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Abstract: Socially-Assistive Robotics (SAR) has been extensively used for a variety of applications,

including educational assistants, exercise coaches and training task instructors. The main goal of

such systems is to provide a personalized and tailored session that matches user abilities and

needs. While objective measures (e.g., task performance) can be used to adjust task parameters

(e.g., task difficulty), towards personalization, it is essential that such systems also monitor task

engagement to personalize their training strategies and maximize the effects of the training session.

We propose an Interactive Reinforcement Learning (IRL) framework that combines explicit feedback

(task performance) with implicit human-generated feedback (task engagement) to achieve efficient

personalization. We illustrate the framework with a cognitive training task, describing our data-driven

methodology (data collection and analysis, user simulation) towards designing our proposed

real-time system. Our data analysis and the reinforcement learning experiments on real user data

indicate that the integration of task engagement as human-generated feedback in the RL mechanism

can facilitate robot personalization, towards a real-time personalized robot-assisted training system.

Keywords: socially-assistive robotics; personalization; interactive reinforcement learning;

brain-computer interfaces

1. Introduction

Socially-Assistive Robotics (SAR) is a research area that studies how robots can be deployed to

assist users through social interaction, as users perform a cognitive or physical task [1]. The goal

of such assistive robots is to build an effective interaction with the user, so as to enhance his/her

performance during the training session. Such agents can be deployed for various tasks, such as

cognitive and/or physical training [2,3], language tutoring [4], rehabilitation exercises [5] and others.

As technology advances and becomes more affordable, SAR systems can be considered as an effective

tool for educational and training purposes. A key feature of SAR systems is their ability to provide

personalized interaction with the user. Personalization is essential for effective training or tutoring

since it can enhance the effectiveness of the session, maximizing user learning potential. Based on the

famous Bloom’s two sigma result [6], one-to-one tutoring presents better learning effects than group

(conventional) tutoring.

An effective robot-based training system should be able to adjust the task parameters in order to

provide a training session that fits user’s abilities and skills, resulting in an “optimally challenging

activity” [7]. One approach is through behavioral and physiological monitoring, i.e., affect detection.

Emotion and flow theories have been extensively applied to HRI applications. Considering the flow

theory [8], affective states such as boredom, engagement and anxiety can be detected through

EEG sensors and used to adjust task difficulty in order to keep users in the flow channel [9].
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Socially-assistive robotics has been developed to improve user performance through the use of

physiological signals [3], considering the Yerkes–Dodson law, which links human arousal and task

performance [10]. From another perspective, recent works define interactive personalization for

socially-assistive robotics as “the process by which an intelligent agent adapts to the needs and

preferences of an individual user through eliciting information directly from that user about their

state” [11,12]. Based on this definition, certain information about the human learner may only be

observable through the learner’s direct input, as explicit feedback (e.g., self-report). Recent works

focus on combining both implicit and explicit probes from the user considering task engagement,

including self-reports, facial expressions and task behavior, towards developing a personalized

engagement detection system [13]. Taking all approaches into consideration, personalization is a

complex computational problem that requires the training agent to interactively assess, adapt and

leverage a model of the user’s abilities, skills, preferences, affect, etc., utilizing different types of

feedback [14].

Personalization can be considered as an interaction management problem; the problem

of modeling and optimizing the interaction patterns in order to maximize the efficiency of

the interaction [15]. Considering the sequential nature of human-robot interactions, interaction

management can be seen as a sequential decision making problem, where the system needs to learn

the appropriate sequence of actions in order to optimize the interaction, given a utility metric, e.g.,

user performance and/or satisfaction. Machine Learning (ML) methods can be used to solve this

problem and optimize the interaction patterns. Reinforcement Learning (RL) is an appropriate machine

learning framework for sequential decision making problems and dynamic environments. Several

RL approaches have been successfully applied to model the dialogue manager in adaptive dialogue

systems [16].

In this work, we discuss how Interactive Reinforcement Learning (IRL) methods can be used

to facilitate personalization for different types of users, in a SAR-based cognitive training scenario.

