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Kernelized Generalized Likelihood Ratio Test
for Spectrum Sensing in Cognitive Radio

Lily Li
and Adam Lane Anderson

Abstract—Spectrum sensing in next-generation wireless radio
networks is considered a key technology to overcome the problem
of spectrum scarcity. Unfortunately, many approaches to spectrum
sensing do not work well in low signal-to-noise ratio (SNR) environ-
ments. This paper proposes and analyzes a new algorithm named
kernelized generalized likelihood ratio test (KGLRT) for spectrum
sensing in cognitive radio systems to overcome this problem. Ef-
fectively, KGLRT uses a nonlinear kernel to map input data onto a
high-dimensional feature space; then, the widely accepted (linear)
generalized likelihood ratio test is used for hypothesis testing. This
new algorithm gives a gain of 4 dB in SNR over its linear coun-
terpart. A theoretical analysis for this algorithm is given for the
first time and is shown analogous to algorithms used in image sig-
nal processing. The detection metrics are found to be concentrated
random variables; furthermore, the probability distributions of the
detection metrics are proved to follow the F-distributions, which
agree with the results obtained using the concentration inequality.
The analytical thresholds are derived for target false-alarm prob-
abilities. The thresholds are independent of noise power; thus, the
proposed algorithm can overcome noise uncertainty issues at very
low SNR levels. Simulations validate the theoretical results.

Index Terms—Spectrum sensing, GLRT, KGLRT.

I. INTRODUCTION

PECTRUM sensing is a core function required in cognitive
S radio [1] or any spectral approach to adaptive communica-
tions. In general, this sensing is used to detect the presence of the
primary signal; however, spectrum sensing is more challenging
in an extremely low signal-to-noise ratio (SNR) environment,
e.g., —20 dB, which forces researchers to revisit classical detec-
tion problems for these modalities. Due to high rate hardware,
for even short durations of interest (on the order of one second),
we often have at our disposal a large number of samples. For
example, with digital television (DTV) signals, it is feasible for
there to be 10,000 samples that could fit as input to the available
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algorithms. To take advantage of this large number of samples
in sensing, we formulate the problem as a high-dimensional
probability space through the use of kernel functions.

Associated with high dimensional control, the concentration
of measure phenomenon [2] means that certain random fluctua-
tions become tractable. With the success of asymptotic methods
in random matrix theory, we can exploit the high-dimensionality
of data in the feature space. In fact, one essential feature of Big
Data research topics is related to high-dimensional statistics.
High dimensionality enables us to obtain central limit theorems
for some advanced statistics—detection metrics in our case. In
other words, the power of our proposed algorithm arises from
the high dimensionality of the feature space and the novel use
of kernel mappings.

A. Related Works

Different kinds of techniques have been developed for
spectrum sensing. Classic methods include energy detection
(ED), matched filter detection, cyclostationary feature detec-
tion, wavelet-based detection and cooperative detection. See
e.g., [1], [3] for details. The line of research relevant to this pa-
per starts with eigenvalue-based detection [4]-[7]. The idea is
to form a sample covariance matrix (SCM) from the measured
data samples; then, a specific statistic only using eigenvalues of
the SCM is used for the detection metric in a hypothesis test.
This is a counterpoint to when the eigenvectors of the SCM are
used [1], [8], [9].

Using the leading eigenvector of the SCM, a detection algo-
rithm named feature template matching (FTM) is first proposed
in [10] and presented with more details in [8]. The kernel ver-
sion of feature template matching (KFTM) is considered in [9].
Compared with FTM, KFTM deals with high-dimensional data
and applies a kernel trick that not only avoids the limitations
of linear problems but also decreases calculation complexities,
resulting in significantly improved detection performance. Only
a leading eigenvector (rank-one matrix approximation) is con-
sidered in the nonlinear kernel version [9]. This paper, on the
other hand, considers the subspace counterpart (rank-%£ matrix
approximation) of both linear and nonlinear (kernel) versions.
As in [11], [12], linear subspace detection methods have been
used for spectrum sensing to improve detection performance in
low SNR environments.

A critical advancement is made in the context of hyperspec-
tral target detection for pattern recognition in [13], where it is

0018-9545 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



6762

necessary for the GLRTS in the feature space to be kernelized
before they can be implemented due to the high dimension-
ality of the feature space. Their algorithm is derived but no
analysis is attempted. The current work helps fill this gap by
conducting an analysis for the algorithm used in the context of
cognitive radio. The distribution of the decision threshold is de-
rived to satisfy an F-distribution; numerical simulations agree
with the derived result. Surprisingly, in unrelated work [14],
F-distribution is also used to model composite fading channels
accurately.

Other relevant works include: [15] which proposes a kernel-
ized energy detection algorithm (KED) which is much more
robust against impulsive noise and displays a considerably bet-
ter detection performance than the conventional ED. [16] shows
how a kernel matrix can asymptotically be well approximated
by an analytically tractable random matrix.

