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We consider the problem of a single seller repeatedly selling a single item to a single buyer (specifically,

the buyer has a value drawn fresh from known distribution D in every round). Prior work assumes that

the buyer is fully rational and will perfectly reason about how their bids today affect the seller’s decisions

tomorrow. In this work we initiate a different direction: the buyer simply runs a no-regret learning algorithm

over possible bids. We provide a fairly complete characterization of optimal auctions for the seller in this

domain. Specifically:

• If the buyer bids according to EXP3 (or any “mean-based” learning algorithm), then the seller can

extract expected revenue arbitrarily close to the expected welfare. This auction is independent of the

buyer’s valuation D, but somewhat unnatural as it is sometimes in the buyer’s interest to overbid.

• There exists a learning algorithmA such that if the buyer bids according toA then the optimal strategy

for the seller is simply to post the Myerson reserve for D every round.

• If the buyer bids according to EXP3 (or any “mean-based” learning algorithm), but the seller is restricted

to “natural” auction formats where overbidding is dominated (e.g. Generalized First-Price or Generalized

Second-Price), then the optimal strategy for the seller is a pay-your-bid format with decreasing reserves

over time. Moreover, the seller’s optimal achievable revenue is characterized by a linear program, and

can be unboundedly better than the best truthful auction yet simultaneously unboundedly worse than

the expected welfare.

CCS Concepts: • Theory of computation → Online learning algorithms; Algorithmic game theory;
Convergence and learning in games;

Additional Key Words and Phrases: mechanism design, auctions, multi-armed bandits, no-regret learning

1 INTRODUCTION
Consider a bidder trying to decide how much to bid in an auction (for example, a sponsored search

auction). If the auction happens to be the truthful Vickrey-Clarke-Groves auction [7, 15, 31], then

the bidder’s decision is easy: simply bid your value. If instead, the bidder is participating in a

Generalized First-Price (GFP) or Generalized Second-Price (GSP) auction, the optimal strategy is

less clear. Bidders can certainly attempt to compute a Bayes-Nash equilibrium of the associated
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game and play accordingly, but this is unrealistic due to the need for accurate priors and extensive

computation.

Alternatively, the bidders may try to learn a best-response over time (possibly offloading the

learning to commercial bid optimizers). We specifically consider bidders who no-regret learn, as
empirical work of [27] shows that bidder behavior on Bing is largely consistent with no-regret

learning (i.e. for most bidders, there exists a per-click value such that their behavior guarantees

no-regret for this value). From the perspective of a revenue-maximizing auction designer, this

motivates the following question: If a seller knows that buyers are no-regret learning over
time, how should they maximize revenue?
This question is already quite interesting even when there is just a single item for sale to a

single buyer. We consider a model where in every round t , the seller solicits a bid bt ∈ [0, 1]
from the buyer, then allocates the item according to some allocation rule xt (·) and charges the

bidder according to some pricing rule pt (·) (satisfying pt (b) ≤ b · xt (b) for all t ,b).
1
Note that the

allocation and pricing rules (henceforth, auction) can differ from round to round, and that the

auction need not be truthful. Each round, the bidder has a value vt drawn independently from

D, and uses some no-regret learning algorithm to decide which bid to place in round t , based on

the outcomes in rounds 1, . . . , t − 1 (we will make clear exactly what it means for a buyer with

changing valuation to play no-regret in Section 2, but one can think of vt as providing a “context”

for the bidder during round t ). The same mathematical model can also represent a population

D of many indistinguishable buyers with fixed values who each separately no-regret learn - see

Section 2.3 for further details.

One default strategy for the seller is to simply to set Myerson’s revenue-optimal reserve price

for D, r (D), in every round (that is, xt (bt ) = I (bt ≥ r (D)), pt (bt ) = r (D) · I (bt ≥ r (D)) for all
t , where I (·) is the indicator function). It’s not hard to see that any no-regret learning algorithm

will eventually learn to submit a winning bid during all rounds where vt > r (D), and a losing bid

whenever vt < r (D). Note that this observation appeals only to the fact that the buyer guarantees

no-regret, and makes no reference to any specific algorithm the buyer might use. So if Rev(D)
denotes the expected revenue of the optimal reserve price when a single buyer is drawn from D,

the default strategy guarantees the seller revenue T · Rev(D) − o(T ) over T rounds. The question

then becomes whether or not the seller can beat this benchmark, and if so by how much.

The answer to this question isn’t a clear-cut yes or no, so let’s start with the following instanti-

ation: how much revenue can the seller extract if the buyer runs EXP3 [3]? In Theorem 3.1, we

show that the seller can actually do much better than the default strategy: it’s possible to extract

revenue per round equal to (almost) the full expected welfare! That is, if Val(D) = Ev←D[v], there
exists an auction that extracts revenue T · Val(D) − o(T ) for all D.

2
It turns out this result holds

not only for EXP3, but for any learning algorithm with the following (roughly stated) property: if

at time t , the mean reward of action a is significantly larger than the mean reward of action b, the
learning algorithm will choose action b with negligible probability. We call a learning algorithm

with this property a “mean-based” learning algorithm and note that many commonly used learning

algorithms - EXP3, Multiplicative Weights Update [1], and Follow-the-Perturbed-Leader [16, 18, 19]

- are ‘mean-based’ (see Section 2 for a formal definition).

We postpone all intuition until Section 3.1 with a worked-through example, but just note here

that the auction format is quite unnatural: it “lures” the bidder into submitting high bids early on

by giving away the item for free, and then charging very high prices (but still bounded in [0, 1])

1
Of course, the pricing rule can be implemented by charging pt (b)/xt (b)whenever the item is awarded if ex-post individual

rationality is desired.

2
The order of quantifiers in this sentence is correct: it is actually the same auction format that works for all D.



near the end. The transition from “free” to “high-price” is carefully coordinated across different

bids to achieve the revenue guarantee.

