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Abstract

We consider the following communication problem: Al-
ice and Bob each have some valuation functions v1(·)
and v2(·) over subsets of m items, and their goal is to
partition the items into S, S̄ in a way that maximizes
the welfare, v1(S)+v2(S̄). We study both the allocation
problem, which asks for a welfare-maximizing partition
and the decision problem, which asks whether or not
there exists a partition guaranteeing certain welfare, for
binary XOS valuations. For interactive protocols with
poly(m) communication, a tight 3/4-approximation is
known for both [29, 23].

For interactive protocols, the allocation problem is
provably harder than the decision problem: any solution
to the allocation problem implies a solution to the
decision problem with one additional round and logm
additional bits of communication via a trivial reduction.
Surprisingly, the allocation problem is provably easier
for simultaneous protocols. Specifically, we show:

• There exists a simultaneous, randomized protocol
with polynomial communication that selects a par-
tition whose expected welfare is at least 3/4 of the
optimum. This matches the guarantee of the best
interactive, randomized protocol with polynomial
communication.

• For all ε > 0, any simultaneous, randomized proto-
col that decides whether the welfare of the optimal
partition is ≥ 1 or ≤ 3/4 − 1/108 + ε correctly
with probability > 1/2 + 1/poly(m) requires ex-
ponential communication. This provides a separa-
tion between the attainable approximation guar-
antees via interactive (3/4) versus simultaneous
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(≤ 3/4 − 1/108) protocols with polynomial com-
munication.

In other words, this trivial reduction from decision to
allocation problems provably requires the extra round
of communication. We further discuss the implications
of our results for the design of truthful combinatorial
auctions in general, and extensions to general XOS
valuations. In particular, our protocol for the allocation
problem implies a new style of truthful mechanisms.

1 Introduction
Intuitively, search problems (find the optimal solution)
are considered “strictly harder” than decision problems
(does a solution with quality ≥ Q exist?) for the
following (formal) reason: once you find the optimal
solution, you can simply evaluate it and check whether
its quality is ≥ Q or not. The same intuition carries
over to approximation as well: once you find a solution
whose quality is within a factor α of optimal, you
can distinguish between cases where solutions with
quality ≥ Q exist and those where all solutions have
quality ≤ αQ. The easy conclusion one then draws
is that the communication (resp. runtime) required
for an α-approximation to any decision problem is
upper bounded by the communication (resp. runtime)
required for an α-approximation to the corresponding
search problem plus the communication (resp. runtime)
required to evaluate the quality of a proposed solution.

Note though that for communication problems, in
addition to the negligible increase in communication
(due to evaluating the quality of the proposed solu-
tion), this simple reduction might also require (at least)
an extra round of communication (because the parties
can evaluate a solution’s quality only after it is found).
Still, it seems hard to imagine that this extra round is
really necessary, and that somehow protocols exist that
guarantee an (approximately) optimal solution without
(approximately) learning their quality. The surprising
high-level takeaway from our main results is that this
extra round of communication is provably necessary :
Theorems 1.1 and 1.2 provide a natural communica-
tion problem (combinatorial auctions) such that a 3/4-
approximation for the search problem can be found by

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited



a simultaneous protocol1 with polynomial communica-
tion, but every simultaneous prootcol guaranteeing a
(3/4− 1/108 + ε)-approximation for the decision prob-
lem requires exp(m) communication.

At this point, we believe our results to have stan-
dalone interest, regardless of how we wound up at this
specific communication problem. But there is a rich
history related to the design of truthful combinato-
rial auctions motivating our specific question, which we
overview below.

1.1 Combinatorial Auctions - how did we get
here? In a combinatorial auction, a designer with m
items wishes to allocate them to n bidders so as to
maximize the social welfare. That is, if bidder i has
a monotone valuation function vi : 2[m] → R+,2 the de-
signer wishes to find disjoint sets S1, . . . , Sn maximizing∑

i vi(Si). The history of combinatorial auctions is rich,
and the problem has been considered with and with-
out incentives, with and without Bayesian priors, and
in various models of computation (see Appendix A for
brief overview). The overarching theme in all of these
works is to try and answer the following core question:
Are truthful mechanisms as powerful as (not necessarily
truthful) algorithms?3

For many instantiations of the above question, the
answer is surprisingly yes. For example, without con-
cern for computational/communication complexity, the
celebrated Vickrey-Clarke-Groves auction is a truthful
mechanism that always selects the welfare-maximizing
allocation (and therefore achieves welfare equal to that
of the best algorithm) [53, 12, 34]. Of course, the wel-
fare maximization problem is NP-hard and also requires
exponential communication between the bidders, even
to guarantee a 1/

√
m-approximation. A poly-time al-

gorithm (with polynomial communication) is known to
match this guarantee [49, 37, 8], and interestingly, a
poly-time truthful mechanism (with polynomial com-
munication) was later discovered as well [40].

The state of affairs gets even more interesting if
we restrict to proper subclasses of monotone valuations
such as submodular valuations.4 Here, a very simple
greedy algorithm is known to find a 1/2-approximation
in both poly(n,m) black-box value queries to each vi(·),

1A simultaneous protocol has one round of communication:
Alice and Bob each simultaneously send a message and then no
further communication takes place.

2By monotone, we mean that vi(S) ≥ vi(T ) for all T ⊆ S.
3Note that combinatorial auctions is not the only literature to

study this question, see Appendix A for very brief discussion of
other examples such as combinatorial public projects [47] and job

scheduling [43]. We just note here that combinatorial auctions
remain the core testbed for this line of work.

4A function is submodular if v(S)+v(T ) ≥ v(S∪T )+v(S∩T ).

and polynomial runtime (in n,m, and the description
complexity of each vi(·)) [41], and a series of improve-
ments provides now a (1-1/e)-approximation, which is
tight [54, 42, 24]. Yet, another series of works also
proves that any truthful mechanism that runs in poly-
nomial time (in n,m, and the description complex-
ity of each vi(·)), or makes only poly(n,m) black-box
value queries to each vi(·) achieves at best an 1/mΩ(1)-
approximation [14, 17, 27, 25]. So while poly-time
algorithms, or algorithms making poly(n,m) black-
box value queries can achieve constant-factor approx-
imations, poly-time truthful mechanisms and truthful
mechanisms making poly(n,m) black-box value queries
can only guarantee an 1/mΩ(1)-approximation, and
there is a separation.

But this is far from the whole story: al-
ready ten years ago, quite natural truthful mecha-
nisms were developed that achieved an 1/O(log2m)-
approximation [22], which were subsequently improved
to 1/O(

√
logm) [16, 38, 18], and even hold for the much

broader class of XOS valuations.5 As these approxima-
tion guarantees are better than the lower bounds ref-
erenced in the previous paragraph, it seems that per-
haps there should be some kind of contradiction: any
reasonable definition of “natural” should imply “poly-
time,” right? The catch is that each of these mech-
anisms are essentially posted-price mechanisms: they
(essentially) offer each bidder a price pj for item j, and
let the buyer choose any subset of items they want to
purchase. These prices can be computed in poly-time,
but the barrier is that deciding which subset of items
the bidder wishes to purchase, called a demand query, is
in general NP-hard (assuming a succinct representation
of the valuation function is given), or requires exponen-
tially many black-box value queries. So the only reason
these mechanisms don’t fall victim to the strong lower
bounds of the previous paragraph is because they get to
ask each bidder to compute a single demand query, and
this query is used to select exactly the set of items that
bidder receives.

The point is that while these existing separations
are major results, and rule out certain classes of nat-
ural truthful mechanisms from achieving desirable ap-
proximation ratios, they are perhaps not addressing
“the right” model if posted-price mechanisms with poly-
time computable prices provide approximation guaran-
tees that significantly outperform known lower bounds.
Therefore, it seems that communication is really the
right complexity measure to consider, if one wants the

5A valuation is XOS if there exists a matrix of item valuations
vij and vi(S) = maxj{

∑
i∈S vij}. XOS valuations are also called

fractionally subadditive, and are a proper subclass of subadditive

valuations (where v(S ∪ T ) ≤ v(S) + v(T )).
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resulting lower bounds to hold against all “natural”
mechanisms. Unfortunately, the state-of-affairs for com-
munication complexity of combinatorial auctions lags
pretty far behind the aforementioned complexity mea-
sures. For instance, existing literature doesn’t provide
a single lower bound against truthful mechanisms that
doesn’t also hold against algorithms. That is, wher-
ever it’s known that no truthful mechanism with com-
munication at most C obtains an approximation ratio
better than α when buyers have valuations in class V ,
it’s because it’s also known that no algorithm/protocol
with communication at most C obtains an approxi-
mation ratio better than α when buyers have valua-
tions in class V . On the other hand, the best known
truthful mechanisms with polynomial communication
for (say) XOS bidders achieve an 1/O(

√
logm) approxi-

mation [18], while the best known algorithms with poly-
nomial communication obtain a (1−1/e)-approximation
[23, 29, 30]. Even for the case of just two bidders,
the best known truthful mechanisms with polynomial
communication achieve a 1/2-approximation (which is
trivial - just give the grand bundle of all items to
whoever values it most), while the best known algo-
rithms with polynomial communication achieve a 3/4-
approximation (which is tight). It’s fair to say that de-
termining whether or not there’s a separation in what
approximation guarantees are possible for algorithms
with polynomial communication and truthful mecha-
nisms with polynomial communication for any class
of valuations between submodular and subadditive is
one of the core, concrete open problems in Algorithmic
Mechanism Design.