B. Contributions

This paper devises a subspace matching method [17] com-
bined with the so-called kernel trick that was first used in the
context of images by [13] (which lacked analysis for the algo-
rithm). This paper’s main contributions are as follows:

1) Based on [17], [18], a linear version (called linear GLRT
here) algorithm has been generated using the linear sub-
space of the detected primary user. The subspace is built
via the well-known Karhunen-Loeve transform (KLT). To
the best of our knowledge, this is the first time the ex-
tended nonlinear version of GLRT, called KGLRT, is pro-
posed for spectrum sensing with detailed analysis of the
proposed algorithms. Through second order statistics of
GLRT, higher-order statistics/correlation is investigated.
By applying a kernel trick, the detection metric in high-
dimensional space greatly simplifies calculations required
for the nonlinear mapping. Simulations using measured
DTV signals show that, compared with its linear coun-
terpart, our proposed KGLRT yields a 4 dB gain in SNR
for a fixed false-alarm rate. This significant gain justifies
the approach of exploiting high-dimensionality for spec-
trum sensing. Simulation comparisons with other spec-
trum sensing methods [5], [19]-[22] show that KGLRT
achieves the best performance.

2) The statistical distributions of proposed GLRT and
KGLRT for different kernels are thoroughly analyzed.
Under null hypothesis, the closed-form expressions with
decision thresholds for different false-alarm probabilities
are obtained. Simulations validate these closed-form ex-
pressions. Furthermore, the derived thresholds make no
use of noise power, which avoids the noise uncertainty
problem in spectrum sensing and encourages the proposed
method in low SNR environments.

3) The analysis based on Tao’s Lemma is accomplished.
This Lemma shows the concentration inequality regard-
ing distance between orthogonal projections [23]. Our
results demonstrate the advantage of the proposed high-
dimensional detection metrics for both linear and nonlin-
ear cases.
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This paper is organized as follows: In Section II, the prob-
lem model is built upon a binary hypothesis test, and the GLRT
algorithm for subspace matching is derived step by step. In
Section III, the kernel trick is introduced in detail; and then the
KGLRT subspace detection algorithm is proposed as the nonlin-
ear version of GLRT; furthermore, the computational complex-
ities of both GLRT and KGLRT are compared in Section III-D.
In Section IV, the statistical distribution of the detection metric
is derived and the decision thresholds are obtained. For dif-
ferent spectrum sensing algorithms, comparisons of computa-
tional complexities and detection performances are presented in
Section V. The paper is summarized and future challenges are
proposed in Section VI.

Notation: In the following, we depict variables in lower case
letters, vectors in lower case boldface letters and matrices in
uppercase boldface letters. The transpose operator is given be
()" while (x,y) would be the inner product of two vectors x
and y, for example.

II. LINEAR SUBSPACE DETECTION
A. Linear Subspace Model Statement

Consider a cognitive radio scenario with a pair of users: one
designated as “primary” and the other as “secondary”. Let y(t)
be the continuous-time signal received by the secondary user
through some unknown channel; the signal y(¢) is sampled with
period T to create the discrete-time received samples y[l] =
y(IT5).

Spectrum sensing is performed between two hypotheses: the
null hypothesis Hy, where the primary user is absent; and the
alternative hypothesis H;, where the primary user is present

Ho = y[l] = wll]
Hy oz yl] = 2[l] + w[l] (1)

where wl[l] ~ N(0, 0?) are samples of an independent and iden-
tically distributed (i.i.d.) Gaussian noise source, and x[{] are the
received samples including the effects of path loss, channel fad-
ing and time dispersion [6]. x[l] can be the superposition of
signals from primary users after passing through an unknown
channel with unknown distribution. Signal and noise are as-
sumed to be independent of each other.

At some discrete moment in time, 7, the sensing segment
consisting of n consecutive observations is congregated into a
received vector

y = (i, yli + 1], yli + 0 = 1]) 2)

Spectrum sensing is performed based on the statistics of y by
the secondary user. Parameters F; and Py are used to evalu-
ate detection performance. Our goal is to maximize detection
probability FP; at a target false alarm rate P;.

B. Generalized Likelihood Ratio Test

It is assumed that the primary user’s signal x € R"*! lies in a
K -dimensional subspace which is spanned by the columns of an
orthonormal matrix T € R"*X | so x = T, where 6 ¢ RX*!
is an unknown coefficient vector [18], and T represents a full
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rank matrix whose column vectors span the original signal sub-
space. Since T is orthonormal, it has the well-known property
that TT T = I, where I stands for the identity matrix while
matrix T and its transpose T” are not commutative. Additive
noise is represented by vectorw € R"*! withw ~ N(0, 01,,).
We concatenate N successive samples of vectors given by (2).
The spectrum sensing detection problem presented in (1) can be
formulated as

Ho:y=w
Hi:y=TO+w (3)

Since cognitive radios have the ability to learn [24], part
of the received primary user signals can be saved and uti-
lized to learn the matrix T. T can be approximated by ma-
trix T = (Vvi,v2,...,vi),with {v;,7 = 1, .., K} are dominant
eigenvectors of the sample covariance matrix for the zero mean
or centered samples [13]. K < min (N, n) is the dimension of
the subspace which best preserves the primary user’s power in
the least mean squared error sense.

According to Neyman-Pearson criterion, likelihood ratio test
(LRT) which is defined as

R 2 o, @)

7 Ryl Ho) 7
is the optimal detection rule where 7}, is the threshold value,
fi(y|H1) and fo(y|Ho) stand for the conditional probability
density function of y under the hypotheses H; and H,. Their
distributions can be represented as conditional Gaussian proba-
bility densities N'(T8, 1%I) and N (0, 09°T).

However, in general while exploring LRT approach, the pa-
rameters 68, 0y, o are unknown. An alternative way is to replace
0, 0y, o1 by their maximum likelihood estimators 5, 00,01 [17],
[18]. The general likelihood ration test (GLRT) can then be ob-
tained in a straightforward manner as

o max fi(y[Hi)
Pirt = ——o s
ngaxfo(ymo)

~o\ —n/2
_ (7 il
- (Z)  en{-gmlIF + glwr

2 Tire (&)

The least squares solutions to the model presented in (3) are
produced by projection of the input vector onto a subspace.
w; are the MLE estimators of w; for both the hypotheses Ho
and H;.