This result motivates two further directions. First, do there exist other no-regret algorithms for

which full surplus extraction is impossible for the seller? In Theorem 3.2, we show that the answer

is yes. In fact, there is a simple no-regret algorithmA, such that when the bidder uses algorithmA

to bid, the default strategy (set the Myerson reserve every round) is optimal for the seller. We again

postpone a formal statement and intuition to Section 3.2, but just note here that the algorithm is a

natural adaptation of EXP3 (or in fact, any existing no-regret algorithm) to our setting.

Finally, it is reasonable to expect that biddersmight use off-the-shelf no-regret learning algorithms

like EXP3, so it is still important to understand what the seller can hope to achieve if the buyer

is specifically using such a “mean-based” algorithm (formal definition in Section 2). Theorem 3.1

is perhaps unsatisfying in this regard because the proposed auction is so unnatural. It turns out

that the key property separating natural untruthful auctions (e.g. GSP/GFP) from the unnatural

auction above is whether overbidding is a dominated strategy. That is, in our unnatural auction, if

the bidder truly hopes to guarantee low regret they must seriously consider overbidding (and this is

how the auction lures them into bidding way above their value). In both GSP and GFP, overbidding

is dominated, so the bidder can guarantee no regret while overbidding with probability 0 in every

round.

The final question we ask is the following: if the buyer is using EXP3 (or any “mean-based”

algorithm), never overbids (we call such a bidder conservative), how much revenue can the seller

extract using an auction where overbidding is dominated in every round? It turns out that the

auctioneer can still outperform the default strategy, but not extract full welfare. Instead, we identify

a linear program (as a function of D) that tightly characterizes the optimal revenue the seller can

achieve in this setting when the buyer’s values are drawn from D. Moreover, we show that the

auction that achieves this guarantee is natural, and can be thought of as a pay-your-bid auction

with decreasing reserves over time. Finally, we show that this “mean-based revenue” benchmark,

MBRev(D) lies truly in between the Myerson revenue and the expected welfare: for all c , there
exists a distribution D over values such that c ·T · Rev(D) < MBRev(D) < 1

c ·T · Val(D). In other

words, the seller’s mean-based revenue may be unboundedly better than the default strategy, yet

simultaneously unboundedly far from the expected welfare. We provide formal statements and a

detailed proof overview of these results in Section 3.3. To briefly recap, our main results are the

following:

(1) If the buyer uses a “mean-based” learning algorithm like EXP3, the seller can extract revenue

(1 − ε)T · Val(D) − o(T ) for any constant ε > 0 (Theorem 3.1).

(2) There exists a natural no-regret algorithm A such that when the buyer bids according

to A, the seller’s default strategy (charging the Myerson reserve every round) is optimal

(Theorem 3.2).

(3) If the buyer uses a “mean-based” algorithm only over undominated strategies, the seller can

extract revenueMBRev(D) using an auction where overbidding is dominated in every round.

Moreover, we characterizeMBRev(D) as the value of a linear program, and show it can be

simultaneously unboundedly better thanT · Rev(D) and unboundedly worse thanT ·Val(D)
(Theorems 3.6, 3.4 and 3.8).

Our plan for the remaining sections is as follows. Below, we overview our connection to related

work. Section 2 formally defines our model. Section 3 works through a concrete example, providing

intuition for all three results. Section 4 discusses conclusions and open problems.



1.1 Related Work
There are two lines of work that are most related to ours. The first is that of dynamic auctions, such
as [2, 21–23, 28]. Like our model, there are T rounds where the seller has a single item for sale to

a single buyer, whose value is drawn from some distribution every round. However, the buyer is

fully strategic and processes fully how their choices today affect the seller’s decisions tomorrow

(e.g. they engage with deals of the form “pay today to get the item tomorrow”). Additional closely

related work is that of Devanur et al. studying the Fishmonger problem [12, 17]. Here, there is

again a single buyer and seller, and T rounds of sale. Unlike our model, the buyer draws a value

from D once during round 0 and that value is fixed through all T rounds (so the seller could try to

learn the buyer’s value over time). Also unlike our model, they study perfect Bayesian equilibria

(where again the buyer is fully strategic, and reasons about how their actions today affect the

seller’s behavior tomorrow).

In contrast to these works, while buyers in our model do care about the future (e.g. they value

learning), they don’t reason about how their actions today might affect the seller’s decisions

tomorrow. Our model better captures settings where full information about the auction is not

public (and fully strategic reasoning is simply impossible without the necessary information).

Other related work considers the Price of Anarchy of simple combinatorial auctions when bidders

no-regret learn [9, 27, 29, 30]. One key difference between this line of work and ours is that these all

study welfare maximization for combinatorial auctions with rich valuation functions. In contrast,

our work studies revenue maximization while selling a single item. Additionally, in these works

the seller commits to a publicly known auction format, and the only reason for learning is due to

the strategic behavior of other buyers. In contrast, buyers in our model have to learn even when
they are the only buyer, due to the strategic nature of the seller.

Recent work has also considered learning from the perspective of the seller. In these works, the

buyer’s (or buyers’) valuations are drawn from an unknown distribution, and the seller’s goal is to

learn an approximately optimal auction with as few samples as possible [6, 8, 11, 13, 14, 24, 25].

These works consider numerous different models and achieve a wide range of guarantees, but all

study the learning problem from the perspective of the seller, whereas the buyer is simply myopic

and participates in only one round. In contrast, it is the buyer in our model who does the learning

(and there is no information for the seller to learn: the buyer’s values are drawn fresh in every

round).

Finally, no-regret learning in online decision problems is an extremely well-studied problem.