More specifically, we show how task engagement can be used as human-generated feedback through

learning from feedback. We present related work on SAR systems and reinforcement learning

approaches for robot personalization, as well as methods for measuring and using task engagement

through EEG sensors for adaptive and personalized interactions (Section 2). Then, we describe our

proposed system for personalized robot-assisted cognitive training (Section 3). We present the data

collection procedure, followed by the data analysis (Section 4). Then, we present the experimental

procedure, including the user simulation and the interactive reinforcement learning experiments

(Section 5), and we conclude with a discussion on possible improvements and future steps towards a

real-time personalized SAR system (Section 6).

2. Background and Related Work

2.1. Reinforcement Learning for Socially-Assistive Robotics

Socially-assistive robots can provide personalized assistance through social interaction,

by adjusting verbal, non-verbal or mixed behaviors (supportive feedback, attention acquisition,

affective behavior, etc.) towards establishing an efficient interaction with the user. In this work,

we focus on the personalization procedure of a SAR system, formulating it as a reinforcement learning

problem. As mentioned before, reinforcement learning is an appropriate paradigm for learning

sequential decision making processes with the potential to develop adaptive robots that adjust their

behavior based on human abilities and needs, through either implicit or explicit feedback.

In the context of socially-assistive robotics, RL approaches are used to enable the robot to

personalize its behavior (i.e., policy) towards different users. Depending on the application, RL is

used to adjust different parameters that can influence the effectiveness of the interaction. For example,

in a language learning scenario, a social robot has been deployed to achieve personalization through

affective behavior [4]. The presented system uses a camera to capture and analyze facial expressions
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and affective features (gaze, smile, engagement, valence, etc.), during a language tutoring application,

in order to provide a personalized affective interaction through social verbal behavior (valence and

engagement of spoken instructions). The system combines the estimated values (user engagement

and affect) into a reward signal. The system learns to adjust its behavior by selecting appropriate

motivational strategies (using verbal and non-verbal actions), based on current child’s state (affect and

performance), in order to keep the child engaged and in a positive affective state. Another example

demonstrates how RL-based SAR systems can be deployed as exercise trainers, to enable personalized

physical rehabilitation through social behavior adaptation [17]. In this work, the authors investigate

three different robot behavior parameters (i.e., interaction distance, speed and vocal content) and their

effect on the user, in order to achieve long-term personalization and maximize user performance.

The authors proposed a Policy Gradient RL (PGRL) method to learn the combination of the behavior

parameters, which maximizes user compliance and performance.

In another work, a social robotic tutor was proposed to assist users in logic puzzle

solving [18]. The robotic tutor learns a user model during the interaction, which assesses whether

the user is experiencing difficulties in the task. Based on this, the robot decides whether it

will perform a supportive behavior or not. An RL-based personalization module learns which

specific supportive behavior (tangible, esteem, emotional support) can maximize user performance.

RL-based personalization approaches have been also proposed for adaptive storytelling through

social signals [19]. More specifically, the authors proposed an RL approach to learn which robot

personality parameter (extraversion level) matches user’s preferences and keeps them engaged. The

proposed system estimates user engagement, through a multisensing framework (SSI), and adjusts the

robot’s current extraversion level to maximize user engagement during the session. Their simulated

experiments show promising results in a small, but noisy state space. Social robots have also been

used to engage individuals in cognitively-stimulating activities through task-related assistance, using

verbal and non-verbal behaviors [20], where the robot acts as a motivator during a memory card

game. A hierarchical RL approach is used to enable the robot to learn when to deploy specific

assistive behaviors (assistance, encouragement and celebration) and personalize the interaction based

on perceived user states (activity performance and arousal). In a similar application, RL has been

proposed to dynamically adapt robot’s assistive behavior expressed by different modalities (i.e., speech,

gaze, facial expression and head gesture) in a memory card game [21]. The system, under the guidance

of a human wizard, decides if the user needs help and selects the appropriate combination of gestures

to grab user’s attention, guide the user through the task and maximize task progress. In a recent

work [22], the author has presented an architecture to learn personalized robot policies, combining

human expert demonstrations and reinforcement learning, in order to provide users with personalized

assistance during Activities of Daily Living (ADLs).