22

0=Y
wi=(y—-T0)=(1-Pr)y (6)

where P = T(TTT)_l T7 = TT7 is a projection matrix as-
sociated with the K dimensional subspace T. We then obtain:

P} =Pr, P} =Py (7
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Afterwards, the signal energy can be derived as:
I%1|* = (y = Pry)" (y = Pry)
= y'y -y ' Pry -y Pry +y' PiPry
=y'y-2y"Pry +y' Pry
=y (I-TT"y ®)

We also know that [|[Wy||> = y”y. Since w; has normal distri-
bution as N (0, o;°I), therefore

- 1 1, .

55 = EH}’HZ = EHWO”2 )

R 1 ~n2 1, .

52 = ny _ TOH — —[|#]? (10)
n n

0= (T"T) 'y =Ty (1)

Substituting the maximum likelihood estimators 52, 52 and 8
into (5) and taking n/2 root, GLRT rule is

Pylrt = (b\lrt )2/71

T H
yy !
= 2 Tglrt

y'(I—-TT)y %, (12

III. KERNEL-BASED SUBSPACE DETECTION
A. Kernel Method

Kernel methods have been generally employed in machine
learning where data is implicitly mapped to feature space via
the so-called “kernel trick”. Let &’ be an n-dimensional input
space (X € R™). With a mapping ¢, x is mapped to ¢(x) in a
nonlinear feature space F, where x is an input vector in X and
® is an implicitly defined mapping. After mapping data via a
map ¢ into the feature space F [25], the kernel function & is
defined as the inner-product of data, i.e.,

k(xi,x;) = (p(xi), p(x;)) (13)

where < - > stands for the inner product. The feature space F,
also named as kernel space, is a space of functions mapping X
into R, denoted as F := {f : X — R}. The map ¢ is defined
via

p: X —=F

x — (%) (14)

Thus a feature space F associated with ¢ can be constructed.
Such a space is defined by the selected kernel function. The
mapping ¢ can be so ordinary that various types of data can
be operated upon; thus, a large number of affiliations between
data can be detected [25]. Typically, projective kernels (func-
tions of inner-product) and radial kernels (functions of distance)
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are the two most popular groups of kernels. In this paper, poly-
nomial kernel (a projective kernel) and Gaussian radial basis
function (RBF) kernel (a radial kernel) are chosen for use and
comparison.

The Gaussian RBF kernel is defined as

i —x;
(X sX.]) exp < 2U2

where v > 0. The polynomial kernel with order d is defined as

5)

k(i x;) = (0, %)) + o) (16)
and ¢ = 0 for homogeneous kernels and ¢ = 1 for inhomoge-
neous kernels.

After Gaussian kernel mapping, the dimension of the fea-
ture space (kernel space) can be huge or even infinite [26]. For
polynomial kernel with order d, the dimension of the feature
space, which is the number of different monomials, becomes
(d+ P —1)!/dl(P — 1)!; To explicitly avert direct operation
on ¢(x), the kernel function of (13) is selected to exploit only
the inner product of data in the feature space. This trick ad-
equately bypasses calculating the large high-dimensional data
set generated by different nonlinear mappings. Without know-
ing precisely what ¢ stands for, we can develop a kernel-based
algorithm in kernel space using only kernel functions. Thus the
proposed nonlinear algorithm can not only be attained without
causing too much computational load, but also take higher order
statistics/ correlation into account.

Accordingly, when data from the original input space exhibits
a nonlinear formation, applying the kernel trick leads to less
computational load and achieves better performance than linear
methods. On the other hand, not all functions defined in the input
space can be used as a kernel function. Only when a mapping
 exists and (13) is credible can the kernel function & be well-
defined. Equivalently, if a function meets Mercer’s condition
[27], it is a well-defined kernel.

B. Linear Subspace Models Defined in Kernel Space

Recent works in random matrix theory, as presented in [28],
consider the spectrum of certain kernel matrices in high-
dimensional space. Under various technical assumptions, ker-
nel random matrices, i.e. n X n matrices whose (i, j)th entry
is f((x;,x;j)/p) (polynomial kernel belongs to this group) or
f(|Ixi — x;]3/p) (Gaussian kernel belongs to this group), where
pis the dimension of the data and x, x5, ..., X,, are independent
vectors, behave essentially like matrices closely connected to
sample covariance matrices. Here f is assumed to be a local
smooth function and p can approach infinity but is comparable
to the size of n, i.e. p/n € (0, 1). As mentioned in [28], in high-
dimensional space, the nonlinear methods that rely on kernel
metrics may behave like their linear counterparts. Furthermore,
for a more specific case, following the procedure in [13], we
make the essential assumption that the spectrum sensing in the
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feature space can be formulated in hypotheses

Ho, = p(y) =w,

Hy, - oly) =T,0, +w, 17)
where the columns of T, are the basis of the primary user’s
subspace in F, 6, are unknown vectors whose entries are co-
efficients that account for the abundances of the corresponding
columns in T',. Although the assumption of (17) appears very
restrictive, practical examples show that this linear model is ap-
proximatively valid in the feature space, as confirmed by the
superior performance of the algorithm.