When feedback is revealed for every possible action, one well-known solution is the multiplicative

weight update rule which has been rediscovered and applied in many fields (see survey [1] for

more details). Another algorithmic scheme for the online decision problem is known as Follow the

Perturbed Leader [16, 18, 19]. When only feedback for the selected action is revealed, the problem

is referred to as the multi-armed bandit problem. Here, similar ideas to the MWU rule are used

in developing the EXP3 algorithm [3] for adversarial bandit model, and also for the contextual

bandit problem [20]. Our algorithm in Theorem 3.2 bears some similarities to the low swap regret

algorithm introduced in [4]. See the survey [5] for more details about the multi-armed bandit

problem. Our results hold in both models (i.e. whether the buyer receives feedback for every bid

they could have made, or only the bid they actually make), so we will make use of both classes of

algorithms.

In summary, while there is already extensive work related to repeated sales in auctions, and even

no-regret learning with respect to auctions (from both the buyer and seller perspective), our work

is the first to address how a seller might adapt their selling strategy when faced with a no-regret

buyer.



2 MODEL AND PRELIMINARIES
We consider a setting with 1 buyer and 1 seller. There are T rounds, and in each round the seller

has one item for sale. At the start of each round t , the buyer’s value v(t) (known only to the

buyer) for the item is drawn independently from some distribution D (known to both the seller

and the buyer). For simplicity, we assume D has a finite support
3
of sizem, supported on values

0 ≤ v1 < v2 < · · · < vm ≤ 1. For each i ∈ [m], vi has probability qi of being drawn under D.

The seller then presents K options for the buyer, which can be thought of as “possible bids” (we

will interchangeably refer to these as options, bids, or arms throughout the paper, depending on
context). Each arm i is labelled with a bid value bi ∈ [0, 1], with b1 < . . . , < bK . Upon pulling this

arm at round t , the buyer receives the item with some allocation probability ai,t , and must pay a

price pi,t ∈ [0,ai,t · bi ]. These values ai,t and pi,t are chosen by the seller during time t , but remain

unknown to the buyer until he plays an arm, upon which he learns the values for that arm. All of

our positive results (i.e. strategies for the seller) are non-adaptive (in some places called oblivious),
in the sense that that ai,t ,pi,t are set before the first round starts. All of our negative results (i.e.

upper bounds on how much a seller can possibly attain) hold even against fully adaptive sellers,
where ai,t and pi,t can be set even after learning the distribution of arms the buyer intends to pull in
round t .
In order for the selling strategies to possibly represent natural auctions, we require the alloca-

tion/price rules to be monotone. That is, if i > j, then for all t , ai,t ≥ aj,t and pi,t ≥ pj,t . In other

words, bidding higher should result in a (weakly) higher probability of receiving the item and

(weakly) higher expected payment. We’ll also insist on the existence of an arm 0 with bid b0 = 0

and a0,t = 0 for all t ; i.e., an arm which charges nothing but does not give the item. Playing this

arm can be thought of as not participating in the auction.

2.1 Bandits and experts
Our goal is to understand the behavior of such mechanisms when the buyer plays according to some

no-regret strategy for the multi-armed bandit problem. In the classic multi-armed bandit problem a

learner (in our case, the buyer) chooses one of K arms per round, over T rounds. On round t , the
learner receives a reward ri,t ∈ [0, 1] for pulling arm i (where the values ri,t are possibly chosen

adversarially). The learner’s goal is to maximize his total reward.

Let It denote the arm pulled by the principal at round t . The regret of an algorithm A for the

learner is the random variable Reg(A) = maxi
∑T

t=1 ri,t −
∑T

t=1 rIt ,t . We say an algorithmA for the

multi-armed bandit problem is δ -no-regret if E[Reg(A)] ≤ δ (where the expectation is taken over

the randomness of A). We say an algorithm A is no-regret if it is δ -no-regret for some δ = o(T ).
In the multi-armed bandits setting, the learner only learns the value ri,t for the arm i which he

pulls on round t . In our setting, the learner will learn ai,t and pi,t explicitly (from which they can

compute ri,t ). Our results (both positive and negative) also hold when the learner learns the value

ri,t for all arms i (we refer this full-information setting as the experts setting, in contrast to the

partial-information bandits setting). Simple no-regret algorithms exist in both the experts setting

and the bandits setting. Of special interest in this paper will be a class of learning algorithms for

the bandits problem and experts problem which we term ‘mean-based’.

Definition 2.1 (Mean-Based Learning Algorithm). Let σi,t =
∑t

s=1 ri,s . An algorithm for the

experts problem or multi-armed bandits problem is γ -mean-based if it is the case that whenever

σi,t < σj,t − γT , then the probability that the algorithm pulls arm i on round t is at most γ . We say

an algorithm is mean-based if it is γ -mean-based for some γ = o(1).

3
If D instead has infinite support, all our results hold approximately after discretization to multiples of ε . If D is bounded

in [0, H ], then all our results hold after normalizing D by dividing by H .



Intuitively, ‘mean-based’ algorithms will rarely pick an arm whose current mean is significantly

worse than the current best mean. Many no-regret algorithms, including commonly used variants

of EXP3 (for the bandits setting), the Multiplicative Weights algorithm (for the experts setting) and

the Follow-the-Perturbed-Leader algorithm (experts setting), are mean-based (see full version of

this paper).