These works support the effectiveness of reinforcement learning as a personalization framework

for SAR-based systems. A main limitation of such RL-based systems is scalability; learning efficiency

and convergence speed when the state-action space is large and the environment dynamics (human

behavior), even the environment itself (new user), change. Another limitation in designing RL agents

for interactive systems, including the definition of a proper state-action space, is defining an appropriate

reward function that serves the purpose of the system [23,24]. Our research is motivated by these

challenges that arise when different types of users and feedback types are considered for real-time

personalization using reinforcement learning [25]. To this end, we illustrate the proposed interactive

learning and adaptation framework with a cognitive training task, investigating how interactive RL

methods (learning from feedback) can be used to integrate human-generated feedback through EEG

data (task engagement) and facilitate personalization.

2.2. Brain-Computer Interfaces

In a learning (tutoring, training) environment, affective and cognitive states are highly correlated

with task engagement and learning effects [26]. Positive states, i.e., flow, curiosity and task engagement,
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have a positive correlation with learning, in comparison with negative states, such as boredom and/or

frustration [27]. Taking into consideration such information is essential in designing an effective

learning or training system that estimates and monitors task engagement to adjust the behavior

parameters and sustain compliance [28,29]. However, quantifying task engagement and attention

is not trivial, since it depends on and overlaps with several user states, such as interest, sustained

attention, immersion and (attentional and emotional) involvement [30]. Recently, Brain-Computer

Interfaces (BCI) have been used towards this purpose [31].

There is a growing trend towards using passive BCI systems, which implicitly monitor brain

activity, to personalize interactive systems through EEG sensors [32]. In our work, we follow the

approach of passive BCI to measure and utilize task engagement, using the Muse EEG headset [33].

Muse is a low-cost portable EEG headset, which has been used to detect brain states of concentration

and relaxation [34], task enjoyment [35], student cognitive state detection [36], as well as for pain

detection through self-calibrating protocols and interactive machine learning [37]. Muse provides

four channels of data coming from dry frontal EEG electrodes (TP9, AF7, AF8, TP10). The device

provides access to raw EEG signals, as well as to a set of power spectral density measurements

extracted from the raw data. The frequency bands provided by the device are δ (1–4 Hz), θ (5–8 Hz),

α (9–13 Hz), β (12–30 Hz) and γ (30–50 Hz). Research in EEG analysis for task engagement has offered

the following formula for calculating a signal E, based on α, β and θ waves, which is correlated with

task engagement: E = β/(α + θ) [38]. This approach has been followed for intelligent interactive

systems that monitor task engagement and adjust their behavior to keep users engaged. In an adaptive

storytelling application [32], a social robot used behavioral techniques (vocal cues, gestures) to regain

user attention during drops in engagement, as estimated by the aforementioned formula. In a similar

manner, this engagement index has been used to evaluate task engagement while playing a video

game [39]. The engagement index was capable of differentiating high intensity game events (e.g.,

player death) from general game play.

2.3. Learning from Human Feedback

Learning from feedback is an Interactive Reinforcement Learning (IRL) method that treats

human input as a reinforcement signal after the executed action. Several works have considered

the use of feedback to facilitate the learning procedure. In [40], they proposed the TAMER framework

(Training an Agent Manually via Evaluative Reinforcement), which includes a supervised learner

for building a human reward model during the interaction, which enables humans to shape agents

during their learning. In [41], they present a learning framework that integrates human feedback,

in the form of facial expressions, as an additional reinforcement signal, to guide the agent during

learning. In [42], the authors propose a method for personalized information filtering for learning

user preferences, by capturing and transforming implicit feedback from the user to a reinforcement

signal. These approaches support that IRL methods can facilitate real-time personalization from

human-generated feedback.

There are two main approaches based on how feedback is integrated to the RL mechanism:

reward shaping and Q-augmentation [40]. Reward shaping uses the feedback as an additional

reward component added to the environmental reward (R′(s, a) = R(s, a) + β ∗ H(s, a)), while in

Q-augmentation, feedback is used to directly adjust the policy, by modifying the Q-values (Q′(s, a) =

Q(s, a) + β ∗ H(s, a)). A specific Q-value is an estimate of the long-term expected discounted reward

for taking action a in state s. In both techniques, H(s, a) is the shaping function and β is the combination

parameter. In this work, we outline the developmental process towards a data-driven SAR system

that monitors task engagement and performance during a cognitive training task (sequence learning).

