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ABSTRACT

Autonomous, continuous and long-term monitoring systems are
required to prognosticate failures in civil infrastructures due to
material fatigue or extreme events like earthquakes. While current
battery-powered wireless sensors can evaluate the condition of the
structure at a given instant of time, they require frequent replace-
ment of batteries due to the need for continuous or frequent sam-
pling. On the other hand, self-powered sensors can continuously
monitor the structural condition without the need for any mainte-
nance; however, the scarcity of harvested power limits the range at
which the sensors could be wirelessly interrogated. In this paper,
we propose a quasi-self-powered sensor that combines the benefits
of self-powered sensing and with the benefits of battery-powered
wireless transmission. By optimizing both of the functionalities,
a complete sensor system can be designed that can continuously
operate between the structure’s maintenance life-cycles and can
be wirelessly interrogated at distances that obviates the need for
taking the structure out-of-service. As a case study, in this paper
we present the design considerations involved in prototyping quasi-
self-powered sensors for deployment on the Mackinac Bridge in
northern Michigan, with a target operational life span greater than
20 years.
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1 INTRODUCTION

With growth of the world economy and its population, there is
an ever increasing dependency on larger and more complex net-
works of civil infrastructure as evident in the billions of dollars
spent by federal, state and local governments to upgrade or repair
transportation systems and utilities. Despite these large expendi-
tures, the nation continues to suffer staggering consequences from
infrastructural decay. According to the American Society of Civil
Engineers 2017 Infrastructure Report Card, the overall health of
America’s infrastructure is at a D+ grade, with bridges and roads at
C+ and D, respectively [30]. As part of the solution, they recognize
the cost and difficulty of using, maintaining, and improving the
nation’s infrastructure; further, they note the importance of support-
ing research into innovative new technologies, such as structural
health monitoring (SHM) to expedite repairs or replacement, and
to promote cost savings. Due to the forces of nature that act on
infrastructure, it is impossible to have a complete understanding of
how these structures will act in deployment conditions; therefore, a
method for sensing the state of these structures periodically is nec-
essary. Currently, the primary method of determining the health of
infrastructure is visual inspection, resulting in a mostly qualitative
assessment of damage [1-3]. In contrast to this qualitative method-
ology, several quantitative methods are also employed, such as the
measurement of structural damage through the use of electrical
impedance [19] and ground penetrating radar [4].

However, in order to provide a more expansive method of sens-
ing, several groups have proposed a method of structural monitor-
ing through the use of wireless sensor networks (WSNs). Advan-
tages of this approach are many, as they are relatively low cost and
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Figure 1: Vision of infrastructural Internet of Things (i-IoT).

provide a wide swath of coverage over a majority of the structure.
In addition, these sensor nodes have a relatively low cost of instal-
lation and require a relatively low amount of maintenance [29].
These sensor networks collect several types of relevant structural
data such as acceleration, stress, load, and vibration [29]. Yet even
these methodologies are limited, as they frequently use battery
powered instruments for sensing as well as the transmission of
data; the method of obtaining power and the life of external power
supply continues to be the bottleneck in the design of these WSN
for the purpose of SHM [29]. On the other end of the spectrum are
self-powered SHM systems [13, 31] that require zero-maintenance
(no replacement of batteries) and can continuously operate over the
useful life-span of the structure without experiencing any down-
time. The self-powered sensors have been the basis of our ongoing
work in the area of infrastructural Internet of Things (i-IoT), which
uses a widespread network of self-powered sensing devices with
the ability to monitor the impact and strain that are applied to
structures.

The goal of the i-IoT framework, as shown in Fig. 1, is to provide
arobust methodology that can easily deploy on a variety of different
structures without compromising or interfering with the integrity
of that structure. However, a key aspect of the i-IoT framework
is ability to collect data from an array of self-powered sensors
embedded inside a structure, without taking the structure out-of-
service. Self-powered operation is limited in its ability to wirelessly
transmit the stored data over long distances due to high energy
requirements. Therefore, in this paper we are proposing a quasi-
self-powered sensing system that combines the benefits of self-
powered sensors that are continuously active and battery-powered
transmitters that are sporadically active. The combination of the
two techniques results in ultra-low average power consumption of
the entire system implying that they can be deployed on real-world
structures for a long periods of time with relatively low amounts

336

GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

of maintenance. In this paper we present a case study of a quasi-
self-powered SHM sensor that has been designed for deployment
on the Mackinac Bridge in northern Michigan, which is one of the
largest suspension bridges in North America.