Progress on this front had largely been stalled un-
til very recent work of Dobzinski provided a clear path
to possibly proving a separation (and it seems to be
an accepted conjecture that indeed a separation ex-
ists) [19]. Without getting into details of the com-
plete result, one implication is the following: if there
exists a truthful mechanism with polynomial commu-
nication for 2-player combinatorial auctions with XOS
(/submodular/subadditive) valuations that guarantees
an approximation ratio of α, then there exists a si-
multaneous protocol with polynomial communication
for 2-player combinatorial auctions with XOS (/sub-
modular/subadditive) valuations that guarantees an ap-
proximation ratio of α as well. Let us emphasize this
point again: in general, interactive protocols with poly-
nomial communication do not imply simultaneous pro-
tocols with polynomial communication, and numerous
well-known problems have polynomial interactive pro-
tocols, but require exponential simultaneous communi-
cation [48, 28, 44, 21, 1, 2]. But, Dobzinski’s result
asserts that because of the extra conditions on truth-

ful (interactive) mechanisms, their existence indeed im-
plies a simultaneous (not necessarily truthful) protocol
of comparable communication complexity. So “all” one
has to do to prove lower bounds against truthful mecha-
nisms for 2-player combinatorial auctions is prove lower
bounds against simultaneous protocols, motivating the
study of simultaneous 2-player combinatorial auctions.

At first glance, it perhaps seems obvious that
achieving strictly better than a 1/2-approximation via
a simultaneous protocol should be impossible, and it’s
just a matter of finding the right tools to prove it.6

This is because quite strong lower bounds are known
for “sketching” valuation functions, that is, finding a
succinct representation of a function that allows for ap-
proximate evaluation of value queries. For example, it’s
known that any sketching scheme for XOS valuations
that allows for evaluation of value queries to be accurate
within a o(m)-factor requires superpoly(m) size [4]. So
if somehow a 1/(2− ε)-approximation could be guaran-
teed with a poly(m)-communication simultaneous pro-
tocol, it is not because enough information is transmit-
ted to evaluate value queries within any non-trivial er-
ror. At first glance, it perhaps seems unlikely that such
a protocol can possibly exist. Surprisingly, our work
shows not only that a 1/(2−ε)-approximation is achiev-
able with poly(m) simultaneous communication, but
(depending on exactly the question asked) poly(m) si-
multaneous communication suffices to achieve the same
approximation guarantees as the best possible interac-
tive protocol with poly(m) communication.

1.2 Simultaneous Protocols for Welfare Maxi-
mization In this work, we specifically study the wel-
fare maximization problem for two bidders with binary
XOS valuations.7 Binary XOS valuations are a natural
starting point since welfare maximization is especially
natural when phrased as a communication problem. De-
pending on whether one wants to decide the quality of
the welfare-optimal allocation, or actually find an allo-
cation inducing the optimal welfare, welfare maximiza-
tion for binary XOS bidders is equivalent to one of the
following:8

Definition 1.1. (BXOS Decision Problem) Alice
is given as input a subsets of [m], A1, . . . , Aa. Bob is
given as input b subsets of [m], B1, . . . , Bb, and both

6Indeed, that is what the authors conjectured at the onset of

this work.
7A function is binary XOS if all vij in the matrix representation

are 0 or 1.
8Equivalent definitions are given in Section 1.4 which are

stated more in the language of welfare maximization. We

pose these statements here since these formulations make for an
especially natural communication problem.
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see input X. Determine whether or not there exists
an i, j such that |Ai ∪ Bj | ≥ X. A protocol is an
α-approximation if whenever there exists an i, j such
that |Ai ∪ Bj | ≥ X, it answers yes, and whenever
maxi,j{|Ai ∪ Bj |} < X/α it answers no, but may have
arbitrary behavior in between.

Definition 1.2. (BXOS Allocation Problem)
Alice is given as input a subsets of [m], A1, . . . , Aa.
Bob is given as input b subsets of [m], B1, . . . , Bb.
Output a partition of items S, S̄ maximizing
maxi,j{|Ai ∩ S|+ |Bj ∩ S̄|} (over all partitions).9

Recall that typically we think of decision problems
as being “easier” than allocation/search problems: cer-
tainly if you can find a welfare maximizing allocation,
you can also determine its welfare (and this claim is for-
mal for interactive protocols with poly(m) communica-
tion). Our main result asserts that this intuition breaks
down for simultaneous protocols: the decision problem
is strictly harder than the allocation/search problem.
To the best of our knowledge, this is the first instance
of such a separation.

Theorem 1.1. There exists a randomized, simultane-
ous protocol with poly(m) communication that obtains
a 3/4-approximation for the BXOS allocation problem.
This is the best possible, as even randomized, interactive
protocols require 2Ω(m) communication to do better.

Theorem 1.2. For all ε > 0, any randomized, si-
multaneous protocol that obtains a (3/4 − 1/108 + ε)-
approximation for the BXOS decision problem with
probability larger than 1/2 + 1/poly(m) requires 2Ω(m)

communication.

Future sections contain more precise versions (that
reference the protocols achieving them) of Theorems 1.1
(Theorem 4.1) and 1.2 (Theorem 5.1).

1.3 Extensions and Implications for Truthful
Combinatorial Auctions Part of the analysis of our
protocols actually makes use of the binary assumption
(as opposed to holding for general XOS). Part of the
analysis, however, does not. In particular, our same pro-
tocols when applied to general XOS functions yield a de-
terministic, simultaneous (3/4−1/32−ε)-approximation
for both problems, and a deterministic 2-round (3/4−ε)-
approximation for both problems for general XOS func-
tions.

9A protocol is an α-approximation if it outputs a partition S, S̄

guaranteeing α ·maxi,j{|Ai∩S|+ |Bj ∩ S̄|} ≥ maxi,j,T {|Ai∩T |+
|Bj ∩ T |}.

We are also able to show that a modification of our
protocol yields a 1/2-approximation for any number of
binary XOS bidders, and that this protocol implies a
strictly truthful mechanism.10 The mechanism is quite
different from existing approaches, and could inspire
better truthful mechanisms in domains where previous
molds provably fail. Essentially, the designer offers a
menu of lotteries to each bidder and the cost of each
lottery depends on how “flexible” the option is. So
for instance, taking item one deterministically will be
more expensive than taking a single item uniformly at
random. The pricing scheme is designed exactly so
that each bidder is strictly incentivized to follow our
simultaneous protocol.

Finally, while our results have standalone merit
outside the scope of truthful combinatorial auctions,
it is important to properly quantify their impact in
this direction. Dobzinski’s recent reduction shows
that truthful combinatorial auctions with polynomial
communication imply simultaneous algorithms for the
allocation problem. So Theorem 1.2 does not rule
out the possibility of a truthful mechanism for two
XOS bidders that requires polynomial communication
and guarantees a 3/4-approximation (more on this in
Section 6).

1.4 Brief Preliminaries and Roadmap Below we
give some brief preliminaries. Section 2 provides a
toy setting to help develop intuition for where the gap
between allocation and decision problem comes from.
Section 3 provides a warmup for our protocols via a
2/3-approximation for the allocation problem and a 3/5-
approximation for the decision problem. Sections 4
and 4.1 contain our positive results, and Section 5
contains details on our lower bound.

In a combinatorial auction, there are n players and
m items. In 2-party case, we call the first player
Alice and the second player Bob. Each player i has
a valuation function vi : 2[m] → R+. (We require
vi(∅) = 0.) The goal for the auctioneer is to find an
allocation S1, ..., Sn (S1 ∩ · · · ∩Sn = ∅) to maximize the
social welfare

∑n
i=1 vi(Si).

1. When we use “protocol”, it means that players
honestly follow the protocol and the challenge is
to make the protocol have good approximation
ratio, polynomial communication cost and possibly
small number of rounds. In this paper, we use the
standard communication complexity model and we
allow public randomness and private randomness.

10By this we mean it is a strongly dominant strategy for bidders

to follow the protocol, and not just that they are indifferent
between following and not following.
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For details, we refer the reader to [39]. We
want to emphasize two relevant properties of the
communication protocols here:

(a) We care about the number of rounds of a pro-
tocol. In each round, all the messages need to
be sent simultaneously. We use ”simultaneous
protocols” to denote protocols with only one
round of communication.

(b) All the protocols discussed in this paper are
in the “blackboard model.” In the blackboard
model, each message is broadcasted. Or in
other words, each message is written on a
blackboard for all players and the auctioneer
to see. In some protocol, we don’t really need
broadcast, we will specify where is the message
from and sent to in those protocols.

2. When we use “mechanism,” it means that players
might not tell the truth and we need to incentivize
the players to cooperate. A mechanism in this
paper can be considered as a protocol together
with an allocation rule and a payment rule. Let
the protocol be π and the transcript be Π. For
i = 1, ..., n, let Si be the allocation rule and pi
be the payment of player i. Player i’s utility is
defined as ui(Π) = vi(Si(Π)) − pi(Π). Player i’s
goal is to maximize her expected utility E[ui(Π)].
The expectation is over the randomness of the
mechanism.