We illustrate how interactive reinforcement learning approaches can be used for task engagement,

through EEG data, and facilitate personalization. The long-term goal of this research is to develop HRI

systems that combine and utilize different types of real-time human-generated feedback (implicit or

explicit) to continuously and dynamically adjust their behavior in a lifelong learning setup.
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3. Personalized Robot-Assisted Cognitive Training

3.1. The Sequence Learning Task

In this section, we present our experimental testbed, a cognitive task related to working memory

and sequencing. Sequencing is the ability to arrange language, thoughts, information and actions

in an effective order. It has been shown that many children with learning and attention issues have

trouble with sequencing [43]. Influenced by the NIH Toolbox Cognition Battery Working Memory

test [44] and SAR-based approaches for cognitive training [2,17], we present the sequence learning task;

a cognitive task, related to working memory, that evaluates the ability of an individual to remember

and repeat a spoken sequence of letters. For our experimental setup, we deploy the NAO robot [45] as

a socially-assistive robot that monitors both behavioral (task performance) and physiological (EEG)

data and instructs the user towards a personalized cognitive training session. The sequence learning

setup is shown in Figure 1. The user has three buttons in front of them (“A”, “B”, “C”), and the

robot asks the user to repeat a given sequence of these letters. We follow the assumption that task

difficulty D = [1, 2, 3, 4] is proportional to sequence length L = [3, 5, 7, 9]. Based on the outcome

(success = [0, 1]), the user receives a score, defined as:

score =

{

D, i f success = 1

−1, i f success = 0
(1)

Figure 1. The sequence learning setup.

Based on this scoring approach, the user gets more points by succeeding in harder levels, while the

negative score is the same for all levels, such that the system does not discourage users from playing

harder levels. The robot can also provide feedback after the user completes a sequence. Studies have

examined the influence of different feedback styles, including the absence of feedback, on user’s

engagement and performance [46]. In our system, when the robot provides feedback, it reports the

current outcome (success or failure) by providing either encouraging or challenging feedback and

continues with a sequence of the same difficulty (length). In the case of no feedback, the robot moves

on with the next sequence (same or different difficulty) without reporting on the result. Preliminary

results show that absence of feedback can positively affect task performance in certain difficulty

levels [47]. Examples of encouraging and challenging feedback are shown in Table 1.
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Table 1. Examples of encouraging and challenging feedback.

Encouraging Feedback

success “That was great! keep up the good work”
failure “Oh, that was wrong! But that’s fine! don’t give up!”

Challenging Feedback

success “OK, that was easy enough! Let’s see now...”
failure “Hey! Are you there? Stay focused when I speak!”

3.2. System Architecture

The system consists of two main components: (A) the task (physical component) and (B) the

RL agent (computational component), as we show in Figure 2. The robot interacts with the user

during the training task; it assigns a sequence to the user, and the user responds by pressing the

corresponding buttons. The system keeps track of the current sequence length and robot feedback,

task performance, as well as task engagement through EEG (Muse). This information is used by

the system to adjust its behavior (state). The robot must learn an efficient training policy, which will

dictate how to adjust task difficulty and robot feedback based on the current state (action), in order to

maximize task performance and keep the user engaged (reward). A reinforcement learning agent is

deployed to learn such personalized strategies.

Figure 2. The sequence learning task as an interactive Reinforcement Learning (RL) problem.

Reinforcement learning provides an appropriate framework for interaction modeling and

optimization for sequential decision making problems formulated as Markov Decision Processes

(MDP). An MDP is described by a tuple < S, A, T, R, γ > where:

• S is a finite set of states (state space)
• A is the finite set of available actions (action space)
• T is the transition model where T(s, a, s′) denotes the probability P(s′|s, a)
• R(s, a, s′) is a reward function, which evaluates the transition s, a → s′

• γ is a discount factor

MDP models can capture how human behavior, such as user performance, stochastically changes

according to the robot’s decisions. The solution of an MDP results in an optimal policy π; the mapping

from states to actions that maximizes the total expected return during the interaction. In our case,

the state space includes information about task difficulty and robot feedback, as well as the previous

result (previous level and outcome). More specifically, the state features are: sequence Length
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L = [3, 5, 7, 9], Robot Feedback RF = {0 : None, 1 : Encouraging, 2 : Challenging} and Previous

Result PR = [−4, 4].