Contextual bandits. In our setting, the buyer has the additional information of their current

value for the item, and hence is actually facing a contextual bandits problem. In (our variant of)

the contextual bandits problem, each round t the learner is additionally provided with a context ct
drawn from some distribution D supported on a finite set C (in our setting, ct = v(t), the buyer’s
valuation for the item at time t ). The adversary now specifies rewards ri,t (c), the reward the learner
receives if he pulls arm i on round t while having context c . If we are in the full-information

(experts) setting, the learner learns the values of ri,t (ct ) for all arms i after round t , where as if we
are in the partial-information (bandits) setting, the learner only learns the value of ri,t (ct ) for the
arm i that he pulled.
In the contextual bandits setting, we now define the regret of an algorithm A in terms of

regret against the best “context-specific” policy π ; that is, Reg(A) = maxπ :C→[K ]
∑T

t=1 rπ (ct ),t (ct ) −∑T
t=1 rIt ,t (ct ), where again It is the arm pulled by M on round t . As before, we say an algorithm

is δ -low regret if E[Reg(M)] ≤ δ , and say an algorithm is no-regret if it is δ -no-regret for some

δ = o(T ).
If the size of the context setC is constant with respect toT , then there is a simple way to construct

a no-regret algorithmM ′ for the contextual bandits problem from a no-regret algorithmM for the

classic bandits problem: simply maintain a separate instance ofM for every different context v ∈ C
(in the contextual bandits literature, this is sometimes referred to as the S-EXP3 algorithm [5]). We

call the algorithm we obtain this way its contextualization, and denote it as cont(M).
If we start with a mean-based learning algorithm, then we can show that its contextualization

satisfies an analogue of the mean-based property for the contextual-bandits problem (proof in the

full version of this paper).

Definition 2.2 (Mean-Based Contextual Learning Algorithm). Let σi,t (c) =
∑t

s=1 ri,s (c). An al-

gorithm for the contextual bandits problem is γ -mean-based if it is the case that whenever

σi,t (c) < σj,t (c) − γT , then the probability pi,t (c) that the algorithm pulls arm i on round t if
it has context c satisfying pi,t (c) < γ . We say an algorithm is mean-based if it is γ -mean-based for

some γ = o(1).

Theorem 2.3. If an algorithm for the experts problem ormulti-armed bandits problem is mean-based,
then its contextualization is also a mean-based algorithm for the contextual bandits problem.

Finally, we will refer to learning algorithms that never overbid as conservative. We will sometimes

abuse notation and instead refer to a buyer employing a conservative algorithm as conservative.

2.2 Welfare and monopoly revenue
In order to evaluate the performance of our mechanisms for the seller, we will compare the revenue

the seller obtains to two benchmarks from the single-round setting of a seller selling a single item

to a buyer with value drawn from distribution D.

The first benchmark we consider is the welfare of the buyer, the expected value the buyer assigns
to the item. This quantity clearly upper bounds the expected revenue that the seller can hope to

extract per round.

Definition 2.4. The welfare, Val(D) is equal to Ev∼D[v].



The second benchmark we consider is the monopoly revenue, the maximum possible revenue

attainable by the seller in one round against a rational buyer. Seminal work of Myerson [26] shows

that this revenue is attainable by setting a fixed price (“monopoly/Myerson reserve”) for the item,

and hence can be characterized as follows.

Definition 2.5. Themonopoly revenue (alternatively,Myerson revenue)Mye(D) is equal tomaxp p ·
Prv∼D[v ≥ p].

2.3 A final note on the model
For concreteness, we chose to phrase our problem as one where a single bidder whose value is

repeatedly drawn independently fromD each round engages in no-regret learning with their value

as context. Alternatively, we could imagine a population ofm different buyers, each with a fixed
value vi . Each round, exactly one buyer arrives at the auction, and it is buyer i with probability qi .
The buyers are indistinguishable to the seller, and each buyer no-regret learns (without context,

because their value is always vi ). This model is mathematically equivalent to ours, so all of our

results hold in this model as well if the reader prefers this interpretation instead.

3 AN ILLUSTRATIVE EXAMPLE
In this section, we overview an illustrative example to show the difference between mean-based

and non-mean-based learning algorithms, and between conservative and non-conservative learners.

We will not prove all claims in this section (nor carry out all calculations) as it is only meant to

illustrate and provide intuition. Throughout this section, the running example will be when D

samples 1/4 with probability 1/2, 1/2 with probability 1/4, and 1 with probability 1/4. Note that

Val(D) = 1/2 and Rev(D) = 1/4.

3.1 Mean-Based Learning
Let’s first consider what the seller can do with an auction when the buyer is running a mean-based

(non-conservative) learning algorithm like EXP3. The seller will let the buyer bid 0 or 1. If the buyer

bids 0, they pay nothing but do not receive the item (recall that an arm of this form is required). If

the buyer bids 1 in round t , they receive the item and pay some price pt as follows: for the first half
of the game (1 ≤ t ≤ T /2), the seller sets pt = 0. For the second half of the game (T /2 < t ≤ T ), the
seller sets pt = 1.

Let’s examine the behaviour of the buyer, recalling that they run amean-based learning algorithm,

and therefore (almost) always pull the arm with highest cumulative utility. The buyer with value 1

will happily bid 1 all the way through, since he is always offered the item for less than or equal to

his value for the item. The buyer with value 1/2 will bid 1 for the first T /2 rounds, accumulating

a surplus (i.e., negative regret) of 1/2 per round. For the next T /2 rounds, this surplus slowly

disappears at the rate of 1/2 per round until it disappears at time T , so the bidder with value 1/2

will bid 1 all the way through. Finally, the bidder with value 1/4 will bid 1 for the first T /2 rounds,
accumulating surplus at a rate of 1/4 per round. After roundT /2, this surplus decreases at a rate of
3/4 per round, until at round 2T /3 his cumulative utility from bidding 1 reaches 0 and he switches

to bidding 0.

Now let’s compute the revenue. From round T /2 through 2T /3, the buyer always buys the item
at a price of 1, so the seller obtains T /6 revenue. Finally, from round 2T /3 through T , the buyer
purchases the item with probability 1/2 and pays 1. The total revenue is 0 +T /6 +T /6 = T /3. Note
that if the seller used the default strategy, they would extract revenue only T /4.

Where did our extra revenue come from? First, note that the welfare of the buyer in this example

is quite high: the bidder gets the item the whole way through when v ≥ 1/2, and two-thirds of



the way through when v = 1/4. One reason why the welfare is so high is because we give the

item away for free in the early rounds. But notice also that the utility of the buyer is quite low:

the buyer actually has zero utility when v ≤ 1/2, and utility 1/2 when v = 1. The reason we’re

able to keep the utility low, despite giving the item away for free in the early rounds is because we

overcharge the bidders in later rounds (and they choose to overpay, exactly because their learning

is mean-based).

