB based on the assumption that there is no motion and that a

direct copy from the corresponding MB in the previous frame is applied, and d_w is a custom

weight parameter that restricts SSDdc inside a threshold of d_w × SSDme . Encoding an MB in

Inter P_16×16 Direct Copy mode could skip other intermode analyses and RDO, which reduces

the overall computational complexity of interframe coding/mode selection.
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ALGORITHM 3: Interframe P_16×16 Direct Copy Mode

Input:MVme after motion estimation in P_16×16 interanalysis.

if current MB belongs to stable background then

encode current MB based onMVme ;

calculate SSDme based on the reconstructed MB;

calculate SSDdc assume current MB as Direct Copy mode;

if SSDdc ≤ d_w × SSDme then

current MB is set as P_16×16 Direct Copy mode;

return
end

end

An example of the proposed intercoding scheme (combining Algorithm 2 and Algorithm 3) is

shown in the second row of Figure 6. Compared with the first row, which shows results from the

standard interanalysis process, after applying the proposed scheme, more background MBs are

encoded as P_SKIP modes, and the distribution of P_SKIP stays stable for consecutive frames. The

video snapshots from the two rows look similar, both with acceptable video quality.

4.2 Spatial-Texture-Preserved Video Encoding Scheme

Spatial texture also plays a critical role in automatic object detection. Since 2D transform encoding,

such as the Discrete Cosine Transform (DCT), is indispensable in the modern block-based hybrid

video encoders, it is natural to explore the properties of spatial texture in the 2D transform domain.

The texture features of an image are extracted from DCT coefficients for saliency detection in

the JPEG bit-stream adaptive image retargeting applications [9]. In [10], the texture features in

video saliency are detected through DCT coefficients in the MPEG4 compressed domain. Recent

progress of perceptual image coding with DCT is summarized in [34], in which each image block

is classified into plain, edge, or texture class based on the sum of DCT absolute coefficients. The

above works are all based on 8×8 DCT in JPEG or MPEG4 but not 4×4 transform in H.264 or H.265.

The features of 4×4 transform are studied in [33] with the purpose of designing a tracking-aware

H.264 video compression algorithm for transportation surveillance: it has been observed that each

coefficient’s corresponding basis in the 4×4 transform of the H.264/AVC sharpens vertical and/or

horizontal edges to varying degrees, and a new quantization table is designed that can help to

identify and concentrate the compression bit rate on frequencies useful to tracking, at the cost of

bit rate allocated to frequencies confusing or useless to tracking.

From the above works, we learn that the coefficients of 2D transform are highly related with

spatial texture. In JPEG and MPEG4 standards, the DCT coefficients in an 8×8 block include one

DC coefficient and 63 AC coefficients. Among them, the DC coefficient is the average energy over

all 64 pixels in this block, and the left AC coefficients characterize the properties of the block in

the frequency domain. Previous studies [9, 10, 34] show that the DCT AC coefficients can be used

to represent the texture information for a block. For example, in [9], the DCT AC coefficients are

classified into three parts: low-frequency (LF), medium-frequency (MF), and high-frequency (HF)

parts. However, H.264/AVC uses a simplified Separable Integer 4×4 Transform (SIT) instead of 8×8

DCT [38]. The coefficients of 4×4 SIT in the H.264/AVC standard are shown in Figure 7(a), in which

the first block (No. 0) with gray color denotes the DC coefficient, and the rest of the 15 blocks (No.

1–15) denote 15 AC coefficients. Figure 7(b) shows the standard basis patterns for 4×4 SIT, and

the coefficients of SIT can be considered as weighting factors of a set of these basis patterns. Any

image block can be reconstructed by combining the 16 basis patterns with the appropriate weight.
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Fig. 7. 2D transform in H.264/AVC (4×4 SIT).

Fig. 8. Scatter figure of SIT coefficients with spatial texture information.

First, we inspect the correlation between each coefficient of SITwith spatial texture information.