Based on the current state, the robot selects one of the available system actions (task difficulty,

robot feedback), and the system perceives the next state, receiving a reward based on task performance

and task engagement, as we describe in our experimental procedure. The transition model captures

how user performance varies from state to state. We need to note that the state space is designed to be

stochastic; each state might lead to a successful turn (positive score) with some probability, in order to

capture different user abilities. Table 2 shows the state-action and reward components.

Table 2. The defined MDP of the problem.

State Features System Actions Reward

Sequence Length (SL) Level 1 (L3) Current Score
Robot Feedback (RF) Level 2 (L5) Task Engagement
Previous Result (PR) Level 3 (L7)

Level 4 (L9)
Encouraging Feedback (RF1)
Challenging Feedback (RF2)

4. Data Collection and Analysis

4.1. Data Collection

For the data collection procedure, we recruited 69 Computer Science undergraduate and graduate

students, who received extra credits in their class, after agreement with their instructors. Each user

completed a predefined session of the sequence learning task, consisted of 25 turns (sequences).

Each session was sampled uniformly from a set of predefined sessions, such that the difficulty levels

and the robot feedback types were uniformly distributed across all users. Each session lasted for about

20 min, including a post-session user survey.

Before the session, the participant was provided with a verbal and written explanation of the

task and the experimental procedure. After the proper placement of the Muse sensor, the NAO robot

greeted the user and provided them with a sequence example to get them familiarized with the task

and the button setup, as well as to ensure that the user did not require any more clarifications. From a

preliminary user study on this task [47], we found out that users prefer to be aware of the upcoming

difficulty level, before the robot announces the sequence. Considering this, the robot announces the

difficulty level to the user, before each sequence.

At the end of the session, each user completed a user survey, regarding task difficulty and their

self-assessment on task engagement and performance for each level. During each session, for each

turn, we recorded the task parameters (turn ID, sequence length, robot feedback), user’s performance

(user response, reaction and completion time, as well as the EEG data as provided by the Muse sensor.

The EEG signals were evaluated and filtered based on the Muse headband status indicator, resulting in

a dataset of 50 users (41 males and nine females) between the age of 17 and 45 (M = 23.32, SD = 5.88).

The full dataset, including the subset used for the following analysis and experiments, is publicly

available online for researchers [48]. The dataset is collected and stored such that it can be explored

for several research purposes and approaches, including robot behavior modeling, user modeling,

recommendation systems, EEG analysis and others. Considering the EEG data, we separate them

based on the task state; while the user listens to the sequence (listening phase) and while the user

responds (response phase). For the purpose of this work, we use the EEG data recorded during the

listening phase. As an ongoing work, we have demonstrated how EEG data can be used to predict

task performance [49].
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4.2. User Survey

At the end of the experiment, the participants completed a survey for each level of the task.

More specifically, the survey was designed to elicit subjective information from the users about

task difficulty, task performance, task engagement and the reason for disengagement, if applicable.

Considering task difficulty, more than 95% of the users consider Levels 1 and 2 to be either easy or just

right. In contrast, only 44% and 8% of users find Levels 3 and 4 easy or just right, respectively. Taking

task performance into consideration, for Level 1, 84% of users reported that they did above average in

the task. This value changes to 70% for Level 2 and to 34% for Level 3. For Level 4, only 6% of users

reported that their performance was either average or below. Level 2 has the highest percentage of

engaged users, as 96% of users reported they were engaged in this level, and this percentage is the

lowest for Level 4 with only 60% of users reporting engagement in this level. This percentage goes to

76% for Level 1 and 86% for Level 3. The majority of the disengaged users in Levels 1 and 2 reported

that task level easiness was the reason for their disengagement, and disengaged users in Levels 3 and

4 reported task level difficulty as the reason for their disengagement. Figure 3 shows a summary of the

user survey results.

Figure 3. User survey results.