We can consider that the linear subspace model (3) in the
feature space F approximately has a corresponding nonlinear
subspace model in the original input space, denoted as (17).
Therefore, the GLRT of the linear subspace in F is equivalent
to the GLRT of the corresponding nonlinear subspace model
in the input space. When the two hypotheses H,, and H,;_ in
feature space F still follow Gaussian distributions [13], based
on (12), GLRT for ¢(y) can be transformed into

o(y)" oly)

e(y)T (X, — T, T, )e(y)

where I, is an identity matrix in . Apparently, (18) cannot be
implemented straightaway because after mapping ¢ the dimen-
sion might become infinite. It should be kernelized to obtain an
expression in terms of the kernel function k. Hence we name
GLRT of the nonlinear subspace of the original input space as
KGLRT. KGLRT is the nonlinear version of GLRT in an arbi-
trary dimension space. Since Gaussian distribution transformed
into the feature space exhibits a more complex structure than in
input space, KGLRT can accomplish a better detection job than
traditional GLRT. As mentioned above, our choice of kernel
functions are Gaussian RBF kernel and polynomial kernel.

(18)

Plkglrt =

C. Kernelized Generalized Likelihood Ration Test

The priori knowledge of primary user’s signal is accessible
in specific situations, which can be used for spectrum sensing.
As in matched filter detection [7], [29], [30], the receiver needs
to know the primary user’s signal in advance. For linear feature
template matching in [8], [10], feature template is generated
by primary user’s signal. In [31], prior information of signal
is considered. The kernel feature template matching method
proposed in [9] requires a historical database of signal samples
in order to apply the kernel trick. Since a cognitive radio system
has the ability to learn [24], the historical information of primary
users, such as DTV or 4G signal can be saved and utilized for
subspace learning.

Similar to linear GLRT, for the zero mean or centering data
o(x;), i =1,2,..., M, each column of T, is the eigenvector
corresponding to the non zero eigenvalue of

19)
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If matrix Rv(x) has K; non zero eigenvalues, to avoid
heavy computational load of calculating R, (), each col-
umn of T, can be represented as a linear combination of

o(x1), p(x2), ....o(xar) [32]. e.g.,
M
sz = Z/@i@(xy’)
j=1

where 3; = (B1i, B2iy s Buri) ! i = 1,2, ..., K are the eigen-
vectors corresponding to all non-zero eigenvalues of the kernel
matrix defined as

K = (k(xi,%))arnr = (%) 9 prns - (20)

It is clear that every kernel matrix is a positive semi-definite
matrix. Let B = (8, 35, ..., ,@Kf ). Hence T, can be expressed
implicitly as [32]

T(P = (v1f7 sza ooy Vigg f) = (SO(XO? cey QD(XA,[ ))B 1)
Accordingly, ¢(y)” T, T, " ¢(y) can be represented as

o(y) T, TLo(y) = o(y)" (p(x1),0(x2), ..oy (xar))

p(xi)"
. (x2)"
(ﬁlaﬁZa"'aIBKf)(1817/627"'7ﬁKf) (p(y)
pxar)”
- (k(yaxl)7 k(y7X2)5 ) k(y7xf\1)(/617/627 "'7/6Kf)
k(yaxl)
k(YaX2)
(ﬂlﬂ/gb "'7/6Kj )T
k(y,xar)

=k'BB"k

where k = (k(y,x1), k(y,X2), ..., k(y,xar))" . Substitute the
last equation into (18),

k(y,y)
= 22
Photrt k(y,y) —kTBBTk 22)
Thus, the KGLRT detection rule is
Hy
(23)

Pkglrt 2 Tk:glrt
Ho

In general, we should center the values of ¢(x;), i =
1,2,..., M and ¢(y;), i = 1,2,..., N first since usually we con-
sider the zero mean case. However, even though the data set
of p(x) and ¢(y) are not centered, the sample covariance ma-
trix still embodies correlation between data sets. Therefore, the
above derivation procedures can be used for both centering and
non-centering situations.
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Algorithm 1: KGLRT - For Centering and Non-Centering.
1: Retrieve training samples of primary user from a given
database.
2: Choose appropriate kernel function k. Kernel matrix
K = (k(xi,%;))n xn based on the given samples
X1, Xy, ...X)r. This matrix is updated when different
features are chosen.
3: Use secondary user signal to build the received vectors:
Y1,¥2,...,yn. Calculate K = (k(y:,y;))nxn-
4: Compute the inner product of the received
N-dimensional vector k(y,y).
5: k= (k(y,x1),k(y,x2), ..., k(y, xar)), the kernel
vector is computed.
6: if centering then
7:  Calculate the centering matrix K = K..
8:  The centered inner product of received vector
k(y,y) = k.(y,y) is calculated.
9:  Calculate the cross kernel matrix K' =
(k(xi,¥7))mxn-
10:  The centered kernel vector k.. of k is calculated.
k=k..
11: end if
12: Eigen decomposition of the kernel matrix K to obtain
the eigenvectors B3y, B,, ..., By, Which corresponding
to all non zero eigenvalues.
13: Compute the value of py4;,+ according to (22).
14: Determine a threshold T}, i+
15: if |pk,qlrt| > Tkglrt then
16:  Primary exists.
17: else
18:  Primary does not exist.
19: end if
20: Hence , Py = P(|prgirt| > Thgirtly = x + W), and
Pf = P(|pkglrf,| > Tk:glrtly = W)

Similarly, the centering of p.4i,+ in feature space can be
cast as

ke(y,y)
kc (y7 y) - kCT BBch
detailed derivation see Appendix A

Following the above derivation, the kernel GLRT algorithm
is illustrated as in Algorithm 1.