In fact, by offering additional options to the buyer, we show that it is possible for the seller to
extract up to the full welfare from the buyer (e.g. a net revenue ofT /2 − o(T ) for this example). As in

the above example, our mechanism makes use of arms which are initially very good for the buyer

(giving the item away for free, accumulating negative regret), followed by a period where they are

very bad for the buyer (where they pay more than their value). The trick in the construction is

making sure that the good/bad intervals line up so that: a) the buyer purchases the item in every

round, no matter their value (this is necessary in order to possibly extract full welfare) and b) by

round T , the buyer has zero (arbitrarily small) utility, no matter their value.

Getting the intervals to line up properly so that any mean-based learner will pick the desired

arms still requires some work. But interestingly, our constructed mechanism is non-adaptive and

prior-independent (i.e. the same mechanism extracts full welfare for all D). Theorem 3.1 below

formally states the guarantees. The construction itself and the proof appear in the full version of

this paper.

Theorem 3.1. If the buyer is running a mean-based algorithm, for any constant ε > 0, there exists
a strategy for the seller which obtains revenue at least (1 − ε)Val(D)T − o(T ).

Two properties should jump out as key in enabling the result above. The first is that the buyer

only has no regret towards fixed arms and not towards the policy they would have used with a lower
value (this is what leads the buyer to continue bidding 1 with value 1/2 even though they have

already learned to bid 0 with value 1/4). This suggests an avenue towards an improved learning

algorithm: have the bidder attempt to have no regret not only towards each fixed arm, but also

towards the policy of play produced when having different values. This turns out to be exactly the

right idea, and is discussed in the following subsection below.

The second key property is that we were able to “lure” the bidders into playing an arm with a

free item, then overcharge them later to make up for lost revenue. This requires that the bidder

consider pulling an arm with maximum bid exceeding their value, which will never happen for

a conservative bidder. It turns out it is still possible to do better than the default strategy against

conservative bidders, but not as well as against non-conservative mean-based bidders. Section 3.3

explores conservative mean-based bidders for this example.

3.2 Better Learning
In our bad example above, the buyer with value 1/2 for the item slowly spends the second half

of the game losing utility. While his behaviour is still no-regret (he ends up with zero net utility,

which indeed is at least as good as only bidding 0), he would have been much happier to follow the

actions of the buyer with value 1/4, who started bidding 0 at 2T /3.
Using this idea, we show how to construct a no-regret algorithm for the buyer (Algorithm 1)

such that the seller receives at most the Myerson revenue every round. We accomplish this by

extending an arbitrary no-regret algorithm (e.g. EXP3) by introducing “virtual arms” for each value,

so that each buyer with value v has low regret not just with respect to every fixed bid, but also

no-regret with respect to the policy of play as if they had a different value v ′ for the item (for all

v ′ < v). In some ways, our construction is very similar to the construction of low internal-regret (or

swap-regret) algorithms from low external-regret algorithms. The main difference is that instead of



having low regret with respect to swapping actions, we have low regret with respect to swapping

contexts (i.e. values). Theorem 3.2 below states that the seller cannot outperform the default strategy

against buyers who use such algorithms to learn.

Theorem 3.2. There exists a no-regret algorithm (Algorithm 1) for the buyer against which every
seller strategy extracts no more thanMye(D)T +O(m

√
δT ) revenue.

Algorithm1No-regret algorithm for buyer where the seller achieves nomore thanMye(D)T+o(T )
revenue.

1: Let M be a δ -no-regret algorithm for the classic multi-armed bandit problem, with δ = o(T ).
Initializem copies ofM ,M1 throughMm .

2: InstanceMi ofM will learn over K + i − 1 arms.

3: The first K arms ofMi (“bid arms”) correspond to the K possible menu options b1,b2, . . . ,bK .
4: The last i − 1 arms of Mi (“value arms”) correspond to the i − 1 possible values (contexts)

v1, . . . ,vi−1.
5: for t = 1 to T do
6: if buyer has value vi then
7: UseMi to pick one arm from the K + i − 1 arms.

8: if the arm is a bid arm bj then
9: Pick the menu option j (i.e. bid bj ).
10: else if the arm is a value arm vj then
11: Sample an arm from Mj (but don’t update its state). If it is a bid arm, pick the corre-

sponding menu option. If it is a value arm, recurse.

12: end if
13: Update the state of algorithmMi with the utility of this round.

14: end if
15: end for

A more further discussion of the algorithm along with a proof of Theorem 3.2 appear in the full

version of this paper. The key observation in the proof is that “not regretting playing as if my value

were v ′” sounds a lot like “not preferring to report value v ′ instead of v .” This suggests that the
aggregate allocation probabilities and prices paid by any buyer using our algorithm should satisfy

the same constraints as a truthful auction, proving that the resulting revenue cannot exceed the

default strategy (and indeed the proof follows this approach).

Finally, observe that the following corollary immediately follows. Because the seller cannot hope

to get more thanMye(D)T + o(T ) per round when the buyer is using Algorithm 1, and the buyer

cannot hope to do better than telling the truth against a truthful auction, it is in fact a Nash for the

buyer to use Algorithm 1 and the seller to set price equal to the Myerson reserve every round.

Corollary 3.3. It is an o(T )-Nash equilibrium for the seller to set the Myerson reserve p(D) in
every round (any bid ≥ p(D) reserve wins the item and pays p(D)), and the buyer to use Algorithm 1.

3.3 Mean-Based Learning and Conservative Bidders
Recall in our example that to extract revenue T /3, bidders with values 1/4 and 1/2 had to consider

bidding 1. If bidders are conservative, they will simply never do this.