2 PFG SENSING PRINCIPLE

Over the last decade our research group has investigated an al-
ternate approach for designing SHM sensors, which are powered
directly by the sensing signal itself [18], which for an SHM appli-
cation are mechanical strain and the mechanical acceleration. If a
sensor could self-power itself from the energy latent in the strain-
variations and in the mechanical acceleration, then the device can
continuously monitor for events of interest without experiencing
any down-time. The challenge is that less than a microwatt of power
is available when the sensor is embedded inside a structure like
concrete [14, 16]. At this power-level it is practically impossible
to implement a continuous monitoring system comprising of en-
ergy converters, energy regulators, analog-to-digital converters,
signal processors and wireless transceivers. Also, given that SHM
sensors have to be operational for more than 20 years, raw strain-
measurements cannot be stored due to the limitations on the silicon
area and the instantaneous measurements cannot be transmitted
wirelessly due to limitations on In [11, 12, 15, 25, 28] we reported
a piezo-floating-gate (PFG) sensing technique that self-powers by
harvesting energy from micro-strain variations.
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Figure 2: Simplified principle of PFG operation.

The principle of the PFG sensor is illustrated in Fig. 2 where a
piezoelectric transducer (in this case a lead zirconate titanate, or
PZT) harvests energy from mechanical strain variations to generate
high-energy electrons (or hot-electrons) in the channel of a MOS-
FET transistor. When the energy of some of these electrons (with
the right momentum vector) exceeds the energy barrier (3.2 eV)
of the silicon, silicon-di-oxide interface (as shown in Fig. 2), these
electrons surmount the barrier and get trapped onto a floating-
gate. Because the floating-gate is electrically isolated by a high
quality insulating oxide, the injected electrons remain trapped for
a long period of time. As the piezoelectric transducer is period-
ically excited, more electrons are injected onto the floating-gate
and the cumulative charge stored on the floating gate is a function
of the duration and the magnitude of the mechanical excitation.
This approach directly couples the physics of piezoelectric energy
harvesting with the physics of hot-electron injection to sense, com-
pute and store mechanical usage statistics and hence can be used to
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push the fundamental limits of self-powered sensing of mechanical
strain. The floating-gate also serves as a non-volatile storage mem-
ory from which the mechanical usage data could be retrieved at a
later stage for offline analysis. This leads to a “sense-now, analyze-
later” paradigm which has been the basis of several PFG based
sensors [17, 23, 24, 27, 32, 33]. The difference between the respec-
tive PFG sensor designs is the interface circuit that connects the
piezoelectric transducer with the floating-gate memory. By modify-
ing the topology of the injector interface circuit, the sensor can also
be designed to record different statistics of the strain signal, like
strain-levels [24, 32], strain-rates [23], or time of occurence [34].

3 EXPERIMENTAL VERIFICATION

We demonstrated the efficacy of our proposed monitoring methods
with an experimental that consists of a steel plate under an in-plane
tension load. The steel plate under consideration is notched in the
middle to introduce damage, as shown in Fig. 3, with the notch
in the vertical direction to give better control over the crack size
under uniaxial tensile loading; a deviation in the notch location or
direction would not significantly alter the results using the method-
ology proposed by [22]. The damaged segment is surrounded by
PZT transducers affixed to the surface of the steel plate, in turn,
the transducers are connected to our self-powered PFG sensors
that will log the cumulative strain experienced by the transducer.
As the damage grows in the steel plate, the strain experienced by
each transducer increases near the crack tip of the notch — since
the sensors are continuously logging the statistics of this strain, it
becomes possible to periodically collect data from the sensors and
still deduce the damage progression [5, 9, 10, 20-22].

Figure 3: In-lab testing of a steel plate with controlled dam-
age, surrounded by several piezoelectric transducers [22].

For verification purposes, the number of sensors is more than
required, in practice, one could use a finite element simulation to
predetermine segments of the structure that are more susceptible
to damage and prioritize the placement of sensors accordingly.
Even with modeling, it is exceedingly difficult to select an optimal
sensor placement a priori since the type of damage is unknown.
Therefor, a sensor fusion strategy was developed to improve the
detection performance using spatial measurements, this “group
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effect” strategy has been reported in [5, 21]. Even if the location of
damage is not known in advance, the group effect can be utilized
for condition-based monitoring.

The performance of the self-powered PFG sensor has been exper-
imentally validated on other laboratory test-beds, with a sampling
of results given in the Data Interpretation block of Fig. 1. The top
left portion of the figure shows results from detection of a bottom
up crack in asphalt concrete pavement [20], the top right shows the
detection of localized failures such as the loosening of a bolt [6],
and the bottom illustrates a simulation verifying the data interpre-
tation [5].