We further define the truthful mechanism as the
following. Let mi be the message sent by player i. mi is
a function of vi and the history of the protocol. Here we
only make the definition for the case when each player
sends at most one message in the protocol and all the
mechanisms in this paper are in this case. We say that
mi is a dominant strategy (in expectation) for player
i, if for all v1, ..., vn, player i’s other strategy m′i and
other players’ strategy m−i,

E [vi(Si(Π(mi,m−i))− pi(Π(mi,m−i))]

≥ E [vi(Si(Π(m′i,m−i))− pi(Π(m′i,m−i))] .

We say that a mechanism is a truthful mechanism if
there exist dominant strategies for all players.

One of our goals in this paper is to find an allocation
that achieves good approximation of the maximum so-
cial welfare SW∗(v1, ..., vn) (defined as allocation prob-
lem in Section 1). We say a protocol is α-approximation
if for all v1, ..., vn,

E[
n∑

i=1

vi(Si(Π))] ≥ α · SW∗(v1, ..., vn).

We say a truthful mechanism is α-approximation if for
all v1, ..., vn there exist dominant strategies m1, ...,mn

for player 1, ..., n guaranteeing:

E[
n∑

i=1

vi(Si(Π(m1, ...,mn))] ≥ α · SW∗(v1, ..., vn).

Below are definitions of the valuation classes used
in the paper. These are equivalent to the definitions
used in Section 1, but more apt for proofs and less apt
for posing easy-to-parse communication problems.

Definition 1.3. We consider the following classes of
valuations:

• A valuation function v is additive if for every
bundle S, v(S) =

∑
i∈S v({i}).

• A valuation function v is XOS if there exist addi-
tive valuations a1, ..., at such that for every bundle
S, v(S) = maxt

i=1 ai(S). Each ai is called a clause
of v.

• A valuation function v is binary additive if v is
additive and for every item i, v({i}) ∈ {0, 1}. We
will sometimes refer to a binary additive valuation
as a set, referring to {i|v({i}) = 1}.
• A valuation function v is binary XOS if v is

XOS and all v’s clauses are binary additive val-
uations. Again, we will sometimes refer to v’s
clauses as sets to make it more natural to talk about
unions/intersections/etc.

2 Intuition for the Gap: an Extremely Toy
Setting

Consider the following very toy setting: Alice and
Bob each have some valuation function v(·) such that
v([m]) ∈ [1,M ], and v(·) is monotone (no other assump-
tions).11

Observation 1. In the very toy setting, Alice and
Bob can guarantee the following tight approximation
guarantees with zero communication:

• A 1/2-approximation for the allocation problem
with a randomized protocol: give all the items either
to Alice or Bob uniformly at random.

• A 1/(M+1)-approximation for the allocation prob-
lem with a deterministic protocol: give all the items
to Alice.

• A 1/(2M)-approximation for the decision problem
(decide if social welfare ≥ X or ≤ X/(2M),
arbitrary behavior allowed in-between): If X > 2M
output “≤ X/(2M)” If X ≤ 2M , “≥ X.”

11If one wishes, one could further restrict attention to submod-

ular, XOS, etc., but this section is just supposed to be a toy model
to provide some intuition, and we will not belabor this point.
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Since this example is just to provide intuition, we omit
a complete proof. The first bullet should be fairly
clear: the optimal welfare is clearly upper bounded by
v1([m]) + v2([m]), and the protocol guarantees exactly
half of this. The third bullet should also be clear: the
optimal welfare is always between 1 and 2M . Moreover,
any value in the range is possible (2M if, for instance,
v1({1}) = M = v2({2}). 1 if, for instance, v1(S) =
v2(S) = 1 iff S 3 1, and v1(S) = v2(S) = 0 otherwise).
So with zero communication, better than 1/(2M) is not
possible. The middle bullet is perhaps the only tricky
one. If we give all of the items to Alice, we guarantee
welfare v1([m]) ≥ 1, and the optimum is upper bounded
by v1([m]) +M .

Again, the purpose of this example is just to provide
intuition as to where this gap might come from, and we
do not consider it a “result.” Of course, one should not
expect the gaps to stay quite so drastic as we dial up
the communication: with just logM bits in the above
example, a deterministic protocol for the allocation
problem and decision problem can both guarantee a 1/2-
approximation (output v([m])). But this example still
captures some of the intuition as to where the gap comes
from.

3 Warmup: Beating a 1/2-Approximation
Before explaining our protocol, consider the following
thought experiment: say instead Alice and Bob are
asked to just report a single clause from their valuation.
What clause should they choose and how well will this
protocol solve the allocation/decision problem? It’s
not too hard to see that the best they can do is to
just report the largest clause in their list (maximizes
bi([m]) over all clauses bj), which will obtain just a 1/2-
approximation for each problem. Now, what if they
each report two clauses from their valuations, can they
do something more clever? Well, they should certainly
try to report clauses that are large, as this lets the
other know which sets they value the most. But they
should also try to report clauses that are different, as
this allows for more flexibility in an allocation that both
parties value highly. It’s perhaps not obvious what the
right tradeoff is between large/different (or even exactly
what “different” should formally mean), but it turns
out that a good approach is for Alice and Bob to each
output the two clauses in their list with the largest union
(i.e. output bi, bj maximizing SW∗(bi, bj)). Subject
to figuring out how to translate this information into
solutions, a slight variant of this protocol guarantees
a 2/3-approximation for the allocation problem, and
a 3/5-approximation for the decision problem, and
the proof is actually quite simple. Note below that
Theorem 3.1 holds only for BXOS, whereas Theorem 3.2

holds for general XOS. We’ll provide both proofs below
first, followed by a brief discussion.

Protocol 1 Simultaneous randomized warmup protocol
for 2-party combinatorial auctions with binary XOS
valuations

1: Alice finds b1, b2, b3 among clauses of her valuation
v1 such that b1 maximizes b1([m]) and b2, b3 max-
imize SW∗(b2, b3). Then she picks j uniformly at
random from {1, 2, 3} and sends bj to the auction-
eer.

2: For each item i, the auctioneer allocates it to Alice
if bj({i}) = 1; otherwise allocate it to Bob.

Theorem 3.1. Protocol 1 gives a 2/3-approximation to
the 2-party BXOS allocation problem.

Proof. First, we want to claim that if Alice sents bj
to the auctioneer, then the resulting welfare is at least
SW∗(bj , v2). This is actually an instantiation of a claim
we will want to reference later, so we’ll state a more
general form below:

Claim 1. Let b1 be a binary additive valuation and v2

be a binary XOS valuation. Then the allocation that
awards to Alice all items such that b1({i}) = 1 achieves
welfare equal to SW∗(b1, v2).

Proof. Let A denote the set of items for which b1({i}) =
1, and consider any other allocation (B, B̄). We first
reason that we can remove from B all items /∈ A without
hurting bj(B) + v2(B̄). This is trivial to see, as bj has
value 0 for all items /∈ A. Next, we reason that we can
add to B any item ∈ A without hurting bj(B) + v2(B̄).
To see this, observe that we are certainly increasing
bj(B) by 1 when we make this change, as bj is just
additive and bj({i}) = 1 for all i ∈ A. In addition,
we can’t possibly decrease v2(B̄) by more than 1, as all
of the clauses in v2 are binary additive (and therefore
have value at most 1 for any item). So again, the total
change is only positive. At the end of these changes,
observe that we have now transitioned from (B, B̄) to
(A, Ā) without losing any welfare, and therefore (A, Ā)
is indeed optimal.

Claim 1 immediately lets us conclude that the
expected welfare guaranteed by Protocol 1 is at least
1
3 ·
∑3

j=1 SW∗(bj , v2). Now, let S and T be the optimal
allocation to achieve SW∗(v1, v2). Let a be the clause
of v1 such that a(S) = v1(S). Let a′ be the clause
of v2 such that a′(T ) = v2(T ). So SW∗(v1, v2) =
a(S)+a′(T ). From the protocol, we know that b1([m]) ≥
a([m]) ≥ a(S). Moreover, if U and U ′ are the allocation
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that achieves SW∗(b2, b3), then we know that b2(U) +
b3(U ′) = SW∗(b2, b3) ≥ SW∗(a, b1) ≥ a(S) + b1(T ) (by
definition of b2, b3). In expectation, the social welfare
we get in the protocol is at least:

1

3
·

3∑
j=1

SW∗(bj , v2)

≥ 1

3
· (b1(S) + a′(T ) + b2(U) + a′(U ′) + b3(U ′) + a′(U))

≥ 1

3
· (b1(S) + a′(T ) + a(S) + b1(T ) + a′([m]))

≥ 1

3
· (b1([m]) + a(S) + 2a′(T ))

≥ 1

3
· (2a(S) + 2a′(T )) =

2

3
· SW∗(v1, v2).

Protocol 2 Simultaneous deterministic warmup proto-
col for 2-party combinatorial auctions with XOS valua-
tions

1: Alice finds b1, b2, b3 among clauses of her valua-
tion v1 such that b1 maximizes b1([m]) and b2, b3
maximize SW∗(b2, b3). Bob finds b4, b5, b6 among
clauses of his valuation v2 such that b4 maximizes
b4([m]) and b5, b6 maximize SW∗(b5, b6). Alice
sends b1, b2, b3 to the auctioneer and Bob sends
b4, b5, b6 to the auctioneer simultaneously.

2: For allocation problem: Auctioneer finds j ∈
{1, 2, 3}, j′ ∈ {4, 5, 6} that maximizes SW∗(bj , b′j′)
and allocate items according to it.