Although the auction in Section 3.1 is no longer viable, consider the following auction instead:

in addition to the zero arm, the bidder can bid 1/4 or 1/2. If they bid 1/2 in any round, they will get

the item with probability 1 and pay 1/2. If they bid 1/4 in round t ≤ T /3, they get nothing. If they



bid 1/4 in round t ∈ (T /3,T ], they get the item and pay 1/4. Let’s again see what the bidder will

choose to do, remembering that they will always pull the arm that has provided highest cumulative

utility (due to being mean-based).

Clearly, the bidder with value 1/4 will bid 1/4 every round (since they are conservative, they

won’t even consider bidding 1/2), making a total payment of 2T /3 · 1/4 · 1/2 = T /12. The bidder
with value 1/2 will bid 1/2 for the first T /3 rounds, and then immediately switch to bidding 1/4,

making a total payment of T /3 · 1/2 · 1/4 + 2T /3 · 1/4 · 1/4 = T /12.
The bidder with value 1 will actually bid 1/2 for the entire T rounds. To see this, observe that

their cumulative surplus through round t from bidding 1/2 is t · 1/2 · 1/4 = t/8 (t rounds by utility

1/2 per round by probability 1/4 of having value 1). Their cumulative surplus through round t
from bidding 1/4 is instead (t −T /3) · 3/4 · 1/4 = 3t/16 −T /16 ≤ t/8 (for t ≤ T ). Because they are

mean-based, they will indeed bid 1/2 for the entire duration due to its strictly higher utility. So their

total payment will be T · 1/2 · 1/4 = T /8. The total revenue is then 7T /24 > T /4, again surpassing

the default strategy (but not reaching the T /3 achieved against non-conservative buyers).

Let’s again see where our extra revenue comes from in comparison to a truthful auction. Notice

that the bidder receives the item with probability 1 conditioned on having value 1/2, and also

conditioned on having value 1. Yet somehow the bidder pays an average of 1/3 conditioned on

having value 1/2, but an average of 1/2 conditioned on having value 1. This could never happen in a
truthful auction, as the bidder would strictly prefer to pretend their value was 1/2 rather than 1.

But it is entirely possible when the buyer does mean-based learning, as evidenced by this example.

In the full version of this paper, we define MBRev(D) as the value of the LP in Figure 1. In

Theorems 3.6 and 3.4, we show thatMBRev(D)T tightly characterizes (up to ±o(T )) the optimal

revenue a seller can extract against a conservative buyer. The proofs can be found in the full version

of this paper.

maximize
m∑
i=1

qi (vixi − ui )

subject to ui ≥ (vi −vj ) · x j , ∀ i, j ∈ [m] : i > j

ui ≥ 0, 1 ≥ xi ≥ 0, ∀ i ∈ [m]

Fig. 1. The mean-based revenue LP.

Before stating our theorems, let us parse this LP. qi is a constant representing the probability
that the buyer has value vi (also a constant). xi is a variable representing the average probability
that the bidder gets the item with value vi , and ui is a variable representing the average utility

of the bidder when having value vi . Therefore, this bidder’s average value is vixi , the average
price they pay is vixi − ui , and the objective function is simply the average revenue. The second

constraints are just normalization, ensuring that everything lies in [0, 1]. The first line of constraints
are the interesting ones. These look a lot like IC constraints that a truthful auction must satisfy, but

something’s missing: the LHS is clearly the utility of the buyer with value vi for “telling the truth,”

but the utility of the buyer for “reporting vj instead” is (vi −vj ) · x j + uj (so the uj term is missing

on the RHS).

Here is a brief proof outline for why no seller can extract more revenue thanMBRev(D):

(1) Since the buyer has no regret conditioned on having value vi , their utility is at least as high

as playing arm j every round, for all j ≤ i .



(2) Since the auction never charges arm j more than vj (conditioned on awarding the item), the

buyer’s utility for playing arm j every round is at least yj · (vi −vj ), where yj is the average
probability that arm j awards the item.

(3) Since the auction is monotone, and the buyer never considers overbidding, if the buyer gets

the item with probability x j conditioned on having value vj , we must have yj ≥ x j .

These three facts together show that no seller can extract more thanMBRev(D) against a no-
regret buyer who doesn’t overbid. Observe also that step 3 is exactly the step that doesn’t hold for

buyers who consider overbidding (and is exactly what’s violated in our example in Section 3.1): if

the buyer ever overbids, then they might receive the item with higher probability than had they

just played their own arm every round.

Theorem 3.4. Any strategy for the seller achieves revenue at mostMBRev(D)T + o(T ) against a
conservative buyer.

The full proof of Theorem 3.4 appears in the the full version of this paper - all of the key ideas

have been overviewed above.

It turns out that the previous theorem is tight; there exists an auction (taking the form of a first-

price auction with descending reserve) which achieves revenueMBRev(D)T against a conservative

mean-based buyer. More specifically, this auction is defined by a threshold rt that decreases over
time. If at time t you bid bt ≥ rt , then you receive the item and must pay bt ; otherwise, you receive

nothing and pay nothing. Moreover, the threshold function rt which achieves optimal revenue is

determined from the optimal solution to the mean-based LP: the threshold rt drops from vi to vi+1
at round xi (where the xi belong to some optimal solution).

To show that this is a valid strategy for the seller, we need to show that the values xi are monotone

increasing. Luckily, this follows simply from the structure of the mean-based revenue LP.

Lemma 3.5. Let x1,x2, . . . ,xm ,u1,u2, . . . ,um be an optimal solution to the mean-based revenue LP.
Then for all i < j, xi < x j .