Pckglrt = (24)

D. Complexity Analysis

Either the subspace of linear space or feature space needs to
be learned a priori and then used as a template. For linear GLRT
we do not need to know exactly the PU signal; we only need
to know (or learn) the subspace where the signal lies in. For
KGLRT, we need storage of historical data to build the kernel
matrix.

The main computational load for liner GLRT includes
two parts: generate sample covariance matrix and its eigen-
decomposition. Similarly, KGLRT algorithm needs to calculate
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the kernel matrix and eigen-decomposition of the kernel matrix.
Assume we have N segments of observations where each obser-
vation is represented by an x 1 vector. To calculate the sample
covariance matrix of a signal, n(N — 1)(n + 1)/2 additions
and nN (n + 1)/2 multiplications are needed, thus the compu-
tational order is O(n?N). To generate the kernel matrix, one
needs to compute N (N + 1) kernel functions. Either Gaussian
or polynomial kernel function operate on two n dimension vec-
tors and have computational order n, thus generating the kernel
matrix the computational complexity is of order O(nN?). With
the use of fast component analysis algorithm [33], [34], the com-
putational complexity of eigen-decomposition of sample covari-
ance matrix has order O(n?), whereas for the kernel matrix the
order is O(N?). Since N is greater than n, the computation
complexity of KGLRT is around N/n times its linear version.

IV. STATISTICS ANALYSIS UNDER H)
A. Linear GLRT Case

Overall, for a fixed false-alarm probability Py, the target of
a well-performed detection algorithm is to maximize the detec-
tion probability P; with reasonable computational complexity.
Setting the threshold is the core issue for any likelihood ratio
testing algorithm. If the closed-form of probability under Hy
can be formulated, the theoretical value of the threshold can be
derived for some target Py, which is a goal of this work.

For simplicity, the analysis, which will be extended to
KGLRT, is performed based on the GLRT algorithm. The de-
tection metric in (12) can be written as

p = va—y
ot yTI - TTT )y
Y @I-TT )y +y'TT y
B y'(I-TT)y
= 1+ K
- " n—K
where
yITT y n—K

TEYTa-TT)y K

and 7 is an alternative metric of the GLRT algorithm. We use ~y
for GLRT detection.

Theorem 1: The probability distribution of v is F distribu-
tion, v ~ F(K,n — K) when the covariance matrix of noise is
o1

Proof: See Appendix B. |

Given a threshold T}, , it yields

Pf = P(’}/ > Tglrf,‘HO) =1- F(Tglrt;Kan - K) (25)

where F(-; K,n — K) is the cumulative distribution function
(CDF) of F distribution with parameters /', n — K. Thus for
a target Py

Tyre = F'(1 = Py K,n — k) (26)
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while F~'(,K,n — K) being the inverse function of
F(-,K,n — K). (26) shows that the threshold is noise power
independent. Intuitively, the noise power is eliminated since the
detection metric (35) is in a ratio form.

B. Statistics Analysis in Kernelized GLRT

Theorem I can be extended to a nonlinear case in order to find
the threshold for the KGLRT algorithm. From (35), we obtain

14 Ky
Pkglrt = Yo ny — Kf

where

T Ty, np - Ky
Yo (Xe =TTy, Ky

Ye

where K is the dimension of T, and ny is the dimension of
©(y). For a kernel function k,, if it is smooth and continuous as
well as data being band-limited [13], the topographic ordering
of the data in the input space is also preserved in the feature
space after the nonlinear mapping. Hence we can assume the
Gaussian distribution of the two hypotheses Ho, and H;, is
valid, which can be found in [26], [35]. The model presented by
(18) becomes a linear model in feature space. We use ,, as the
detection metric. Similarly, as for GLRT, we define

T T
Py, =T,T! Py, =1, - T,T!

It is straight forward that Pt and P, both are orthogonal
projections, following the steps in the préof of Theorem 1, we
have v, ~ F(Ky,ny — Ky).

For convenience, let d; be equal to Ky and d, be equal to
ny — K. Thedistribution of 7, for null hypotheses for different
kernels are discussed below:

1) Gaussian kernel: In theory, the dimension of feature space

generated by Gaussian kernel (denoted as n) is infinite
[26], thus d, can not be calculated. However, only a small
compact subspace of F is occupied by mapped data [13],
thus the dimension used is actually finite. From simula-
tions an unbiased estimator of d, can be obtained. Since
T, can be estimated, we have d; = K. After empirical
simulations to a great extent, v, ~ F(dj, dy) where d, is
an estimator of d,.

Let E(-) denote expectation and yt = E(pexgir¢ — 1), then

d d
E(’Y%‘) = Kizf . E(pckglrt - 1) =" Kizf

1 can be estimated from simulation samples by

1 SIM
/j[' = 517M ; (p(:k_qu-t — 1)

where pjgir¢ is the sample from the ith simulation and
STM is used to denote the total number of Monte:Carlo
simulations. With the assumption thaty, ~ F(d,d>), we

4 for d, > 2. Thus, the estimation of

know E(y,) = -t
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d, can be derived as

A Ky
dy ==L 42
Hence the analytical threshold for a given P can be de-
rived as
Ky 420
Tergirt = —0— 27
eglrt K, 27