The original Y channel images of hall are used as examples to analyze the dynamic foreground

regions. All foreground MBs are applied in 4×4 SIT and the texture analysis method mentioned in

Section 3. Scatter figures of the absolute value of a single SIT coefficient with texture are inspected;

a DC coefficient and AC coefficients 1, 2, 3, 12, 13, 14, and 15 with spatial texture information are

shown in Figure 8. We can find that the DC coefficient could not reflect the spatial texture level and

that AC coefficients are related with spatial texture to a certain degree. With the number of AC

coefficients increasing, the absolute value of the AC coefficient decreases generally, even close to

zero (e.g., AC coefficients 13, 14, and 15), which indicates that texture details in too high frequency

are in the minority. However, any single AC coefficient is not significantly correlated with spatial

texture status.

We further investigate the relationship between AC coefficients of SIT and spatial texture in-

formation. We use the sum of the first x AC coefficients to represent spatial texture information,

where x is an integermore than 0 and less than 16. In Figure 9, scatter figures are shown for the sum

of the first 2, 3, 4, 5, 7, 10, 13, and 15 AC coefficients with spatial texture information, respectively.

The scatter figure of the first AC coefficient has already been shown in Figure 8(b). We find that
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Fig. 9. Scatter figure of sum of the first x AC coefficients with spatial texture information.

the correlation becomes more clear when more AC coefficients are considered with x increasing

from 1 to 5, and as x continues to increase, there is no obvious improvement of the correlation. It

is well known that different computer vision algorithms work based on different levels of features,

and therefore, we prefer not to select to preserve specific frequencies; in other words, we try to

protect all the frequency details as the original ecology.

Consequently, we introduce the measure SSAC, Sum-of-absolute 15 SIT AC Coefficients, to depict

the spatial texture information of a 4×4 image block:

SSAC =

i=15∑

i=1

|ACi |, (8)

where ACi is the ith SIT AC coefficient of one 4×4 image block in an MB. We investigate the

entire video dataset, which includes different compression-level videos (QP from 24 to 48, step

size is 2) and the original raw videos. The scatter figures of the original raw videos (where QP is

marked as 00) and the encoded video using QP 24, 36, and 48 are shown in Figure 10. Based on the

scatter figures of the entire video dataset, the distribution becomes more and more concentrated

and regular as the compression ratio (QP) increases. We use SSAC value 10 as intervals to average

data points in the scatter figure and then obtain curves for all QP settings, which are shown in

Figure 11. We can find that there is a positive linear correlation between SSAC and spatial texture,

no matter how much compression is introduced.

The correlation between spatial texture and SSAC is inspected using the Linear Correlation

Coefficient (LCC), the Spearman Rank Order Correlation Coefficient (SROCC), and the Kendall

Rank Correlation Coefficient (KRCC), respectively. The correlation coefficients are summarized

in Table 1, in which QP 00 denotes the original raw video. The results of LCC are all above 0.96

(average value 0.965), those of SROCC are all higher than 0.97 (average value 0.978), and those of

KRCC are all higher than 0.87 (average value 0.879). These results indicate that there is a significant

positive linear correlation between SSAC and spatial texture.

By far, we have proposed the ideal descriptor in the 2D transform domain, SSAC, to depict the

spatial texture information in video encoding scenarios. Inheriting the concept of texture degra-

dation from TXD, which is defined in Equation (4), we introduce a new TXDSIT as a basic unit to
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Fig. 10. Scatter figure of SSAC with spatial texture information.

Fig. 11. The relationship between SSAC and spatial texture information.