Proof. We proceed by contradiction. Suppose that the sequence of xi are not monotone; then

there exists an 1 ≤ i ≤ m − 1 such that xi > xi+1. Now consider another solution of the LP, where

we increase xi+1 to xi , keeping the value of all other variables the same. This new solution does not

violate any constraints in the LP since for all j > i + 1, uj ≥ (vj −vi ) · xi ≥ (vj −vi+1) · xi . However
this change increases the value of the objective by vi+1qi+1(xi − xi+1) > 0, thus contradicting the

fact that x1, . . . ,xm ,u1, ...,um was an optimal solution of the mean-based revenue LP. �

We now show that this strategy indeed achievesMBRev(D)T against a conservative buyer.

Theorem 3.6. For any constant ε > 0, there exists a strategy for the seller gets revenue at least
(MBRev(D)−ε)T−o(T ) against a buyer running amean-based algorithmwho overbids with probability
0. The strategy sets a decreasing cutoff rt and for all t awards the item with probability 1 to any bid
bt ≥ rt for price bt , and with probability 0 to any bid bt < rt .

Proof. We will show that: i) the buyer with value vi receives the item for at least xiT − o(T )
turns (receiving vixiT − o(T ) total utility from the items), and ii) this buyer’s net utility is at most

(ui + ε)T + o(T ). This implies that this buyer pays the seller at least xiviT − (ui + ε)T − o(T ) over
the course of the T rounds; taking expectation over all vi completes the proof.

Assume the buyer is running a γ -mean-based learning algorithm. Consider the buyer when they

have value vi . Note that

σj,t (vi ) = (vi −vj + ε) ·max(0, t − (1 − x j )T ).



We first claim that after round (1−xi )T +γT /ε , the buyer will buy the item (i.e., choose an option

that results in him getting the item) each round with probability at least 1 −mγ . To see this, first

note that σi,t (vi ) ≥ γT when t ≥ (1 − xi )T + γT /ε . Then, since the cumulative utility of any arm is

0 until it starts offering the item, it follows from the mean-based condition that the buyer will pick

a specific arm that is not offering the item with probability at most γ , and therefore choose some

good arm with probability at least 1 −mγ . It follows that, in expectation, the buyer with value vi
receives the item for at least (1 −mγ )(xiT − γT /ε) = xiT − o(T ) turns.
We now proceed to upper bound the overall expected utility of the buyer. For each index j ≤ i ,

let S j be the set of t where σj,t (vi ) > σj′,t (vi ) for all other j
′
. Note that since each σj,t (vi ) is a linear

function in t (when positive), each S j is either the empty set or an interval (yjT , zjT ). Since all the
vi are distinct, note that these intervals partition the interval ((1 − xi )T ,T ) (with the exception of

up tom endpoints of these intervals); in particular,

∑
j≥i (zj − yj ) = xi .

Let ε ′ = minj (vj+1 − vj ). Note that, if t ∈ (yjT + γT /ε ′, zjT − γT /ε ′), then for all j ′ , j,
σj,t (vi ) > σj′,t (vi ) + γT . This follows since σj,t (vi ) − σj′,t (vi ) is linear in t with slope vj − vj′ ,
and |vj −vj′ | > ε ′. It follows that if t is in this interval, then the buyer will choose option j with
probability at least 1 −mγ (by a similar argument as before).

Define j(t) = argmaxj σj,t (vi ) to be the index of the arm with the current largest cumulative

reward, and let σmax,t (vi ) =
∑t

s=1 r j(s),s (vi ) be the cumulative utility of always playing the arm

with the current highest cumulative reward for the first t rounds. The following lemma shows

that σmax,T (vi ) is close to maxj σj,T (vi ). (In other words, playing the best arm every round and

playing the best-at-the-end arm every round have similar payoffs if the historically best arm does

not change often).

Lemma 3.7. |σmax,T (vi ) −maxj σj,T (vi )| ≤ m.

Proof. LetW = |{t |j(t) , j(t + 1)}| equal the number of times the best arm switches values;

note that since each σj,t (vi ) is linear,W is at mostm. Let t1 < t2 < · · · < tW be the values of t such
that j(t) , j(t + 1). Additionally define t0 = 1 and tW +1 = T . Then, dividing the cumulative reward

σmax,t into intervals by these ti , we get that

σmax,t (vi ) =
t∑

s=1

r j(s),s (vi )

=

W +1∑
i=1

(σj(ti ),ti (vi ) − σj(ti ),ti−1 (vi ))

= σj(T ),T (vi ) +
W +1∑
i=1

(σj(ti−1),ti−1 (vi ) − σj(ti ),ti−1 (vi ))

= max

j
σj,t (vi ) +

W +1∑
i=1

(σj(ti−1),ti−1 (vi ) − σj(ti ),ti−1 (vi ))

It therefore suffices to show that |σj(ti−1),ti−1 (vi ) −σj(ti ),ti−1 (vi )| ≤ 1 for all i . To see this, note that
(by the definition of j(t)),σj(ti−1),ti−1 (vi )−σj(ti ),ti−1 (vi ) > 0, and thatσj(ti−1),ti−1+1(vi )−σj(ti ),ti−1+1(vi ) <
0. However,

(σj(ti−1),ti−1+1(vi )−σj(ti ),ti−1+1(vi )) = (σj(ti−1),ti−1 (vi )−σj(ti ),ti−1 (vi ))+(r j(ti−1),ti−1+1(vi )−r j(ti ),ti−1+1(vi ))

Since 0 ≤ r j,t (u) ≤ 1, it follows that |σj(ti−1),ti−1 (vi ) − σj(ti ),ti−1 (vi )| ≤ 1. This completes the

proof. �



Let σT (vi ) =
∑T

t=1 E[rIt ,t (vi )] denote the expected cumulative utility of this buyer at time T . We

claim that σT ≤ maxj σj,T (vi ) + o(T ). To see this, recall that, for t ∈ (yjT + γT /ε
′, zjT − γT /ε

′),

Pr[It , j] ≤ mγ , and therefore E[rIt ,t ] ≤ r j,t +mγ . Furthermore, note that for t ∈ S j , j(t) = j, so
r j,t = r j(t ),t and E[rIt ,t ] ≤ r j(t ),t +mγ . It follows that