2) Polynomial kernel: Theoretically analyzing the distribu-
tion of ~y,, under H, is difficult. Alternatively, through nu-
merous simulations, the distribution can be approximately
considered as vy, ~ F (dy,dy) for second and third order
polynomial kernels, where cil and czz are estimators of d;

and d5.
Let var denote variance and S*> = var(pergirt — 1), then
dp dy
. = E L) =
2 2dy%(dy + dy — 2)

d;
S (=) =var =
(dz) () di(dy —2)*(dy — 4)
The estimators of d; and d, can be derived as
R s N 2(fa+ 1)
d] :,Lt(dzfz), d2:4+%

where
1 SIM 2
52 = 2 .
5= SIM —1 Z ((pck:glrt )

i=1

(28)

is an unbiased estimator of S2. Therefore, after applying second
or third order polynomial kernel, the threshold for a target false
alarm probability is

sz

+ - 29
P A &

Tck‘glrt =1

C. Concentration Inequalities of Generalized Likelihood
Ratio Test

The concentration inequalities of statistics for the proposed
algorithm will be analyzed in this section. Based on the well-
known Tao’s Lemma presented as below:

Lemma 1. [36]: Let X = (;,...,&,) € C™ be a random
vector whose entries are independent with zero mean,
variance 1, and are bounded in magnitude by K almost surely
for some K > 10(E||¢*|| +1). Let H be a subspace of di-
mension d and 7y be the orthogonal projection onto H. Then

P ([lma ()1 = V| 2 t) < 10exp ().
In particular, one has

|7wg (X)| = Vd+ O(Klogn)

with overwhelming probability.

The same conclusion holds (with 10 being replaced by an-
other explicit constant) if one of the entries &; of X is assumed
to have variance c instead of 1, for some absolutely constant
c> 0.
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It is straightforward to show that E||zg (X)|* = d [23]. We
study the linear case first. Since any Gaussian signal can be
centered and normalized, we can assume entries of vector y
in (35) are mean 0, variance 1 independent Gaussian variables.
[37] shows for sub-Gaussian case the magnitudes of entries are
bounded almost surely, then this result also works for Gaussian
case, while all Gaussian variables belong to sub-Gaussian fam-
ily. Hence the conditions in Lemma 1 are satisfied. Projection
P is the orthogonal projection of y onto subspace T, and P
is the orthogonal projection of y onto orthogonal complement of
T. From (35) we can derive expectation of the detection metric
~ as below:

B(y) = E(

E (y"P;Pry) n-K
E (y"PL, Pr.y) K

y ' PIPry ) n-K
y'PL . Pry K

E|Pry|* n-K
E|[Pry|? K
K n—K
n-K K

=1

(30)

The second equality comes from the fact that the nu-
merator and denominator of ~ are independent (proved in
Appendix B). From the above derivation, we know that E(y) =
1 with overwhelming probability. This result agrees with the
analysis that v ~ F(dy, d2), E(y) = dji2 ~ 1 while d, is large
enough. Equivalently, this conclusion is valid only in high-
dimensional space. As we mentioned before, a nonlinear model
in an original linear space becomes a linear model if it is pre-
sented in a feature space. When vector y in linear space satisfies
Gaussian distribution, as well as in feature space y,, itself can
be approximately considered as Gaussian distribution too [13].
Thus the result in (30) can be extended to Gaussian kernel GLRT
case.

V. NUMERICAL RESULTS

In this section, we first give a brief review for other spectrum
sensing algorithms from theoretical perspective. Then give sim-
ulation results for different algorithms using a digital TV (DTV)
signal, which was captured (field measurements) in Washington
DC [38].

A. Comparison With Other Algorithms

In the following, we will discuss other algorithms for compar-
ison purpose. Energy detection [19] is a commonly employed
method for spectrum sensing and will be used as a benchmark to
the proposed detection algorithms. We compare GLRT, KGLRT
with ED and four other algorithms, Arithmetic-to-geometric
(AGM) [20] and Maximum-minimum (MME) [5] are eigen-
values based detection techniques, while Cooperative Power
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spectral density Cancellation (CPSC) [21] and Circular-folding
CPSC (CF-CPSC) [22] are FFT based methods.

1) ED: ED is easily implemented and optimal when signals
are uncorrelated. However, it suffers from noise uncer-
tainty since its threshold is noise power dependent and
detection requires accurate knowledge of the noise power.

2) AGM: AGM finds an unstructured estimation of the sam-
ple covariance matrix R,, can be represented as R, + o2
under H, and o2 under H,. The dimension of R, is M
and A;,% = 1,2,..., M are ordered eigenvalues of R,.
The arithmetic mean and geometric mean of all eigen-
values can be calculated, compare their ratio with the
threshold,

(IT; 2)7r

AGM is able to sense the spectrum without prior knowl-
edge and overcome the noise uncertainty.

3) MME: MME is also a eigenvalue-based detection method,
it shows the ratio of the maximum eigenvalue and mini-
mum eigenvalue of the sample covariance matrix R, can
be used to detect the signal existence. By using results
from random matrix theory, the ratio can be approximated
and the threshold is found. MME can be used without prior
knowledge of the signal and noise but has difficult to ob-
tain a precisely closed form formula for the threshold.
[39], [40] have made progress but not resolved yet.

4) CPSC: Cooperative Power spectral density Split Cancel-
lation (CPSC) method takes advantages of the asymptotic
normality and independence of Fourier transform, thus
the stochastic properties of the power spectral density can
be achieved. CPSC algorithm divides the power spectrum
into L subbands, calculates the ratio of the each subband
to the full band, after comparing with the threshold, the
decision for each subband can be made. Making the final
decision based on the results from all the subbands. The
test statistics is expressed as

Tygyn = > YAGM

U
Fiu

1

Tavg = 77 e ——

U Z Sz Fia
There exist U second users and F; , is the spectrum power
of the subband [ of each second user u. The threshold is
not related to the noise power.