Table 1. Correlation Coefficients between Spatial Texture Information and SSAC

QP 00 24 26 28 30 32 34 36 38 40 42 44 46 48

LCC 0.962 0.964 0.964 0.964 0.965 0.965 0.965 0.965 0.966 0.966 0.966 0.966 0.966 0.965

SROCC 0.975 0.977 0.977 0.977 0.978 0.978 0.978 0.978 0.978 0.979 0.979 0.979 0.979 0.980

KRCC 0.871 0.874 0.875 0.875 0.876 0.877 0.878 0.879 0.881 0.882 0.883 0.884 0.886 0.889
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represent texture degradation in a 4×4 block, which is given by

TXDSIT
=

�
�
�
�
�
�

i=15∑

i=1

|ACi | −

i=15∑

i=1

|aci |

�
�
�
�
�
�

, (9)

where
∑i=15

i=1 |ACi | is texture information of a 4×4 block in an MB of the original frame and∑i=15
i=1 |aci | is texture information of the corresponding 4×4 block in the same MB of the encoded

frame. The descriptor of texture degradation TXDSIT brings unique benefits in the video encod-

ing context, including (1) convenient calculation, (2) low computational complexity, and (3) finer-

grained tuning than the original TXD in MB unit.

The block-based video coding can be summarized as an intra/intertype mode (macroblock parti-

tions) decision and an intra/interprediction (nine prediction options or motion-compensated pre-

diction) mode decision. To protect spatial texture during the video encoding process, we formulate

a joint Spatial-texture and RD (joint S-RD) mode selection problem for both intra- and interframes

as follows:
Given: {Mi ,Ci ,TXD

SIT
i }

Find: M∗

Minimize: C

Subject to: TXDSIT
i ≤ TXDSIT

th ,

(10)

whereMi denotes the ith available type mode or prediction mode in an intra/interframe,Ci is the

corresponding RDO cost, and TXDSIT
i is the TXDSIT value of mode i . The problem seeks to min-

imize the RDO costC from a set of available modes that satisfy theTXDSIT constraintTXDSIT
i ≤

TXDSIT
th

.TXDSIT
th

is the Ntop -thTXD
SIT in the ascending-order sorted array ofTXDSIT

i , and Ntop

is given by

Ntop = �N × Ptop�, (11)

where N is the total number of available modes, and Ptop is a custom parameter that stands for

the percentage of total available modes will be considered in joint S-RD selection.

Algorithm 4 is designed to solve this problem for both intra/inter-type mode and intra/

interprediction mode selection. For a dynamic foreground MB, first, the SSAC of the original video

is calculated and stored as a benchmark, and then all the available intra/intertype modes are tried,

the corresponding RDO costs andTXDSIT values are recorded (lines 4–7 in Algorithm 4), and the

best type mode is determined based on the TXDSIT threshold (lines 8–11); second, all available

intra/interprediction modes of the selected type mode are tried, the corresponding RDO costs and

TXDSIT values are recorded (lines 12–15), and then the best prediction mode is determined based

on the TXDSIT threshold (lines 16–19). Based on the above procedure, our proposed Algorithm 4

can maintain the same level as the x264 reference encoder in the computational complexity, since

the computing related with TXD does not bring extra loops to the reference encoder.

5 PERFORMANCE EVALUATION

We evaluate the proposed video encoding framework by applying object detection algorithms on

a variety of compressed videos. The eight raw videos shown in Figure 3 and a new video dataset

from PETS 2017 datasets [27] are used for this test. There are uniform resolutions (352×288), frame

rates (25 fps), and durations (12 sec) in the dataset 1. Dataset 2 contains the ARENA dataset (AD),

which includes four nonoverlapping fields of view at each corner of a truck outdoors, and the

maritime IPATCH dataset (ID), which includes one view at stern and three starboard views (sv) of

one ship. Different from dataset 1, eight videos in dataset 2 cover higher resolutions (1280×960),

higher frame rates (30 fps), and longer durations (20∼100 sec), and more details can be found in
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Table 2. Video Information for Dataset 2