3: For decision problem: Let X be the parameter
in the decision problem. Auctioneer finds j ∈
{1, 2, 3}, j′ ∈ {4, 5, 6} that maximizes SW∗(bj , b′j′).
If SW∗(bj , b′j′) ≥ 3X/5, say ”yes” (SW∗(v1, v2) ≥
X). If SW∗(bj , b′j′) < 3X/5, say ”no”.

Theorem 3.2. Protocol 2 gives a 3/5-approximation to
the 2-party XOS allocation problem and the 2-party XOS
decision problem.12

Proof. Let S and T be the optimal allocation to achieve
SW∗(v1, v2). Let a be the clause of v1 such that
a(S) = v1(S). Let a′ be the clause of v2 such that
a′(T ) = v2(T ). So SW∗(v1, v2) = a(S) + a′(T ). From
the protocol, we know that b1([m]) ≥ a([m]) ≥ a(S)
and b4([m]) ≥ a′([m]) ≥ a′(T ). Let U and U ′ be
the allocation to achieve SW∗(b2, b3). We know that
b2(U) + b3(U ′) ≥ a(S) + b1(T ). Let W and W ′ be

12XOS allocation problem and XOS decision problem are the

obvious extensions of BXOS allocation problem and BXOS deci-
sion problem for non-binary clauses.

the allocation to achieve SW∗(b5, b6). We know that
b5(W ) + b6(W ′) ≥ a′(T ) + b4(S). Then we have

SW∗(b1, b5) + SW∗(b1, b6)

≥ b1(W ′) + b5(W ) + b1(W ) + b6(W ′)

≥ b1([m]) + b5(W ) + b6(W ′) ≥ a(S) + a′(T ) + b4(S).

Similarly we have

SW∗(b2, b4) + SW∗(b3, b4) ≥ a(S) + a′(T ) + b1(T ).

The social welfare we get in the protocol is at least

SW∗(bj , b′j′)

≥ 1

5
· (SW∗(b1, b4) + SW∗(b1, b5) +

SW∗(b1, b6) + SW∗(b2, b4) + SW∗(b3, b4))

≥ 1

5
· (b1(S) + b4(T ) + 2a(S) + 2a′(T ) + b4(S) + b1(T ))

≥ 1

5
· (b1([m]) + b4([m]) + 2a(S) + 2a′(T ))

≥ 3

5
(a(S) + a′(T )) =

3

5
SW∗(v1, v2).

From this, it is easy to check that Protocol 2 gives a
3/5-approximation to both the 2-party XOS allocation
problem and the 2-party XOS decision problem.

So now there are two remaining questions: first,
how does one generalize the reasoning in Protocols 1
and 2 to multiple clauses? And second, why the
heck is there a difference between their guarantees for
the allocation and decision problem for binary XOS
valuations? For the first question, we’ll postpone the
details to Section 4, but just note here that our full
protocols indeed makes use of similar reasoning. For
the second, observe that Claim 1 is somewhat magical:
if Alice’s valuation is binary additive, and Bob’s is
binary XOS, then it is possible to allocate the items
optimally without any input from Bob (other than the
knowledge that his valuation is indeed binary XOS).
While it’s not obvious that Claim 1 should necessarily
be quite so helpful (given that we do, in fact, get input
from Bob), this turns out to be the crucial difference
between the allocation and decision problem. At a high
level, there is necessarily some information lost between
Alice’s valuation and her message (ditto for Bob). The
decision problem requires us to deal with both losses,
but Claim 1 lets certain kinds of protocols only worry
about the loss from Alice.

4 Developing Good Summaries
In this section, we define “summaries” in some specific
forms for binary XOS valuations. They are the main
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ingredients in our protocols and mechanisms. At a high
level, the summaries are trying to simultaneously maxi-
mize the size of the reported clauses, while also keeping
on eye on reporting “different” clauses. One can inter-
pret the negative term as a “regularizer” that achieves
this goal. The total size of the reported clauses cor-
responds to term

∑m
i=1 xi and we encourage reporting

“different” clauses by having the term −
∑m

i=1 α · x2
i .

Definition 4.1. (Summaries of binary XOS valuations)
For a binary XOS valuation v, de-
fine its (k, α)-summary (b1, ..., bk) as
argmaxb1,...,bk∈{a1,...,at}

∑m
i=1

(
xi − α · x2

i

)
, where

a1, ..., at are the clauses of v and xi = b1({i})+···+bk({i})
k .

Remark 4.1. For the summaries defined above, there
might be multiple (b1, ..., bk)’s maximize the term. When
we use a (k, α)-summary in some protocol, we will
use an arbitrary one. Additionally, note that our
warm-up protocols from Section 3 ask Alice and Bob to
output both their (1, 1/2)-summary and their (2, 2/3)-
summary, see examples below.

Example 1. For a (1, 1/2)-summary of some binary
XOS valuation v, we will find b1 among clauses of v
that maximizes
m∑
i=1

(
b1({i})− 1

2
· (b1({i}))2

)
=

m∑
i=1

b1({i})/2 =
1

2
b1([m]).

Example 2. For a (2, 2/3)-summary of some binary
XOS valuation v, we will find b1, b2 among clauses of
v that maximize

m∑
i=1

(
b1({i}) + b2({i})

2
− 2

3
·
(
b1({i}) + b2({i})

2

)2
)

=
1

3

m∑
i=1

(b1({i}) + b2({i})− b1({i})b2({i}))

=
1

3
SW∗(b1, b2).

In Appendix C, we prove some simple properties
of these summaries, and an extension of the definition
to non-binary XOS valuations. Essentially, what the
lemmas are stating is that for any set A, the summaries
defined above do a “good enough” job capturing Alice’s
(/Bob’s) value for A. Note that “good enough” doesn’t
mean “captures v(A) within a constant factor,” as this
is impossible with a sketch [4]. “Good enough” simply
means that the summary can be used inside a similar
approach to Section 3.

Once summaries from Alice and Bob are in hand,
there are a couple natural ways to “wrap up” the
allocation/decision problem. We’ll formally name these
and refer to them in future protocols:

• Alice-Only Allocation (randomized): Pick a
clause uniformly at random from Alice’s summary,
award to Alice items for which that clause values
at 1, and the rest to Bob.

• Best Known Allocation (deterministic): If
Alice reports clauses a1, . . . , ak, and Bob reports
clauses b1, . . . , bk, find i, j maximizing SW∗(ai, bj).
Allocate items according to the allocation that
yields SW∗(ai, bj).

• Best Known Decision(α,X) (deterministic):
If Alice reports clauses a1, . . . , ak, and Bob reports
clauses b1, . . . , bk, find i, j maximizing SW∗(ai, bj).
If SW∗(ai, bj) ≥ αX say “yes” (guess that
SW∗(v1, v2) ≥ X). Otherwise, guess “no” (guess
that SW∗(v1, v2) < αX).

4.1 Our Protocols and Mechanisms In this sec-
tion, we’ll describe all protocols used to provide our
positive results. All protocols involve Alice and Bob
reporting a (k, α)-summary, and then using the Alice-
Only or Best Known Allocation, or making the Best
Known Decision. All proofs are in Appendix D and the
appendices in the full version. We make two remarks
before proceeding:

1. All of the high-level intuition for why the protocols
work is captured by the summaries. Many of the
actual proofs are different, but at a high level
everything comes down to the fact that this class
of summaries selects “the right” clauses to report
for welfare maximization.

2. Any protocol that eventually uses the Alice-Only
Allocation doesn’t require Alice to report her entire
summary (she can just draw the random clause
herself as in Protocol 1 (and have communication m
for any choice of k). While we state the guarantees
for such protocols for a fixed k, one can actually
take k →∞ without increasing the communication
at all.

Theorem 4.1. The following protocols achieve the
following guarantees:

Alice’s summary Bob’s summary Wrap-up
(k, 1/2) ⊥ Alice-Only
(k, 1/3) (k, 1/3) Best Known

Allocation
(k, 1/3) (k, 1/3) Best Known

Decision

Approximation Problem Valuations
3/4− 1/k Allocation BXOS

23/32− 1/k Allocation XOS
23/32− 1/k Decision XOS
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Each line in the first table corresponds to each line
in the second table. For a better table, check the full
version of this paper.

Before continuing, we briefly remark the following:

• The 3/4-approximation guaranteed by the proto-
col in the first row is tight: [23] showed that ran-
domized, interactive protocols require exponential
communication to beat a 3/4-approximation.

• The second and third protocols also work for gen-
eral XOS (subject to updating the summary defi-
nition as in Appendix C).

• It is still open whether it is possible to beat 23/32
with a deterministic protocol for the allocation
problem, but 23/32 is optimal for any protocol
using the Best Known Allocation after Alice and
Bob each report a (k, αi)-summary (see the full
version of this paper).

Additional applications of our summaries appear in
the full version of this paper, including a 2-round proto-
col guaranteeing a 3/4-approximation for general XOS
valuations, and our strictly truthful mechanism. The
strictly truthful mechanism essentially visits bidders one
at a time, asks for a (k, 1/2)-summary on the remain-
ing items, awards them the “Alice-Only Allocation” for
their reported summary, and charges payments to en-
sure strict truthfulness.