The results of the user survey illustrate how different users perceive and assess task difficulty,

engagement and performance across different difficulty levels, denoting the need for learning

personalized training policies based on user skills and preferences.

4.3. User Modeling and Clustering

For the purposes of our RL experiments, we analyzed the performance and engagement data,

in order to model different user behaviors across different task parameters. Our first step in the data

analysis is to perform user clustering and group participants based on their task performance and

engagement across the different difficulty levels. For each user, we estimate the engagement signal E

using the engagement index formula [32,38]. More specifically, the relative band values for the α, β and

θ frequencies were extracted and smoothed, applying an Exponentially-Weighted Moving Average

(EWMA) filter, based on which:

s̃(t) =

{

s(t) = y(t) t = 0

s(t) = α ∗ s̃(t − 1) + (1 − a) ∗ s(t − 1)) t > 0
(2)

These smoothed values were then used to estimate the engagement signal E = α/(β + θ)),

segmented per round and annotated by task difficulty, robot feedback and current result. For each



Technologies 2018, 6, 49 9 of 17

user, this signal was normalized to [0, 1] and the mean engagement values were estimated for each

difficulty level. Each user can be represented with an array UM = [P1, P2, P3, P4, E1, E2, E3, E4],

where Plevel=i = P(success|level = i), and Elevel=i = ēi, where ēi is the mean engagement value for

level i ∈ [1, 4]. In Figure 4, we visualize two different users and how they can be described by their

performance and engagement values.

Figure 4. Task performance and engagement for different users in the sequence learning task.

The first row shows the normalized engagement signal during the session (in samples). The second

row shows the mean engagement value for each difficulty level, and the third one visualizes task

performance as probabilities of success at each level. We observe that User B can perform better in

the task, since there is a high probability of success in the hardest level (Level 4), while for User A,

this probability is small, with Level 3 being the most difficult level in which this user can probably

succeed. We observe that both users show their maximum engagement values during these levels

(Level 3 for User A and Level 4 for User B).

In order to gain further insight into the distribution of the participants, considering

performance and engagement, we project the User Model arrays UM into a 2D visualization using

Multi-Dimensional Scaling (MDS), with each point corresponding to a single user. We then apply

K-means clustering to the resulting projection, grouping the users into three clusters. The selection of

K (K = 3) is such that each cluster has an efficient number of samples (≈15). Each cluster can be seen as

a group of users that share similar user skills and behaviors. Based on this, we visualize the cluster

means; the average probability of success and mean engagement value per level (Figure 5).
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Figure 5. User clustering using Multi-Dimensional Scaling and K-means (left), cluster means as success

probabilities at each level (middle) and mean engagement per level (right).
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Based on the visualization of user clustering, we could note that users in Cluster 2 show a high

probability of success in Level 4, relative to users in Clusters 1 and 3. Moreover, this cluster shows

an upward trend in task engagement as difficulty increases. On the other hand, users in Cluster 1

seem to have no probability of succeeding in levels higher than Level 2. However, their maximum task

engagement values appear for Level 3 and Level 4. As an example, the resulting clustering labeled

User A as a member of Cluster 3 and User B as a member of Cluster 2 (see Figure 4). We follow this

baseline clustering approach for our data-driven methodology, assuming that these clusters depict

three possible different types of users. In the next section, we present our RL experiments towards

learning personalized policies for different user models.

5. Learning Personalized Training Policies for Simulated Users

As mentioned before, we follow a data-driven approach to get insights towards the development

of our proposed SAR system. Data-driven methods are being used as methodologies for system

development and evaluation of complex interactive systems, e.g., adaptive multimodal dialogue

systems [16], including user simulation for offline RL experimentation, training and evaluation. In this

section, we present our user simulation modeling and the RL experiments. Using the collected data and

their analysis, we build simulation models considering task performance and engagement. Different

simulated users allow for offline RL experimentation before the system deployment with real users,

as well as establishing a database of user models and their offline personalized policies. In Figure 6,

we show our approach to learn personalized policies, using simulation models in a data-driven manner.

Figure 6. Reinforcement learning setup using simulated users.