5) CF-CPSC: Based on CPSC, [22] proposes a circular
folding CPSC (CF-CPSC). The fundamental difference
between CF-CPSC and CPSC is that CF-CPSC applied a
circular-even component [41] that compute F, (k) as

F,(1)+ F,(M/2+1)

k=1

Fu(k) = 2 ’

b F.(k)+ F (M — k+2) sy
2 b - b 9

where F,’(k) is the power spectral density and M is the
total size of the sampling set. The cumulative distribu-
tion functions of the main random variables that form the
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TABLE I
COMPLEXITY COMPARISON OF DIFFERENT ALGORITHMS

Algorithm | Complexity Order

ED O(nN)
AGM O(n?N)
MME O(n?N)
GLRT O(n’N)
KGLRT O(nN?)

CPSC O(nN log(nN))

CF-CPSC | O(nNlog(nN))

decision statistic is derived, yields a impressively precise
closed-form expression of the threshold.

6) Complexity Comparison: For N segments of data vec-
tors with dimension n, N is larger than n, the calculation
complexity for ED is the simplest as it only needs n./N mul-
tiplications and (nN — 1) additions. Linear GLRT, MME
and AGM have the same order since they all need to cal-
culate the sample covariance matrix (order O(n*>N)) and
do eigen-decomposition (order O(n?)). The main compu-
tational load of KGLRT is generating the kernel matrix
(order O(n.N?)) and the kernel matrix decomposition (or-
der O(N?)). Both CPSC and CF-CPSC need Nn-point
FFTs, which have order O(nN log(Nn)). The compari-
son of these algorithms is illustrated in Table I.

B. Simulation Results

For simulations using DTV signal, field measurements were
recorded in Washington D.C. from [38]. The data rate of the
vestigial sideband (VSB) DTV signal is 10.76 MSps. The cap-
tured DTV signals were sampled at a receiver using 21.52
MSps and down modified to a low central intermediate fre-
quency (IF) of 5.38 MHZ. The SNR level of receiver signal
and the communication channel between the transmitter and re-
ceiver are unknown. White Gaussian noise is added to obtain
various SNR levels for simulation purposes. The performance
of the proposed nonlinear algorithm (KGLRT), its linear version
(GLRT), ideal ED, AGM, MME, CPSC and CF-CPSC are pro-
vided. The process of choosing an appropriate kernel is still an
open problem as in almost every kernel-based algorithm [26].
The most widely used - polynomial kernel and the Gaussian
RBF kernel - are chosen in this paper to demonstrate advances
of the proposed approaches to spectrum sensing. Parameters are
empirically chosen for different kernel functions.

1) Detection Performance on Proposed Algorithms: A size
of 2e4 data set is generated and is formed into a 400 by 50
matrix. The signal is corrupted by white Gaussian noise. 1000
Monte Carlo simulations are performed for centering KGLRT
in Algorithm 1, linear GLRT, ED, MME, AGM, MME, CPSC
and CF-CPSC. The false-alarm is preset as 1% and 10%. The
proposed nonlinear method performs best among all the methods
and outperform its linear version at around 4 dB gain.

The receiver operating characteristic (ROC) curves generated
by different algorithms is illustrated in Fig. 1 at SNR level of
—12dB, —16dB and —20 dB using DTV signal. Fig. 2 shows the
plots of Py vs SNR at Py = 1% and P; vs SNR at Py = 10%.
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Fig. 1. ROC curves at different SNR levels, considering signals with unknown
distribution through unknown channel; the subspace of signals learned as a priori
knowledge. (a) SNR equals —12 dB. (b) SNR equals —16 dB. (c) SNR equals
—20dB.

The thresholds are set up numerically to satisfy the target false
alarm probabilities. Polynomial kernel with d =2, ¢ =1 and
Gaussian kernel with v> = 402 /2 are exploited. It can be seen
that KGLRT, CPSC, CF-CPSC and GLRT all outperform ideal
ED, AGM and MME. Ideal ED is comparable to AGM and
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Fig. 2. Detection probabilities at different preset false alarm probabilities,
demonstrating Polynomial KGLRT and Gaussian KGLRT outperform other
algorithms. (a) False alarm probability equals 1%. (b) False alarm probability
equals 10%.

MME since noise power is assumed be accurately known. Per-
formances of CPSC and CF-CPSC are between GLRT and Gaus-
sian GLRT. However, from Fig. 1 we find that the performance
of both CPSC and CF-CPSC drop rapidly when SNR gets lower
and perform worse than linear GLRT.

In cognitive radio, Py relates to spectral utilization since false
detections lead to timid secondary users. Fig. 3 shows Py vs.
SNR at P; = 90%. The thresholds are set numerically to satisfy
the target detection probability. The analytical P; derived in
Section IV are also plotted for comparison. Analytical results
match the numerical results from simulations. Different KGLRT
approaches outperform GLRT approaches as expected. Further-
more, polynomial KGLRT can achieve the lowest false-alarm
probability among the three proposed methods.