5 Lower Bounds
Finally, we overview our lower bound for the BXOS
decision problem (which implies Theorem 1.2). We
begin with some intuition: Alice and Bob will each
get exponentially many clauses of size m/2. These sets
will be random, but not uniformly random.13 Instead,
they are drawn in such a way that the union of two
random clauses of Alice and Bob has size (3/4−1/108)m
in expectation. At this point, the optimal welfare is
(3/4− 1/108)m if we don’t further adjust their inputs.
Finally, we modify the construction either by hiding
or not hiding a0 within Alice’s input and b0 within
Bob’s input such that a0 ∪ b0 = [m], in a matter
so that these sets are indistinguishable from the rest.
Therefore, the answer to the decision problem rests on
whether or not Alice and Bob each have this hidden
set, but they have no means by which to convey this
information as this set looks indistinguishable from the
rest. This description captures all of the intuition for
our construction, which appears in Appendix E along
with a proof of Theorem 5.1 below.

13If they were uniformly random, then Alice and Bob can
guarantee 3m/4 in expectation by just reporting a single arbitrary

clause, because two uniformly random sets of size m/2 have union
3m/4 in expectation.

Theorem 5.1. For any constant ε > 0, there exists a
distribution over binary XOS valuations such that no
simultaneous, randomized protocol with less than e2Cm/9

communication can guarantee an α-approximation to
the 2-party BXOS decision problem with probability
larger than 1

2 + 2e−Cm/9. Here α = 3/4 − 1/108 + ε
and C = 2ε2.

6 Discussion and Future Work

Our main result shows a simultaneous protocol guar-
anteeing a 3/4-approximation for the BXOS allocation
problem, and a lower bound of 3/4 − 1/108 for for
the BXOS decision problem. The bigger picture be-
hind these results, even without consideration of truth-
ful combinatorial auctions, is the following:

• It is surprising that the decision problem is strictly
harder than the allocation/search problem. To the
best of our knowledge, this is the first instance of
such a separation.

• It is surprising that a (> 1/2)-approximation for
either the allocation or decision problem is possible
at all, given the strong lower bounds already known
on sketching valuation functions, but we are able
to get a tight 3/4-approximation for the allocation
problem.

• A 3/4-approximation for the decision problem now
serves as a new example of what can be achieved
in polynomial interactive communication (in fact,
two rounds by a theorem in the full version), but
requires exponential simultaneous communication.
While such problems are already known, this has
a very different flavor than previous constructions,
and will likely be a useful tool for this reason.

The most obvious question is to resolve whether
or not there is a 3/4-approximation for the allocation
problem with general XOS functions. If there isn’t, this
would provide the first separation between truthful and
non-truthful protocols with polynomial communication
via Dobzinski’s reduction [19]. Additionally, whether
or not our protocol can be de-randomized is an entic-
ing open question: if no matching deterministic pro-
tocol can be found (implying a lower bound of < 3/4
for deterministic protocols for the allocation problem),
this would provide the first separation between truth-
ful and non-truthful deterministic protocols (Dobzin-
ski’s reduction preserves determinism). If our proto-
col can in fact be de-randomized, this would be fasci-
nating, as this protocol would deterministically guaran-
tee a 3/4-approximation without learning the welfare it
achieves.14

14It somehow seems tempting to conjecture both that our
protocol can be de-randomized and that it can’t - a random clause
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Finally, while we have provided simultaneous pro-
tocols for the allocation problem with approxima-
tion guarantees strictly better than 1/2 when bidders
have XOS valuations, it still remains open whether
or not a truthful mechanism can obtain a (> 1/2)-
approximation for two-player combinatorial auctions
with XOS bidders.

A Background on Related Work

There is an enormous literature of related work on
combinatorial auctions. The state-of-the-art without
concern for incentives is a 1/2-approximation for any
number of subadditive bidders [29], and numerous im-
provements for special cases, such as submodular bid-
ders [23, 29, 30]. With concern for incentives, the
state-of-the-art (for worst-case approximation ratios
and dominant strategy truthfulness) is an 1/O(

√
logm)-

approximation for XOS bidders, again with improve-
ments for further special cases [26]. The problem has
also been studied in Bayesian settings, where a generic
black-box reduction is known if the designer only de-
sires Bayesian truthfulness15 [36, 35, 5]. If the de-
signer desires dominant strategy truthfulness but is okay
with an average-case welfare guarantee, then a 1/2-
approximation is known for XOS bidders [33]. Com-
binatorial auctions have also been studied through the
lens of Price of Anarchy, but a deeper discussion of this
is outside the scope of this paper [6, 45, 51, 52, 32, 9,
20, 15, 41, 11, 7, 31].

The direction of “truthful mechanisms versus algo-
rithms” is also studied through other topics. For ex-
ample, [47] introduces the combinatorial public projects
problem, and characterize truthful mechanisms via a
Roberts-like theorem [50]. They further show a sepa-
ration between what is achievable by communication-
efficient truthful mechanisms and communication-
efficient algorithms, owing to this characterization. In
contrast, such a characterization is not known (and
not believed to exist) for combinatorial auctions, with
Dobzinski’s recent reduction being the only progress
in this direction [19]. Nisan and Ronen’s seminal pa-
per also attacked this question through the problem
of truthful job scheduling on unrelated machines [43].
Here, the specific question studied is fundamentally dif-

of Alice’s does well on average with no input from Bob, so to de-

randomize we just need Bob to tell us something that identifies a
clause performing better than average. At the same time it seems

extremely unlikely that a deterministic protocol will somehow

provide an approximation guarantee better than 3/4− 1/108 for
the allocation problem without violating Theorem 5.1.

15A mechanism is Bayesian truthful if it is in every bidder’s

interest to tell the truth, assuming all other bidders tell the truth
and have values drawn from the correct Bayesian prior.

ferent: they ask whether or not any truthful mecha-
nism (regardless of computation/communication) can
achieve makespan guarantees competitive with the best
possible (whereas for combinatorial auctions, the VCG
mechanism guarantees that truthful mechanisms can
achieve the first-best without concern for computa-
tion/communication [53, 12, 34]).

On the topic of simultaneous versus interactive
communication, [55] proposed the 2-party simultane-
ous communication model when communication com-
plexity was introduced. [48], [28], [44] showed that in
the 2-party case, there is an exponential gap between
k and (k − 1)-round deterministic/randomized commu-
nication complexity of an explicit function. In the
multiparty number-on-forehead communication model
[10], [3] showed an exponential gap between simulta-
neous communication complexity and communication
complexity for up to (log n)1−ε players for any ε > 0.
[21] recently showed that in combinatorial auctions with
unit demand bidders/subadditive bidders, there is an
exponential gap (exponential in the number of play-
ers) between simultaneous communication complexity
and communication complexity. In comparison to these
works, our separation between simultaneous and inter-
active communication for the 2-player BXOS decision
problem is of a quite different flavor, and makes the
available toolkit for future results more diverse.

B Tools for proofs

B.1 Information Theory Here we briefly review
some facts and definitions from information theory
that will be used in this paper. For a more detailed
introduction, we refer the reader to [13].

Throughout this paper, we use log to refer to the
base 2 logarithm and use ln to refer to the natural
logarithm.

Definition B.1. The entropy of a random variable X,
denoted by H(X), is defined as H(X) =

∑
x Pr[X =

x] log(1/Pr[X = x]).

If X is drawn from Bernoulli distributions B(p), we
use H(p) = −(p log p + (1 − p)(log(1 − p)) to denote
H(X).

Definition B.2. The conditional entropy of random
variable X conditioned on random variable Y is defined
as H(X|Y ) = Ey[H(X|Y = y)].

Fact B.1. H(XY ) = H(X) +H(Y |X).

Definition B.3. The mutual information between two
random variables X and Y is defined as I(X;Y ) =
H(X)−H(X|Y ) = H(Y )−H(Y |X).



Definition B.4. The conditional mutual information
between X and Y given Z is defined as I(X;Y |Z) =
H(X|Z)−H(X|Y Z) = H(Y |Z)−H(Y |XZ).

Fact B.2. Let X1, X2, Y, Z be random variables, we
have I(X1X2;Y |Z) = I(X1;Y |Z) + I(X2;Y |X1Z).

Fact B.3. Let X,Y, Z,W be random variables. If
I(Y ;W |X,Z) = 0, then I(X;Y |Z) ≥ I(X;Y |ZW ).

Fact B.4. Let X,Y, Z,W be random variables. If
I(Y ;W |Z) = 0, then I(X;Y |Z) ≤ I(X;Y |ZW ).

B.2 Concentration Bound

Definition B.5. (Negative Correlation) Let
X1, ..., Xn be n random variables supported on {0, 1}.
We say X1, ..., Xn are negatively correlated if for all
S ⊆ [n],

Pr

[∧
i∈S

(Xi = 1)

]
≤
∏
i∈S

Pr[Xi = 1].

Lemma B.1. (Generalized Chernoff Bound[46])
Let X1, ..., Xn be n random variables supported on {0, 1}
and they are negatively correlated. Then for any a > 0,

Pr

[
n∑

i=1

Xi ≥ a+ E[
n∑

i=1

Xi]

]
≤ e−2a2/n.

C Missing Definitions and Proofs of Section 4

Here we give an extension of Definition 4.1 to non-
binary XOS valuations. It is easy to verify that
Definition 4.1 and Definition C.1 are equivalent for
binary XOS valuations.

Definition C.1. (Summaries of XOS valuations)
For a XOS valuation v, define its (k, α)-summary
(b1, ..., bk) as

argmaxb1,...,bk∈{a1,...,at}

m∑
i=1

(∫ +∞

0

(xi,u − α · x2
i,u)du

)
.

Here a1, ..., at are the clauses of v and xi,u =∑k
j=1 1bj({i})≥u

k .