5.1. User Simulation

In our data-driven approach, the goal of user simulation is to define a set of different environments

(e.g., users) with different dynamics (e.g., skills). For this reason, we follow an supervised approach to

learn different user simulation models, based on our clustered data. For each cluster, we define the

performance model and the engagement model.

The performance model is defined as UPk = P(success|state), which estimates how likely a user

is to succeed in a given state. To learn these success probabilities from our collected data, we employ a

regression model on the observed data [50]. More specifically, for each cluster k, we apply Maximum

Likelihood Estimation (MLE), to learn the probabilities P(success|state) = N(success, state)/N(state)

of our observed data. In order to deal with unobserved states, we deployed a neural network with

softmax output, as a regressor, which estimates success probability for all possible states. The input for
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the performance model is the state features, current level, robot feedback and previous scores, and the

output is the probability of success in this state. As an evaluation metric, we used the training error.

The RMSE was 0.09, 0.12 and 0.08, for each cluster, respectively.

In a similar way, the feedback model is defined as Φk(state, success), which estimates task

engagement for each state and outcome. In order to train the model based on the clustered data,

we estimated the mean engagement value per state and outcome. Support Vector Regression (SVR)

was used as a regression model to estimate the engagement value φ ∈ [0, 1] for each state and outcome.

The RMSE was 0.08, 0.08 and 0.11, for each cluster, respectively. When compared to the RMSE scores

of a neural network model, the scores were very similar, with the SVR model being slightly better.

Since the purpose of the user simulation is not to develop a generalized model for task performance

and engagement, but to represent our collected data as accurately as possible, the RMSE training error

was selected to evaluate the simulation models.

While further experimentation is needed for the user simulation component, we argue that

our simulation approach serves the purpose of learning a set of baseline user simulation models.

As ongoing work, we are investigating more advanced methods for EEG analysis [51] and user

simulation, such as input-output Hidden Markov Models [15] and Dynamic Bayesian Networks [52],

to also encode temporal information, which is out of the scope of this current work. In the next section,

we describe the reinforcement learning experiments, using these models.

5.2. Interactive Reinforcement Learning Experiments

The scope of the following reinforcement learning experiments is to investigate if integrating

task engagement in the RL mechanism improves learning results, using the defined user models.

The outcome of these learning experiments will be a set of User Models UM and their corresponding

User-Specific Policies USP. To learn these policies, we apply Q-learning with learning rate α = 0.08

and discount factor γ = 0.95 with the softmax exploration strategy with state-visit-based decreasing

temperature parameter τ. The softmax exploration allows for probabilistic policies π(s) = P(a|s). The

parameters were selected empirically to ensure optimal policy learning. The small learning rate avoids

instability in learning under noisy observations. The large discount factor enhances the maximization

long-term rewards. The exploration parameter was initially high such that all actions were considered

as equal at the start of training and to ensure an efficient state-action space exploration.

The motivation for these experiments was to identify an appropriate method to utilize both task

performance and engagement to learn personalized RL-based policies. For each cluster, we use the

corresponding simulation models to learn the USP, as we show in Figure 6. Our first approach is

to use a performance-based reward, where r(s, a) = score (Equation (1)). In order to integrate task

engagement, for reward shaping, we used r′(s, a) = r(s, a) + β1 ∗ Φ(s, a), and for Q-augmentation,

Q′(s, a) = Q(s, a) + β2 ∗ Φ(s, a). The selection of such a parameter depends on the range of values

(rewards and Q-values), as well as on patterns in performance and engagement. In this work,

we follow an empirical approach, comparing different β values, concluding that β1 = 7.5 and β2 = 0.8.

Further experimentation is needed in order to learn appropriate shaping functions H and combination

parameters β, considering patterns in engagement and performance, as well as scaling and bounding

methods to ensure formal lower and upper bounds for feedback values [53].

We present the learning results in Figure 7, visualizing task performance and task engagement

for each user model, as the algorithm learns with each method. We observe that integration of task

engagement through both feedback techniques increases both task performance and engagement,

as the algorithm converges to the optimal policy. Generally, both techniques outperform the

performance-based approach for the selected combination parameters.



Technologies 2018, 6, 49 12 of 17

Figure 7. Interactive reinforcement learning for the different user models. We visualize task

performance and task engagement for each user model. Task engagement as personalization feedback

can facilitate learning.