Video Name AD Right AD Left AD Ahead AD Behind ID Stern ID sv 1 ID sv 2 ID sv 3

SI index 83.71 91.78 95.62 123.63 75.69 53.37 47.08 59.64

TI index 21.14 61.45 42.73 47.37 10.47 12.86 16.99 8.86

Length (sec) 20 60 40 40 60 100 70 90

Table 3. Video Compression Parameters

GOP Structure IPPP GOP Size 20

Rate control Constant QP QP range 28-46

Intra/inter

custom parameters

Ptop d_w s_w

0.1 6 0.1

ALGORITHM 4: Intra/Inter-MB Joint S-RD Selection

Input: Intraprediction options or intermotion vectors based on SATD scores

if current MB belongs to dynamic foreground then

4×4 SIT on the original video, and store the original SSAC;

for available type modeMti of intra/inter-MB do

encode current MB based on intra/interprediction, store Cti and the corresponding SSAC;

calculate and store TXDSIT
ti

;

end

sort records in ascending order based on TXDSIT value, and obtain valid number of records (Nt );

obtain TXDSIT
tth

based on Nttop = �Nt × Ptop �;

find the minimum Ct , subject to TXD
SIT
ti
≤ TXDSIT

tth
;

select the correspondingM∗t as the optimal type mode;

for available prediction mode Mpi based on the selected typeM∗t do

encode current MB or store Cpi and the corresponding SSAC;

calculate and store TXDSIT
pi

;

end

sort records in ascending order based on TXDSIT value, and obtain valid number of records (Np );

obtain TXDSIT
pth

based on Nptop = �Np × Ptop �;

find the minimum Cp , subject to TXD
SIT
pi
≤ TXDSIT

pth
;

output the correspondingM∗p of the selected typeM∗t as the optimal mode;

end

Table 2. The Spatial Information (SI) index and Temporal Information (TI) index of a sequence,

which are defined by ITU-T P.910 [29] and are directly related to video compression complexity,

are also included in Table 2. The x264 encoder (version 0.142.x) is configured to encode videos

using one-pass mode with medium speed, and the compression settings are summarized in

Table 3. The aforementioned three object detection algorithms (GMM, GMG, and ABL) are

applied on these compressed videos. One motivation to include relatively higher QP values in

our tests is that medium and high compression ratios are used in many wide-area, large-scale, or

sparse wireless camera networks with limited bandwidth and energy constraints. For example, a
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wide-area and large-scale camera network is implemented in [21], a long-duration and large-scale

environmental monitoring application is introduced in [7], the deployment of sparse sensor

networks in large areas is studied in [8], and the deployment of airborne camera networks is

introduced in [30]. These practical systems operate in a bandwidth range of 40kbps to 300kbps,

providing video observations with around 0.01 to 0.1 bits per pixel (BPP). The QP values in our

experiments could produce videos with bandwidth and BPP ranges consistent with these practical

wireless camera systems. Moreover, a similar QP range (28–44) was adopted by other researchers

for studies on subjective video quality in [26] and [23], which demonstrated that the perceptual

quality of videos encoded with medium and high QP is acceptable.

We evaluate the performance of the proposed algorithms in terms of both pixel-level detection

accuracy and object-level detection accuracy on the two datasets. Evaluation of detection at the

object level is straightforward, while more precise detection at the pixel level providesmore insight

into strengths and weaknesses of detection performance [3, 11], based on which solutions could

be designed to improve object detection performance.

5.1 Evaluation of the Proposed Algorithms in Pixel Level

The performances of the proposed TRFE scheme, STPE scheme, and combined TFRE with STPE

scheme (short for cTwS) are compared to the H.264/AVC-based open-source encoder x264 and the

Reducing Flicker video Coding approach (RFC) [6]. The objective of RFC is to improve perceptual

video quality by reducing flicker effects, and it considers the distortions not only between the

encoded video and the original video but also in the temporal domain in the encoded video during

the intrarate distortion optimization process.