Now we prove some simple properties of these
summaries.

Lemma C.1. Let (b1, ..., bk) be the (k, α)-summary of
some binary XOS valuation v. Let α ≤ 1/2. Let a be a
clause of v and A ⊆ {i|a({i} = 1}. We have

m∑
i=1

(xi − 2α · x2
i ) + 2α ·

∑
i∈A

xi ≥ |A| −
2α · v([m])

k
.

Here xi = b1({i})+···+bk({i})
k .

Proof. Because xi ≤ 1 and α ≤ 1/2, we have

2α ·
∑

i∈{i|a({i}=1}\A

xi ≤ |{i|a({i} = 1}\A|.

So if we can prove the lemma for the case when A =
{i|a({i} = 1}, it will directly imply the lemma for the
case when A ( {i|a({i} = 1}. From now on, we will
assume A = {i|a({i} = 1}. By Definition 4.1, (b1, ..., bk)
are some clauses of v that maximize

∑m
i=1(xi − α · x2

i ).
For 1 ≤ j ≤ m, if we replace bj with a, then∑m

i=1(xi − α · x2
i ) will not increase. So we have

m∑
i=1

(xi − α · x2
i )

≥
m∑
i=1

((xi − bj({i})/k + a({i})/k)

−α · (xi − bj({i})/k + a({i}/k))
2
).

This implies

m∑
i=1

(
bj({i})− a({i})

k
+

2α · k · xi(a({i})− bj({i})) + α(bj({i})− a({i}))2

k2
)

≥ 0.

Summing over all j ∈ [k], we get

m∑
i=1

(xi − 2α · x2
i ) + 2α ·

∑
i∈A

xi

≥ |A| −
m∑
i=1

k∑
j=1

α · (bj({i})− a({i}))2

k2

≥ |A| −
m∑
i=1

k∑
j=1

α · bj({i}) + a({i})
k2

= |A| −
α · (|A|+

∑m
i=1 xi)

k

≥ |A| − 2α · v([m])

k
.

Lemma C.2. Let (b1, ..., bk) be the (k, α)-summary of
some XOS valuation v. Let α ≤ 1/2. Let a be a
clause of v. a′ is an additive valuation and for all i,
a({i}) ≥ a′({i}). We have

m∑
i=1

(∫ +∞

0

(xi,u − 2α · x2
i,u)du+ 2α ·

∫ a′({i})

0

xi,udu

)

≥ a′([m])− 2α · v([m])

k
.

Here xi,u =
∑k

j=1 1bj({i})≥u

k .
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Proof. Because xi,u ≤ 1 and α ≤ 1/2, similarly as
Lemma C.1, it suffices to prove the case when a′ = a.
By Definition C.1, for 1 ≤ j ≤ m, if we replace bj with

a,
∑m

i=1

(∫ +∞
0

(xi,u − α · x2
i,u)du

)
will not decrease. Let

yi,j,u = (1bj({i})≥u − 1a({i})≥u)/k. We get

m∑
i=1

(∫ +∞

0

(xi,u − α · x2
i,u)du

)

≥
m∑
i=1

(∫ +∞

0

(
xi,u − yi,j,u − α · (xi,u − yi,j,u)2

)
du

)
This implies

m∑
i=1

∫ +∞

0

(yi,j,u − 2α · xi,u · yi,j,u) du

≥ −α ·
m∑
i=1

∫ +∞

0

y2
i,j,udu

≥ −α ·
m∑
i=1

∫ max(a({i}),bj({i}))

0

1

k2
· du

= −α ·
m∑
i=1

max(a({i}), bj({i}))
k2

≥ −2α · v([m])

k2
.

Notice that
∑k

j=1 yi,j,u = xi,u − 1a({i})≥u. Summing
over all j ∈ [m], we get

m∑
i=1

∫ +∞

0

(
xi,u − 2α · x2

i,u

)
du

≥
m∑
i=1

∫ +∞

0

(
1a({i})≥u − 2α · xi,u · 1a({i})≥u

)
du

−2α · v([m])

k

= a([m])− 2α · v([m])

k
−

m∑
i=1

2α ·
∫ a({i})

0

xi,udu.

D Protocols for BXOS parties

Protocol 3 Simultaneous protocol for 2-party combi-
natorial auctions with binary XOS valuations

1: Alice computes the (k, 1/2)-summary (b1, ..., bk) of
her valuation v1. Then she picks j uniformly ran-
domly from {1, ..., k} and sends bj to the auctioneer.

2: For each item i, the auctioneer allocates it to Alice
if bj({i}) = 1; otherwise allocate it to Bob.

D.1 Simultaneous protocol for two BXOS par-
ties (implies Theorem 1.1)

Theorem D.1. Protocol 3 gives a (3/4 − 1/k)-
approximation in expectation to the 2-party BXOS al-
location problem.

Proof. Let S and T = [m]\S be the allocation that
achieves the optimal social welfare between v1 and v2

(if there are multiple such allocations, just pick an
arbitrary one). Let a be some clause of v1 such that
v1(S) = a(S) and a′ be some clause of v2 such that
v2(T ) = a′(T ). Let A = {i|a({i}) = 1} ∩ S and
A′ = {i|a′({i}) = 1} ∩ T . We have A ∩ A′ = ∅. The
optimal social welfare is

SW∗(v1, v2) = v1(S)+v2(T ) = a(S)+a′(T ) = |A|+|A′|.

Let xi = b1({i})+···+bk({i})
k . By Lemma C.1, we have

m∑
i=1

(xi − x2
i ) +

∑
i∈A

xi ≥ |A| −
v1([m])

k
.

Therefore,∑
i6∈A′

xi ≥ −
∑

i∈A∪A′
xi +

m∑
i=1

x2
i + |A| − v1([m])

k

≥ −
∑

i∈A∪A′
xi +

∑
i∈A∪A′

x2
i + |A| − v1([m])

k

=
∑

i∈A∪A′

(
(xi −

1

2
)2 − 1

4

)
+ |A| − v1([m])

k

≥
∑

i∈A∪A′

(
−1

4

)
+ |A| − v1([m])

k

= −|A|+ |A
′|

4
+ |A| − v1([m])

k
.

Define Bj = {i|bj({i}) = 1} and Bj = [m]\Bj . By
Claim 1, the expected social welfare Protocol 3 gets is

1

k
·

k∑
j=1

SW∗(bj , v2) ≥ 1

k
·

k∑
j=1

(
bj(Bj) + a′(Bj)

)
≥ 1

k
·

k∑
j=1

(
|Bj |+ |Bj ∩A′|

)
=

1

k
·

k∑
j=1

(|Bj | − |A′ ∩Bj |+ |A′|)

= |A′|+ 1

k
·

k∑
j=1

∑
i6∈A′

bj({i})

= |A′|+
∑
i6∈A′

xi

≥ |A′| − |A|+ |A
′|

4
+ |A| − v1([m])

k

=
3

4
· (|A|+ |A′|)− v1([m])

k
.
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As v1([m]) ≤ SW∗(v1, v2) = |A| + |A′|, Protocol 3
gives a (3/4−1/k) approximation in expectation to the
problem.

Protocol 4 Sequential protocol for multi-party combi-
natorial auctions with binary XOS valuations

1: for l = 1, ..., n− 1 do
2: The l-th player computes the (k, 1/2)-summary

(bl1, ..., b
l
k) of her valuation vl for items that are

left. Then she picks j uniformly randomly from
{1, ..., k} and broadcasts blj .

3: For each item i left, the auctioneer allocates it to
the l-th player if blj({i}) = 1.

4: end for
5: Allocate the left items to the n-th player.

D.2 Sequential protocol for multiple BXOS
parties

Theorem D.2. Protocol 4 gives a (1/2 − 1/k)-
approximation in expectation to the n-party BXOS allo-
cation problem.

Proof. Let C(n) − 1/k be the approximation ratio of
Protocol 4 on n players. We prove the theorem by
induction on n. By Theorem 3, C(2) ≥ 3/4. For
any n ≥ 3, let S1, S2, ..., Sn be the allocation that
achieves the optimal social welfare. For l ∈ [n], let
al be the clause of vl such that al(Sl) = vl(Sl) and
Al = {i : al({i}) = 1}∩Sl. Therefore SW∗(v1, ..., vn) =
|A1|+ · · ·+ |An|.

Let xi =
b11({i})+···+b1k({i})

k . By Lemma C.1, we have

m∑
i=1

(xi − x2
i ) +

∑
i∈A1

xi ≥ |A1| −
|A1|+

∑m
i=1 xi

2k
.

Notice this not exactly from the statement of Lemma
C.1, but it is explicit from the proof of Lemma C.1.

Let Bj = {i|b1j ({i}) = 1}. In Protocol 4, player 1

will get welfare 1
k ·
∑k

j=1 |Bj | =
∑m

i=1 xi in expectation.
Let A′ = A2∪· · ·∪An. After player 1 takes all the items
in Bj , the other players can at least get welfare |A′\Bj |
if we allocate items optimally. By induction, in Protocol
4, players 2 to n will get welfare (C(n−1)−1/k)·|A′\Bj |
conditioned on player 1 gets Bj . So in expectation,

players 2 to n will get welfare at least 1
k ·
∑k

j=1(C(n−
1)−1/k) · |A′\Bj | = (C(n−1)−1/k) · (|A′|−

∑
i∈A′ xi).