4 MACKINAC BRIDGE SENSOR DESIGN

The PFG sensor was fabricated through MOSIS as a system-on-chip
that includes all necessary components (the piezoelectric transducer
notwithstanding) for self-powered sensing and data logging. The
PFG core and pad ring requires 1.5 X 1.5 mm? as shown in Fig. 4,
and relevant characteristics are listed in Table 1.

Table 1: Fabricated PFG Characteristics

CMOS Process OnSemi 0.5 pm
Chip Size 1.5 X 1.5 mm?
Minimum Energy (Self-powered) 100 nJ
Supply Voltage (Readout) 1.8V
Power Dissipation (Readout) 75 uW
Programming Resolution > 12 bits
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Figure 4: Die micrograph of the 1.5 x 1.5 mm? chip.

4.1 Design Considerations

4.1.1  Analog to Digital Conversion. As evident in the chip micro-
graph of Fig. 4, die space is at a premium when designing the SoC to
fit on a MOSIS tiny core (note that some areas of the die that appear
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empty are filled with passive resistors). In the pursuit of maintain-
ing a reduced design complexity, some design choices were made
that will require consideration when taking the chip outside of a
controlled lab environment. The first such consideration is the use
of a pulse encoder ADC in lieu of a more robust conversion method
to interface the PFG’s stored charge to external digital devices. The
pulse encoder output frequency as a function of the input voltage
(i.e. Floating-Gate Voltage), is presented as Fig. 5, which highlights
the non-monotonic behavior of the ADC. In the initial state, the
floating-gate voltage would be high, and as the sensor experiences
mechanical excitation the injected electrons will reduce the voltage
output, thus increasing the output frequency. At an inflection point
near 470 mV, this trend reverses as the discharge branch of the ADC
becomes too weak to respond in a timely fashion. By observing
the duty cycle of the output pulse train, as presented in the bottom
trace of Fig. 5, we can decode the floating-gate voltage even though
the output frequency is not monotonic.
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Figure 5: Simulation showing (top) frequency as a function
of input voltage, and (bottom) duty cycle of same.

4.1.2  Voltage Reference. Another aspect to consider is the tem-
perature dependence of the self-biased current source used for
generating on-chip voltage biases. In simulation, one will observe
a large deviation in the output frequency of the pulse encoder as
a function of temperatures we’d expect at the Mackinac Bridge
installation site, as shown in Fig. 6.
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Figure 6: Simulation of pulse encoder output frequency
when sweeping the input voltage and ambient temperature.
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Figure 7: Corrective factor for temperature effects.

To account for the temperature effect, we developed a corrective
factor as illustrated in Fig. 7. This factor was derived from averaging
the response of three fabricated chips that were initialized to an
output frequency of 1.15kHz at lab room temperature of 21.5°C
and subjected to temperatures from —30 °C to 80 °C in a climate
chamber. The data in subsequent discussions are processed using
the appropriate corrective factor considering the observed ambient
air temperature during data collection and are thus presented as
unitless.

5 FIELD TEST
5.1 System Enclosure

We previously demonstrated a backscatter RF interface for data
retreival [13, 24], yet in the case of communication in the dense
steel structure of the Mackinac Bridge, for long ranges, they are not
feasible. Thus, we opted to swap out the backscatter interrogation
unit with an active Radio Frequency (RF) link - leading to a quasi-
self-powered platform since the continuous sensing is self-powered,
but the interrogation is not [9]. A preliminary feasibility test using a
short-term deployment on the Mackinac Bridge [8] was successfully
completed and we miniaturized the design to make a more robust
platform for an active RF interface, as shown in Fig. 8. Note that
modules b & f are self-powered for continuous monitoring, the
remaining modules only power up for sporadic RF communications.

P00
ILI®saNog

2017-04-20
Kenji Asna

Figure 8: PCB for: (a) timer; (b) piezo input; (c) battery man-
agement; (d) micro-controller; (e) antenna; (f) PFG module.
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An assembled board with sensors and battery mounted in a
weatherproof enclosure is shown in the top left of Fig. 1, operational
details of the system are listed in Table 2. To take advantage of the
quasi-self-powered architecture, an ultra-deep sleep mode that draw
less than 50 nA from the battery (=35nA for the TPL5111 from
Texas Instruments and another ~15nA leakage through bypass
capacitors) is enabled by Fig. 8(a), this module places the active
portion of the system into a non-responsive deep sleep mode for
300 s at a time, before waking up the micro-controller (MCU). Upon
wakeup, the MCU will idle while waiting for a command, if a read
command is detected it will pull the data from the PFG sensors,
else it goes back to sleep. The PFG sensor modules (Fig. 8(f)) are
connected using a Flag Flexible Cable(Fig. 8(b)), which allows for

easy swapping in and out of the sensors depending on application.
Similarly, (Fig. 8(b)) allows for the piezo transducers to be swapped.