First, we compare the objective video quality and the corresponding bitrate of the five schemes

in dataset 1 and dataset 2. The industrial standard PSNR and Structural Similarity (SSIM) are ap-

plied to the compressed videos. We evaluate the average performance of the eight different video

sequences in dataset 1 and dataset 2 separately at the same QP. The resulting PSNR and SSIM with

the corresponding bit rates are shown in Figure 12. The R-D performances of RFC are nearly identi-

cal with those of x264 in every QP for both datasets. The curves of STPE almost overlap completely

with the ones of x264 for both SSIM and PSNR, which indicates that the proposed STPE scheme has

little impact on the Rate Distortion performance. The PSNR and SSIM values of the TFRE scheme

decrease slightly, whereas the bitrate is saved compared with ones of x264 encoding. The slight

decrease in bitrate is due to the fact that TFRE encodes more inter-MBs in P_SKIP modes. For the

combined cTwS scheme, compared with x264 encoding: in dataset 1, the PSNR and SSIM values of

cTwS decrease slightly by 0.102dB and 0.001 on average, respectively, whereas cTwS brings down

the bitrate by 2.04kbps on average; in high-resolution videos of dataset 2, its PSNR and SSIM de-

crease by 0.157dB and 0.004 on average, respectively, whereas it saves the bitrate by 31.67kbps

on average. Overall, the Rate Distortion performances of the proposed algorithms are comparable

with those of the x264 encoder.

Next, we evaluate the overall performance of object detection in pixel level through F1 scores.

The average F1 scores of the eight videos in each dataset for the three object detection algorithms

are shown in Figure 13. Though the three object detection algorithms have different ranges of F1
in two datasets, the detection performance degrades when QP increases. The curves of the RFC

scheme always nearly overlap with those of x264 except for negligible improvements of the ABL

algorithm. The performance gains of the STPE scheme are larger than ones of RFC and distributed

evenly over different QPs. The benefits of the TFRE scheme upon x264 for three algorithms on both

datasets are noticeable, and the gain of TFRE is higher with larger QP values. The cTwS scheme

results in the largest F1 scores for different QP values in every algorithm on both datasets. More
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Fig. 12. Rate-distortion curves of proposed schemes.

specifically, there are noticeable gains of cTwS over x264 for ABL (average 2.96% and 2.99% for two

datasets), and modest gains for GMG (1.92% and 1.94%) and GMM (1.72% and 1.76%).

Finally, we summarize the average F1 scores of the three object detection algorithms on two

datasets in Table 4. The numbers in the ∆ rows denote the gains of cTwS over the x264 encoder.

Three points could be reached based on the summary table and above figures: (1) both the R-D and

the object detection performances of RFC are nearly identical with that of x264, (2) the R-D per-

formance of cTwS is comparable to that of the x264 encoder and RFC, and (3) the improvement on

detection performance of cTwS at every QPs is obvious, and the gain of cTwS is higher with larger

QP values. These results indicate that, by reducing temporal fluctuation in stable background areas

and preserving spatial texture in foreground areas, the proposed video encoding framework could

effectively improve the accuracy of object detection in pixel level for different types of detection

algorithms with no impact on the R-D performance.

5.2 Evaluation of the Proposed Algorithms in Object Level

To evaluate the performance of the proposed algorithms in object level, a uniform postprocessing

procedure is adopted to the pixel-level results of three detection algorithms. The postprocessing

modules includes the following:
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Fig. 13. F1 scores of test videos in proposed schemes.

Table 4. Average Results of Proposed Algorithms in Pixel Level

QP 28 30 32 34 36 38 40 42 44 46

Dataset 1

F1 (%)

x264 77.03 73.80 70.51 67.06 63.45 59.25 55.62 51.94 48.17 45.31

RFC 77.21 73.97 70.74 67.33 63.77 59.65 56.06 52.42 48.56 45.92

TFRE 77.70 74.42 71.19 67.72 64.16 59.98 56.43 52.85 49.10 46.37

STPE 77.43 74.34 71.34 68.14 64.81 60.96 57.88 54.83 51.46 49.20

cTwS 77.81 74.71 71.70 68.48 65.13 61.27 58.23 55.18 51.94 49.68

∆ 0.78 0.91 1.19 1.42 1.68 2.02 2.61 3.24 3.77 4.37

Dataset 2

F1 (%)