So in expectation, Protocol 4 gets welfare at least

m∑
i=1

xi + (C(n− 1)− 1/k) · (|A′| −
∑
i∈A′

xi)

≥
m∑
i=1

xi + (C(n− 1)− 1/k) · (|A′| −
∑
i∈A′

xi)

+C(n− 1)(|A1| −
|A1|+

∑m
i=1 xi

2k

−
m∑
i=1

(xi − x2
i )−

∑
i∈A1

xi)

= C(n− 1) · (|A′|+ |A1|)
+

∑
i∈A1∪A′

(
(1− 2C(n− 1))xi + C(n− 1)x2

i

)
+

∑
i6∈A1∪A′

(
(1− C(n− 1))xi + C(n− 1)x2

i

)
−1

k

(
|A′| −

∑
i∈A′

xi + C(n− 1) ·
|A1|+

∑m
i=1 xi

2

)

≥ C(n− 1) · (|A′|+ |A1|) +
m∑
i=1

C(n− 1)

·

((
xi −

2C(n− 1)− 1

2C(n− 1)

)2

− (2C(n− 1)− 1)2

4C(n− 1)

)

+0−
(|A1|+ |A′|) + (

∑
i6∈A′ xi + |A′|)

2k

≥
(
C(n− 1)− (2C(n− 1)− 1)2

4C(n− 1)
− 1

k

)
·SW∗(v1, ..., vn)

=

(
1− 1

4C(n− 1)
− 1

k

)
· SW∗(v1, ..., vn).

So we have

C(n) ≥ 1− 1

4C(n− 1)
=

1

2
+
C(n− 1)− 1

2

2C(n− 1)
.

This means C(n − 1) ≥ 1/2 would imply C(n) ≥ 1/2.
As C(2) ≥ 3/4, we know that C(n) ≥ 1/2 for all n ≥ 2.

E Missing Proof of Section 5

We now provide a little more detail for the construction.
Any claims in the first six bullets are straight-forward
without any background in information theory. For-
malizing the final bullet is the only tricky part, but will
probably appear straight-forward to experts in infor-
mation theory. The real interest lies in the construction
itself.

• First, draw S to be a uniformly random set of size
m/2. Draw T uniformly random among all sets of
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size m/2 with S∩T = m/3. Alice will know S (but
not T , only that S ∩T = m/3), and Bob will know
T (but not S).

• Each of Alice’s (exponentially many) clauses ai
are drawn uniformly random among sets such that
|ai ∩S| = m/3 and |ai ∩ S̄| = m/6. In other words,
Alice’s sets are all of size m/2, and all intersect S
more than a uniformly random set.

• Each of Bob’s (exponentially many) clauses bi are
drawn uniformly random among sets such that
|bi ∩ T | = m/3 and |bi ∩ T̄ | = m/6.

• At this point, with very high probability, the
optimal welfare is (3/4− 1/108)m.

• Now, notice that there exist (many possible) a0
0

such that |a0
0 ∩ S| = m/3 = |a0

0 ∩ T |. There also
exist (many possible) a1

0 such that |a1
0∩S| = m/3 =

|ā1
0 ∩ T |. So with probability 1/2, add the clause

a0
0 to both Alice and Bob’s input. With probability

1/2, add the clause a1
0 to Alice’s clauses and b10 = ā1

0

to Bob’s.

• We can prove that in case 0, we haven’t improved
the welfare at all, while in case 1 the welfare has
improved to m. So in order to obtain better than
a (3/4 − 1/108) approximation for the decision
problem, Alice and Bob must figure out whether
they are in case 0 or case 1.

• But doing so requires someone to communicate use-
ful information about either a0 or b0, which is im-
possible since all sets appear a priori indistinguish-
able and there are exponentially many of them.

Theorem E.1. (Restatement of Theorem 5.1)
For any constant ε > 0, there exists a distribution
over binary XOS valuations such that no simultaneous
protocol with communication cost less than e2Cm/9 can
have an α-approximation to the 2-party BXOS decision
problem with probability larger than 1

2 + 2e−Cm/9. Here
α = 3/4− 1/108 + ε and C = 2ε2.

Proof. This proof uses mutual information (Definition
B.3) and other information theory tools. We also use
generalized Chernoff bound for negatively correlated
random variables. We mention these tools in Appendix
B.

To start the proof, we sample Alice and Bob’s
valuations v1 and v2 from the below procedure. It’s
basically following the ideas above. Sampling in this
specific way will make the later part of the proof easier.
Here M is the bit we want to hide in Alice and Bob’s
inputs. Later we will show M is equal to the output of
the decision problem with high probability.

1. Sample S and T uniformly randomly from all the
pairs of sets that satisfy S, T ⊆ [m], |S| = |T | =
m/2, |S ∩ T | = m/3.

2. Sample bit M uniformly randomly from {0, 1}. Let
Sc = [m]\S and T c = [m]\T .

(a) If M = 1 then sample U1 uniformly randomly
from all the sets that satisfy S ∩ T c ⊆ U1,
|U1 ∩ (S ∩ T )| = m/6, |U1 ∩ (Sc ∩ T c)| = m/6
and |U1∩ (T ∩Sc)| = 0. And let U2 = [m]\U1.

(b) If M = 0 then sample U1 uniformly randomly
from all the sets that satisfy S ∩ T ⊆ U1,
|U1 ∩ (Sc ∩ T c)| = m/6, |U1 ∩ (S ∩ T c)| = 0
and |U1 ∩ (T ∩ Sc)| = 0. And let U2 = U1.

3. Let l = e4Cm/9. Sample J1, J2 uniformly randomly
from [l]. Set AJ1

= U1 and BJ2
= U2.

(a) Define DS to be the uniform distribution over
all sets X such that X ⊆ [m], |X ∩ S| = m/3
and |X∩Sc| = m/6. For j = 1, ..., l and j 6= J1

sample Aj from DS .
(b) Similarly define DT to be the uniform distri-

bution over all sets X such that X ⊆ [m],
|X ∩ T | = m/3 and |X ∩ T c| = m/6. For
j = 1, ..., l and j 6= J2 sample Bj from DT .

4. Finally we set v1 and v2 as following:

(a) For j = 1, ..., l, define aj to be the binary
additive valuation such that aj({i}) = 1i∈Aj

for all i ∈ [m]. And set v1 to be the binary
XOS valuation with clauses a1, ..., al.

(b) For j = 1, ..., l, define bj to be the binary
additive valuation such that bj({i}) = 1i∈Bj

for all i ∈ [m]. And set v2 to be the binary
XOS valuation with clauses b1, ..., bl.

Since we are working on a specific distribution, wlog we
can assume the simultaneous protocol is deterministic.
Let Π1 be the message sent by Alice and Π2 be the
message sent by Bob in the simultaneous protocol.
The rest of the proof proceeds in two steps. We
will first show that Π1 and Π2 together convey very
little information about M to the auctioneer using
information theoretic argument. After that, we will
show that if the auctioneer has very little information
about M , she cannot solve BXOS decision problem with
large probability.

For the first step, we prove the following lemma.
It’s basically stating that I(Π1Π2;M) - the mutual
information (Definition B.3) between Π1Π2 (messages
sent by Alice and Bob) and the bit M is no more
than the length of messages over the number of sets
Alice/Bob has in its input. Here’s an overview of the
proof. The proof can be broken down into two parts. In
the first part we show I(Π1Π2;M) is upper bounded by
I(Π1;U1|S) + I(Π2;U2|T ). As defined above, U1 and
U2 are special sets which contain information about
M . The proof of the first part is roughly just to use
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independence of random variables and the fact that M
is a function of U1 and U2 to transit through mutual
information terms. In the second part of the proof,

we show I(Π1;U1|S) ≤ |Π1|
l . The idea is that when

only S is given, U1 looks similar to other sets in Alice’s
input. We can prove that the amount of information
Π1 conveys about U1 is the same as the amount of
information Π1 conveys about some other set in Alice’s
input. As Π1’s entropy is at most its length, we can

conclude I(Π1;U1|S) ≤ |Π1|
l .

Lemma E.1.

I(Π1Π2;M) ≤ |Π1|+ |Π2|
l

= e−2Cm/9.

Proof. Since M is independent with S and T , we have

I(Π1Π2;M) ≤ I(Π1Π2ST ;M)

= I(ST ;M) + I(Π1Π2;M |ST )

= 0 + I(Π1Π2;M |ST ).

Since M is a function of U1 and U2 (M = 1U1=U2), we
have

I(Π1Π2;M |ST ) ≤ I(Π1Π2;U1U2|ST )

= I(Π1;U1U2|ST ) + I(Π2;U1U2|STΠ1).

Notice that

I(Π2;U1U2|STΠ1)

= I(Π2;U1U2Π1|ST )− I(Π2; Π1|ST )

≤ I(Π2;U1U2Π1|ST )

= I(Π2;U1U2|ST ) + I(Π2; Π1|STU1U2)

≤ I(Π2;U1U2|ST ) + I(v2; v1|STU1U2)

= I(Π2;U1U2|ST ).

The second last step is because Π1 is a function of v1

and Π2 is a function of v2. The last step is because
after S, T, U1, U2 are sampled, v1 and v2 are sampled
using independent randomness.

It’s easy to check that when S, T are given, U2 is a
function of U1. So we have

I(Π1;U1U2|ST ) = I(Π1;U1|ST )

= I(Π1;U1T |S)− I(Π1;T |SU1)

≤ I(Π1;U1T |S)

= I(Π1;U1|S) + I(Π1;T |SU1)

≤ I(Π1;U1|S) + I(v1;T |SU1)

= I(Π1;U1|S).