σT (vi ) =
T∑
t=1

E[rIt ,t (vi )]

≤

T∑
t=(1−xi )T

E[rIt ,t (vi )]

=

i∑
j=1

zjT∑
t=yjT

E[rIt ,t (vi )]

≤

i∑
j=1

©­«2γTε ′ +
zjT−γT /ε ′∑

t=yjT+γT /ε ′
E[rIt ,t (vi )]

ª®¬
≤

i∑
j=1

©­«2γTε ′ +
zjT−γT /ε ′∑

t=yjT+γT /ε ′
(r j(t ),t (vi ) +mγ )

ª®¬
≤

2mγT

ε ′
+mγT +

T∑
t=1

r j(t ),t (vi )

=
2mγT

ε ′
+mγT + σmax,T (vi )

≤
2mγT

ε ′
+mγT +m +max

j
σj,T (vi )

= max

j
σj,T (vi ) + o(T ).

Finally, note that

max

j
σj,T (vi ) = max

j<i
(vi −vj + ε)x jT

≤ (max

j<i
(vi −vj )x j + ε)T

= (ui + ε)T

It follows that σT (vi ) ≤ (ui + ε)T + o(T ), as desired.
�

Finally, we show that this quantityMBRev(D) is in fact significantly different from both Val(D)
and Rev(D); in particular, it is a constant-factor approximation to neither. In particular, the mul-

tiplicative gap between MBRev(D) and Rev(D) can grow as large as log logH for distributions

D supported on [1,H ]. In comparison, the gap between Val(D) and Rev(D) can grow as large as

logH on this same interval, and in fact both gaps are maximized for the same distribution: the

equal-revenue curve DERC truncated at H .

Theorem 3.8. For distributions D supported on [1,H ],MBRev(D) = O(log logH ), and there exist
D supported on [1,H ] such thatMBRev(D) = Θ(log logH ). For this same D, Val(D) = Θ(logH ).



The proof of Theorem 3.8 is included in the full version of this paper. The proof is divided into

two parts (after extending the definition of MBRev(D) to hold for continuous distributions D): 1.

showing thatMBRev(DERC ) ≤ O(log logH ), and 2. showing thatMBRev(DERC ) ≥ O(log logH ).
To show the first part, it suffices to simply demonstrate a solution to the mean-based LP with

value at least O(log logH ). It suffices to choose x(v) =
logv
logH (equivalently, the reserve for the

associated second-price auction should exponentially decay over time).

To show the second part, we examine the dual of the LP. Effectively, this involves rewriting

MBRev(D) in the form

MBRev(D) = max

x
Evi∼D

[
vixi −max

j
(vi −vj )x j

]
(in particular, note that for a fixed choice of x , uj = maxj (vi −vj )x j ), and finding an appropriate

function j(i) (which corresponds to an assignment to the dual).

3.4 A Final Note on the Example
While reading through our examples, the reader may think that the mean-based learner’s behavior

is clearly irrational: why would you continue paying above your value? Why would you continue

paying more than necessary, when you can safely get the item for less?

But this is exactly the point: a more thoughtful learner can indeed do better (for instance, by

using the algorithm of Section 3.2). It is also perhaps misleading to believe that the bidder should

“obviously” stop overpaying: we only know this because we know the structure of the example.

But in principle, how is the bidder supposed to know that the overcharged rounds are the new

norm and not an anomaly? Given that most standard no-regret algorithms are mean-based, it’s

important to nail down the seller’s options for exploiting this behavior.

4 CONCLUSION AND FUTURE DIRECTIONS
We consider a revenue-maximizing seller with a single item (each round) to sell to a single buyer.

We show that when the buyer uses mean-based algorithms like EXP3, the seller can extract revenue

equal to the expected welfare with an unnatural auction. We then provide a modified no-regret

algorithmA such that the seller cannot extract revenue exceeding the monopoly revenue when the

buyer bids according toA. Finally, we consider a mean-based buyer who never overbids. We tightly

characterize the seller’s optimal revenue with a linear program, and show that a pay-your-bid

auction with decreasing reserves over time achieves this guarantee. Moreover, we show that the

mean-based revenue can be unboundedly better than the monopoly revenue while simultaneously

worse than the expected welfare. In particular, for the equal revenue curve truncated at H , the

monopoly revenue is 1, the expected welfare is ln(H ), and the mean-based revenue is Θ(ln(ln(H ))).
While our work has already shown the single-buyer problem is quite interesting, the most natural

direction for future work is understanding revenue maximization with multiple learning buyers.

Of our three main results, only Theorem 3.2 extends easily (that if every buyer uses our modified

learning, the default strategy, which now runs Myerson’s optimal auction every round, is optimal).

Our work certainly provides good insight into the multi-bidder problem, but there are still clear

barriers. For example, in order to obtain revenue equal to the expected welfare, the auction must

necessarily also maximize welfare. In our single-bidder model, this means that we can give away the

item for free for Ω(T ) rounds, but with multiple bidders, such careless behaviour would immediately

make it impossible to achieve the optimal welfare. Regarding the mean-based revenue, while there

is a natural generalization of our LP to multiple bidders, it’s no longer clear how to achieve this

revenue against conservative bidders, as all the relevant variables now implicitly depend on the



actions of the other bidders. These are just examples of concrete barriers, and there are likely

interesting conceptual barriers for this extension as well.

Another interesting direction is understanding the consequences of our work from the perspective

of the buyer. Aside from certain corner configurations (e.g. the seller extracting the buyer’s full

welfare), it’s not obvious how the buyer’s utility changes. For instance, is it possible that the buyer’s

utility actually increases as the seller switches from the default strategy to the optimal mean-based

revenue? Does the buyer ever benefit from using an “exploitable” learning strategy, so that the

seller can exploit it and make them both happier?
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