x264 75.41 72.35 69.25 66.09 61.98 58.27 54.19 50.75 48.28 45.18

RFC 75.57 72.54 69.49 66.38 62.32 58.69 54.63 51.23 48.68 45.80

TFRE 75.92 73.03 70.08 67.17 63.33 59.98 56.42 53.60 51.53 49.02

STPE 76.21 73.13 70.08 66.91 62.83 59.14 55.12 51.77 49.32 46.35

cTwS 76.34 73.43 70.47 67.54 63.68 60.31 56.79 53.97 52.02 49.52

∆ 0.93 1.08 1.22 1.45 1.70 2.04 2.60 3.22 3.74 4.34

(1) Median filtering (5×5 rectangular aperture)

(2) Morphological operations (first opening then closing with 3×3 square structure)

(3) Connected-component labeling (eight-way connectivity)

(4) Region thresholding (240 pixels)
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Fig. 14. Configuration Distance (CD) of testing videos in proposed schemes.

For the object-level detection accuracy, we calculate the Configuration Distance (CD) [2], which

measures the difference between the amount of GT objects and AR objects according to their

presence. For one given frame, the CDf can be calculated by

CDf =

�
�
�
�
�

ARo −GTo

max (GTo , 1)

�
�
�
�
�

, (12)

whereARo andGTo are the numbers of AR objects and GT objects in the frame. TheCD of a video

sequence is obtained by the average of CDf in each frame. In our experiments, object detection

results from the raw videos are regarded as GT, and results from the compressed videos are AR.

Ideally, if a video is compressed in a lossless way, the corresponding CD is 0. Lossy compression in-

evitably degrades the performance of object detection, and both false positives and false negatives

(i.e., detection mistaking and detection missing) could result in an increase of CD.

The performance of proposed algorithms in object level through CD value in two datasets is

shown in Figure 14. Despite different ranges of CD values in two datasets, the trends of the three

detection algorithms are similar. The curves of RFC are always very close to the ones of x264 for

three algorithms. The minimum gains of STPE over x264 for ABL, GMG, and GMM algorithms

(−0.94%, −0.77%, and −1.03% in dataset 1; −1.13%, −1.21%, and −1.12% in dataset 2) are larger than

the maximum gains of RFC (−0.60%, −0.53%, and −0.56% in dataset 1; −0.71%, −0.61%, and −0.60%

in dataset 2). The TFRE scheme improves the detection performance significantly. The combined

cTwS scheme attains the remarkable improvement (average gains: −4.82%, −3.73%, and 3.68% in

dataset 1; −6.10%, −4.22%, and −4.12% in dataset 2, respectively). The average CD values of the

three object detection algorithms on two datasets are also summarized in Table 5. The values in

the ∆ rows denote the gains of cTwS over the x264 encoding. In summary, the average gains of RFC

over x264 are quite limited (average−0.42% in dataset 1 and−0.47% in dataset 2, respectively), STPE

achieves better improvement than RFC (with average gains −1.60% and −1.86%), the improvement

of TFRE is considerable (with average gains −3.42% and −4.04%), and cTwS achieves the maximum

average gains (−4.08% and −4.82%).
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Table 5. Average Results of Proposed Algorithms in Object Level