In order to gain insight into the learned policies, we visualize p(action|state) for a specific state,

in order to compare the decisions across users and methods, as we show in Figure 8. The selected

state is S0 = (5, 1,−2), based on which the current difficulty level is Level 2 (L = 5), and the robot has

provided encouraging feedback (RF = 1) after the user failed in the same level on the previous turn

(PR = −2). Essentially, the figure visualizes the policies as the probabilities of selecting one of the

actions A = [L1, L2, L3, L4, RF1, RF2] in the given state. Each row corresponds to a user model, and

each column corresponds to the learning method. Considering a specific method, we can compare the

USPs of different users. For example, considering reward-shaping, the policy for User Model 1 chooses

action L2 with a high probability, while for User Model 2, the policy chooses almost uniformly between

L2 and L3, and for User Model 3, the policy is deterministic, choosing RF2. Considering a specific

user model, we can observe differences in policies across methods. For example, for User Model 2,

we observe that the performance-based approach results in a near-uniform policy, which does not

provide enough information. On the contrary, both feedback methods result in a more informative

policy, giving high probabilities only on two actions (L2, L3 for reward shaping and L3, RF1 for

Q-augmentation). Both feedback methods propose higher levels to the user, which may result to

increase task performance.
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Figure 8. Visualization of the learned policies for a given state: π(state) = P(action|S0). The x-axis

shows the possible actions, and the y-axis shows the probability for each action. Each row corresponds

to a user model, and each column corresponds to the learning method.

6. Discussion and Future Work

In this work, we presented the developmental process of a data-driven SAR system for

personalized robot-assisted training. The process includes data collection and analysis, the user

simulation and RL experiments to integrate task engagement in the RL agent. This approach allows for

an extensive analysis and experimentation, towards the development of a real-time personalized SAR

system. The presented analysis and experiments indicate that users with different skills show different

patterns in their task engagement for different difficulty levels. We argue that task engagement is

essential information that can be utilized for real-time adaptive SAR systems. Future work includes

further experimentation in user performance simulation and EEG modeling, capturing patterns in task

engagement under different user skills and difficulty levels, including temporal aspects (input-output

HMM) [15]. More sophisticated and accurate user modeling will enable us to learn representative

combination parameters and shaping functions.

The long-term goal of this research is to develop an interactive learning and adaptation framework

for real-time personalization, as we show in Figure 9. The proposed framework supports the

participation of a human supervisor who can observe and control the interaction through an intelligent

monitoring and control interface (GUI). These communication channels are integrated with the RL

module through interactive reinforcement learning methods. Briefly, the system starts with a user skill

assessment policy recording task performance and engagement under different difficulty levels. The

challenge is to learn a policy that builds a representative user model of the current user within the initial

steps of the interaction. By the end of the assessment mode, the system has an indicative user model

UM for the current user. The system can use this model to classify the user into one of the existing user

models, loading the corresponding USP, following the assumption that similar user models result in

similar user-specific policies [25]. This policy is loaded as the personalized training policy. At each

interaction step, the system performs an action based on this policy, which can be adjusted based

on user feedback and human guidance. Prior knowledge (user models and user-specific policies),

user feedback (task engagement through EEG) and human expertise (GUI input) are integrated to

facilitate the adaptation process, in an interactive reinforcement learning setup. Human guidance can

be provided either in the form of demonstrations prior to the interaction [22] or interventions during
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the interaction [23]. Ongoing work includes further experimentation towards developing a parametric

mapping from user models to policies, allowing the system to handle rare user cases and outliers.

User studies will be conducted to evaluate and refine the proposed framework.

Figure 9. Future work: proposed system for real-time adaptation and personalization through user

modeling and interactive RL for implicit feedback (Muse) and human guidance (GUI).

Supplementary Materials: The dataset used in this work is available online [48].
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2. Fasola, J.; Matarić, M.J. Robot motivator: Increasing user enjoyment and performance on a physical/cognitive

task. In Proceedings of the 2010 IEEE 9th International Conference on Development and Learning, Ann Arbor,

MI, USA, 18–21 August 2010; pp. 274–279.
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