The second last step is because Π1 is a function of v1.
The last step is because when fixing S and U1, v1 is
independent with T . Similarly we also get

I(Π2;U1U2|ST ) ≤ I(Π2;U2|T ).

So far, we get

I(Π1Π2;M)

≤ I(Π1Π2;M |ST )

≤ I(Π1;U1U2|ST ) + I(Π2;U1U2|STΠ1)

≤ I(Π1;U1U2|ST ) + I(Π2;U1U2|ST )

≤ I(Π1;U1|S) + I(Π2;U2|T ).

Finally, we just need to bound I(Π1;U1|S) and
I(Π2;U2|T ). First it’s easy to check that when S is
fixed, AJ1

is also distributed as DS . Therefore given
S, fixing J1 does not change v1’s distribution . So
I(v1; J1|S) = 0. As Π1 is a function of v1, we also
have I(Π1; J1|S) = 0. Therefore,

I(Π1;U1|S) = I(Π1;AJ1 |S) ≤ I(Π1;AJ1J1|S)

= I(Π1; J1|S) + I(Π1;AJ1 |SJ1) = I(Π1;AJ1 |SJ1).

We also have

I(Π1;A1A2...Al|S) ≤ H(Π1|S) ≤ |Π1|.

On the other hand, we know that for all j = 1, ..., l− 1,
I(A1...Aj ;Aj+1|S) = 0. By Fact B.4, we have

I(Π1;A1A2...Al|S)

=
l∑

j=1

I(Π1;Aj |SA1...Aj−1) ≥
l∑

j=1

I(Π1;Aj |S).

Then we have

I(Π1;U1|S) ≤ I(Π1;AJ1
|SJ1) =

1

l
·

l∑
j=1

I(Π1;Aj |S) ≤ |Π1|
l
.

Similarly we have

I(Π2;U2|T ) ≤ |Π2|
l
.

To sum up, we get

I(Π1Π2;M) ≤ I(Π1;U1|S)+I(Π2;U2|T ) ≤ |Π1|+ |Π2|
l

.

Now we are going to show that the auctioneer cannot
solve the decision problem with large probability based
on Lemma E.1. Let D be the output from the auctioneer
for the BXOS decision problem. (D = 1 if the answer is
”yes”, D = 0 if the answer is no.) Since D is a function
of Π1 and Π2, we have

I(D;M) ≤ I(Π1Π2;M) ≤ e−2Cm/9.

Let e = Pr[D 6= M ]. By Fano’s inequality ,

1− (e− 1/2)2 ≥ H(e) ≥ H(M |D)

= H(M)− I(M ;D) ≥ 1− e−2Cm/9.
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So e ≥ 1/2 − e−Cm/9. This basically states that if
mutual information between M and D is small, then
the probability of M 6= D is large.

Finally we will show that since Pr[D 6= M ] is large,
the algorithm fails to solve the decision problem with
large probability. Let W be the indicator variable such
that W = 1 if the one of the following three events
happens and W = 0 otherwise:

1. αm ≤ SW∗(v1, v2) < m.

2. SW∗(v1, v2) < αm and M = 1.

3. SW∗(v1, v2) ≥ m and M = 0.

We know that if W = 0, then M is the unique correct
output of the decision problem. So the probability that
auctioneer fails to solve the decision problem is at least
Pr[M 6= D]− Pr[W = 1].

Now we need to upper bound Pr[W = 1].

1. When M = 1, we know that SW∗(v1, v2) ≥
SW∗(aJ1

, bJ2
) = |U1∪U2| = m. So Pr[W = 1|M =

1] = 0.

2. When M = 0, we know that SW∗(v1, v2) =
maxj1,j2∈[l] SW∗(aj1 , bj2). Therefore,

Pr[W = 1|M = 0] ≤ Pr[SW∗(v1, v2) > αm|M = 0]

≤
∑

j1,j2∈[l]

Pr[SW∗(aj1 , bj2) ≥ αm|M = 0].

Define Xi = 1i∈Aj1∪Bj2
. We are going to upper

bound Pr[SW∗(aj1 , bj2) ≥ αm|M = 0] in four
different cases.

(a) When j1 = J1, j2 = J2: SW∗(aj1 , bj2) =
|U1| = m/2. In this case Pr[SW∗(aj1 , bj2) ≥
αm|M = 0] = 0.

(b) When j1 = J1 and j2 6= J2: Fix S and T . We
know Xi = 1 when i ∈ U1. E[Xi] = 2/3 when
i ∈ T ∩ Sc. E[Xi] = 1/3 when i ∈ T c\U1. So

E[SW∗(aj1 , bj2)] = E[
m∑
i=1

Xi]

= m/2 + (2/3) · (m/6) + (1/3) · (m/3)

= 13m/18.

Although Xi’s are not independent, but it
is easy to check that they are negatively
correlated. By generalized chernoff bound for
negative correlated random variables, we get

Pr[
m∑
i=1

Xi ≥ αm] ≤ exp(−2(α−13/18)2m) ≤ e−Cm.

Thus in this case, we have Pr[SW∗(aj1 , bj2) ≥
αm|M = 0] ≤ e−Cm.

(c) When j2 = J2 and j1 6= J1: This is
similar to the previous case, we can get
Pr[SW∗(aj1 , bj2) ≥ αm|M = 0] ≤ e−Cm.

(d) When j1 6= J1 and j2 6= J2: Fix S and
T . We know E[Xi] = 8/9 when i ∈ S ∩ T .
E[Xi] = 7/9 when i ∈ (T ∩ Sc) ∪ (S ∩ T c).
E[Xi] = 5/9 when i ∈ Sc ∩ T c. So

E[SW∗(aj1 , bj2)] = E[
m∑
i=1

Xi] = 20m/27.

Although Xi’s are not independent, but it
is easy to check that they are negatively
correlated. By generalized chernoff bound for
negative correlated random variables, we get

Pr[
m∑
i=1

Xi ≥ αm] ≤ exp(−2(α−20/27)2m) = e−Cm.

Thus in this case, we have Pr[SW∗(aj1 , bj2) ≥
αm|M = 0] ≤ e−Cm.

Therefore, we have

Pr[W = 1|M = 0] ≤ l2 · e−Cm = e−Cm/9.

To sum up, the auctioneer fails with probability at
least

Pr[M 6= D]− Pr[W = 1] = 1/2− 2e−Cm/9.
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Michael Schapira. Bayesian combinatorial auctions. In
ICALP, 2008.

[12] Edward H. Clarke. Multipart pricing of public goods.
Public Choice, pages 17–33, 1971.

[13] Thomas M. Cover and Joy A. Thomas. Elements of
Information Theory (Wiley Series in Telecommunica-
tions and Signal Processing). Wiley-Interscience, 2006.

[14] Amit Daniely, Michael Schapira, and Gal Shahaf. In-
approximability of truthful mechanisms via general-
izations of the vc dimension. In Proceedings of the
Forty-seventh Annual ACM Symposium on Theory of
Computing, STOC ’15, pages 401–408, New York, NY,
USA, 2015. ACM.

[15] Nikhil Devanur, Jamie Morgenstern, Vasilis Syrgka-
nis, and S. Matthew Weinberg. Simple auc-
tions with simple strategies. Manuscript, 2015.
http://www.cs.cmu.edu/ jamiemmt/papers/draft.pdf.

[16] Shahar Dobzinski. Two randomized mechanisms for
combinatorial auctions. In Proceedings of the 10th In-
ternational Workshop on Approximation and the 11th
International Workshop on Randomization, and Com-
binatorial Optimization. Algorithms and Techniques,
pages 89–103, 2007.

[17] Shahar Dobzinski. An impossibility result for truthful
combinatorial auctions with submodular valuations. In
Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, 6-8 June
2011, pages 139–148, 2011.

[18] Shahar Dobzinski. Breaking the logarithmic barrier

for truthful combinatorial auctions with submodular
bidders. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC
2016, pages 940–948, New York, NY, USA, 2016. ACM.

[19] Shahar Dobzinski. Computational efficiency requires
simple taxation. In FOCS 2016, 2016.

[20] Shahar Dobzinski, Hu Fu, and Robert Kleinberg. On
the complexity of computing an equilibrium in com-
binatorial auctions. In the 26th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2015.

[21] Shahar Dobzinski, Noam Nisan, and Sigal Oren. Eco-
nomic efficiency requires interaction. In the 46th
annual ACM symposium on Theory of computing
(STOC), 2014.

[22] Shahar Dobzinski, Noam Nisan, and Michael Schapira.
Truthful randomized mechanisms for combinatorial
auctions. In Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pages 644–
652. ACM, 2006.

[23] Shahar Dobzinski and Michael Schapira. An improved
approximation algorithm for combinatorial auctions
with submodular bidders. In Proceedings of the Sev-
enteenth Annual ACM-SIAM Symposium on Discrete
Algorithm, SODA ’06, pages 1064–1073, Philadelphia,
PA, USA, 2006. Society for Industrial and Applied
Mathematics.

[24] Shahar Dobzinski and Jan Vondrák. The computa-
tional complexity of truthfulness in combinatorial auc-
tions. In ACM Conference on Electronic Commerce,
EC ’12, Valencia, Spain, June 4-8, 2012, pages 405–
422, 2012.

[25] Shahar Dobzinski and Jan Vondrák. From query com-
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