In the case of the Mackinac Bridge, the sensors are configured for
measuring upwards of two million loading cycles of mechanical
strain [10]. (Fig. 8(c)) takes the ~3V supplied by %AA Lithium
Thionyl Chloride Cells from Tadiran to 1.8 V to power the MCU
(Fig. 8(d)) and RF communication through the integrated antenna
(Fig. 8(e)). RF communication is enabled by a Texas Instruments
CC1310 using a proprietary protocol on the 915 MHz band.

Table 2: System Enclosure Specification

Enclosure Size 59 X 94 x 35 mm?

Sensors per Enclosure 3
Radio Band 915 MHz ISM
Transmit Power up to 10 dBm
Transmit Distance >100 m
Transmit Current 2.5mA
Transmit Time (Max) 13.5s
Receive Sensitivity —112dBm
Receive Current 225pA
Receive Time (Max) 6s
Sleep Current 50 nA
Sleep Duration 300s

From the specifications in Table 2, we can estimate average
current consumption when there is no request for data (no energy
spend on RF transmission) and for when there is a request as:

Ionton + Lsearchtsearch + lofftoff

Request =
fon *+ tsearch + Loff
25m-13.54+225u-6+50n - 300
= < 110 pA
13.5+ 6 + 300
No request = Isearchsearch * Lofftoff

tsearch T foff
_225p-6+50n-300
- 6 + 300
Working under the assumption that commands are sent only 1%
of the time (that is, approximately two or three readings a day), and
incorporating an 85% derating factor on the battery, a single % AA
battery with 1.2 Ah capacity would last:

< 5uA

lyr
8766 h

1.2Ah+(0.99-51+0.01-110) A-0.85- ( ) ~ 20 years.
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Once the battery lasts 20 years, other components (weatherproof
seals, capacitors, PZT, etc.) may begin to fail before the system
enclosure requires a battery change. In this way, the quasi-self-
powered system presents a viable method for developing an i-IoT
framework by leveraging self-powered sensors to move the system
bottleneck away from battery technology.

5.2 Mackinac Measurements

200

100

-100

-200 + -200
== Sensor 1
—6— Sensor 2 -300

-300 Sensor 3 4
=& Sensor 4 400
= = Model 02 03 04 05

400 | I I I
Jun Jul Aug Sep

Figure 9: Data from four sensors, dashed black line shows
expected results from model. Inset showing before and after
Labor Day (Sep 04).

The data collected between May 25t and September 5th of 2017
are presented in Fig. 9 after having the corrective factors applied.
Sensors 1 through 3 are at the same installation site and show the
same trend in data logging, with some difference in peak frequency
as well as injection rate due to fabrication mismatch. Sensor 4 was
on a different installation site, but had a similar configuration in
terms of PZT size (see Fig. 10 for the types of locations under con-
sideration) and PFG tuning parameters. The sparse data collection
appears to follow the trend that we expected based on the PFG char-
acterizations from in-lab testing [7, 10, 17, 26, 34] and the traffic
statistics of the Mackinac Bridge. The trend line is shown as the
dashed black. The inset of Fig 9 shows the data collected before
and after the Mackinac Bridge Labor Day Walk (on Sep. 4™, which
drew a crowd of over 25,000 people, much greater than usual traffic
on the bridge. It shows that during the event the sensors logged

Figure 10: Mackinac Bridge used for deployment study.
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a much larger amount of data than it had in the days before. The
deviation from the model trace, which is based on monthly traffic
statistics, highlights the extra strain that the Labor Day Walk placed
on the sensors. Note that we are only showing a unit-less, corrective-
factor-applied frequency output of a single channel from each PFG
sensor, from which a layperson may have trouble extracting any
meaningful information.

6 CONCLUSIONS

In this paper we presented a system level design of a quasi-self-
powered sensor that combined the benefits of continuously active
self-powered sensors with sporadically active wireless transmission.
The paper also presented a design case study where the sensor was
prototyped for field deployment on the Mackinac Bridge in northern
Michigan. The prototype was designed to continuously operate
over a duration of 20 years and with a transmission range greater
than 100 m. Our preliminary deployment results and measured data
show the sensors to be functional over a period of a few months.
An introspection into the information gleaned from the data will
appear in forthcoming publications.
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