QP 28 30 32 34 36 38 40 42 44 46

Dataset 1

CD (%)

x264 8.26 9.64 10.84 12.00 13.11 14.15 14.87 16.07 17.56 19.06

RFC 7.91 9.34 10.41 11.62 12.64 13.69 14.48 15.64 17.08 18.61

TFRE 7.35 8.52 9.61 10.61 11.51 12.46 13.10 14.14 15.48 16.83

STPE 6.87 7.80 8.74 9.40 10.34 10.83 11.30 11.43 11.98 12.65

cTwS 6.42 7.38 8.24 8.93 9.69 10.22 10.45 10.63 11.13 11.70

∆ −1.84 −2.26 −2.60 −3.07 −3.42 −3.93 −4.42 −5.44 −6.43 −7.36

Dataset 2

CD (%)

x264 9.32 10.91 12.28 13.44 14.84 16.07 16.80 18.29 20.09 21.75

RFC 8.93 10.57 11.79 13.01 14.30 15.55 16.36 17.79 19.54 21.24

TFRE 8.17 9.52 10.77 11.85 13.00 14.13 14.77 16.08 17.70 19.19

STPE 7.72 8.79 9.87 10.45 11.66 12.39 12.43 12.57 13.32 14.17

cTwS 7.22 8.33 9.32 9.94 10.95 11.57 11.48 11.57 12.23 13.00

∆ −2.10 −2.58 −2.96 −3.50 −3.89 −4.50 −5.32 −6.72 −7.86 −8.75

Table 6. Computational Complexity of Algorithms

Algorithms x264 RFC TFRE STPE cTwS

Dataset 1 complexity (ms) 1,934.985 2,131.977 1,278.990 2,021.941 1,309.986

Gains (%) — +10.18 −33.90 +4.49 −32.30

Dataset 2 Complexity (ms) 18,743.861 20,622.032 14,814.014 19,655.053 15,391.520

Gains (%) — +10.02 −20.97 +4.86 −17.89

5.3 Evaluation of the Computational Complexity

The computational complexity of algorithms is a crucial design factor for distributed wireless

surveillance systems. All video encoding in this article was performed exclusively on a computer

based on an Intel Xeon E5-2637 v3 (3.50GHz) processor running on a Windows 7 Enterprise oper-

ating system. Computational complexity was measured by the encoding time for the x264 encoder,

RFC approach, TFRE scheme, STPE scheme, and combined TFRE with STPE scheme (cTwS). Com-

putational complexity is evaluated by the average encoding time of running separately three times

for both the 80 test cases in dataset 1 and the 80 test cases in dataset 2, which is summarized in

Table 6. Each dataset consists of eight different videos in 10 different QP configurations.

The computational complexity of the x264 encoder in Table 6 is regarded as a benchmark. The

RFC approach increases more than 10% in complexity due to extra computing introduced during

the intra-RDO process. The proposed TFRE scheme reduces computational complexity signifi-

cantly (−33.90% and −20.97%, respectively) thanks to avoiding unnecessary Inter mode analyses

and RDO processes. The proposed STPE scheme maintains comparable complexity (less than 5%).

Finally, the combined TFRE with STPE scheme achieves −32.30% and −17.89% reductions in com-

putational complexity for dataset 1 and dataset 2, respectively. The reduction in complexity will

provide considerable benefits for distributed wireless surveillance applications.
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6 CONCLUSION

In this article, we have proposed an efficient video encoding framework that aims at improv-

ing the performance of object detection on compressed videos in distributed wireless surveil-

lance systems. This framework includes the Temporal-Fluctuation-Reduced video Encoding scheme

(TFRE) for the encoding of stable background areas and the Spatial-Texture-Preserved video En-

coding scheme (STPE) for the encoding of dynamic foreground areas. Besides, this framework is

compliant with the block-based hybrid encoding architecture, and its computational complexity of

H.264-based implementation is reduced significantly to that of common H.264 encoding schemes.

Experimental results on a variety of encoder settings and object detection algorithms indicate that,

compared with traditional encoding schemes, the framework improves the accuracy of object de-

tection and results in lower bitrate and significantly reduced complexity with comparable video

quality in terms of PSNR and SSIM. This standard-compliant video encoding framework can pro-

mote the development and applications of many distributed wireless surveillance systems. In the

future, we plan to implement the proposed encoding framework in the newly developed HEVC

standard.
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