2) Statistics Under Hy: Simulation results verify the theo-
retical analysis for PDF and thresholds. The signal is corrupted
by White Gaussian noise at different SNR levels. For SNR levels
of —8, —12, —16 and —20 dB, one thousand Monte Carlo sim-
ulations are done for GLRT, centering Gaussian kernel GLRT
and centering polynomial kernel GLRT. The total size of re-
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These plots show that theoretical and simulated thresholds are

extraordinarily similar to each other, confirm the correctness of Fig. 7. Comparison of theoretical and simulated thresholds for Gaussian
. . KGLRT, ith each oth diff SNR levels.

analytical results of this paper [see (26), (27) and (29)]. agree with each other at different evers
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VI. CONCLUSION

Through effectively applying the kernel trick, for the first
time a nonlinear algorithm is introduced for spectrum sens-
ing by taking advantage of high dimensionality associated with
a nonlinear mapping. Data in high-dimensional feature space
exhibits more complex structure which helps to improve de-
tection performance. However, the price of such an improved
performance is that computational complexity may rise to ex-
treme heights. To avoid this fatal disadvantage, kernel trick is
the solution to bypass direct computing in feature space. After
performing mathematical calculations of inner products to find
the detection metric, our proposed algorithm achieves impres-
sive performance progress with an acceptable computational
load.

Detailed derivations of theoretical statements are given for the
proposed algorithm (i.e., KGLRT), which are also valid for its
linear counterpart (i.e., GLRT). From Tao’s Lemma of distance
between orthogonal projections, the concentration property of
the analytical detection metric is revealed and the detection
metric is found to be a concentrated random variable that gives
guidance to set a threshold. The probability distributions for
both GLRT and KGLRT algorithms under null hypothesis are
formulated in closed-form. Therefore, given a target false alarm
rate, the closed-form of detection threshold can be obtained.
Closed-form formulations are verified by simulations. Analyti-
cal formulation of detection threshold clearly shows that thresh-
old is irrelevant to noise power, which addresses the challenging
issue of noise uncertainty that most of the traditional methods
such as ED cannot handle.

From this papers work there are abundant future research di-
rections. For example, we can apply the proposed algorithms
in cognitive radio vehicular ad hoc networks (CR-VANETS) for
reliable spectrum sensing. Different vehicles share the spectrum
in an intelligent way. Spectrum sensing is the key step for spec-
trum sharing and spectrum management. We can also extend
our work from the setting of single primary user and single
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secondary user to the setting of multiple primary users and sec-
ondary users with consideration of multiple spectrum bands.
Cooperative spectrum sensing exploits spatial and temporal di-
versities for fast and accurate detection of primary users. When
the signals from primary users are extremely weak compared
with highway ambient noises (a low-SNR environment), it is
necessary to optimize/derive the detection performance and/or
to select the detection threshold for any secondary user over any
spectrum band efficiently. This task can increase safety, comfort
and information agility for vehicles on the road [42]-[44]. Our
work also might be applied to other applications such as a real-
time Smart Grid system where the smart meters are modeled as
secondary users [45].

APPENDIX A
DERIVATION FOR CENTERED THRESHOLD

We can center data in feature space F as

M
1 .
we(x:) = o(x;) — i Zcp(xi),z =1,2,..M
i=1

N
1 )
ee(yi) = p(yi) — N > olyi)i=1,2,..,N
i=1

Consequently, the centering of p,41, in feature space can be
cast as

B k(y.y)
Pckglrt = ]fc (y7y) _ kCTBBTkC (31)
where
ke(y,¥) = ¢ () pe(y)
| X T | X
= e - ;¢(y7z) oY)~ ;@(Yi)
1 N
= o) e(y) = 5 D_ e eyi)
i=1
| X | M N
— 5 2 eWe) + 5 D_er)" D elvi)
i=1 i=1 i=1
= k(yvy) - Z(k(y, Yiy, - k(yv yN))u + uTﬁu
(32)
and

k. =k — K'u

u=(1/N,1/N,...,1/N)" is an N-dimension unit column
vector, and yi,y2,...,yn are i.i.d copies of y. Matrix K=
(k(yi,y;))nxn is a positive semi-definite matrix, and K" =
(k(x;,¥;))a xn is the cross kernel matrix of x and y

APPENDIX B
PROOF OF THEOREM 1

Proof: As mentioned before, Pp = T(TTT)ilTT =
TT7 is a projection matrix associated with the K dimensional
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subspace T. It is easy to derive that

Pr =PL P; = P2, (33)

Define another projection Py = I — TT7, clearly Py is
associated with the space T ; we call it the orthogonal comple-
ment of T

T =0veV:ivt=0VteT

The dimension of T is n — K and Py, = T*T". The
following properties hold

PTL = P;l,PTL == P%‘L (34)

hence, P is the orthogonal projection matrix that projects vec-
tors onto T and P is the orthogonal projection that projects
vectors to subspace T. This yields,

y'PiPry n-K
v = :
y'PL Pry K

(35)

Under the null hypothesis y ~ N (0, 0?Pr), hence we have
Pry ~ N(0,0°PrPL) = N(0,5°Pr) (36)

and
Pry ~N(0,0°Pp. PL ) = N(0,6°Pp.)  (37)

It can be easily seen that Pry and P;.y are indepen-
dent of each other, and their inner products y? PLPry and
y' PL, Pr.y are also independent.

On the other hand,

Vi, vy =Ty ~ N(0,6°TTT) = N(0,0%) (38)

So it is straight forward that v;y is independent with v;y
while ¢ # j. Thus

1
STy Ty

1
Y TT!y =

£(2)

i=1

1
gyTP§PTy

since 1| (V'Ui) ~ N(0,T), we obtain
1
Y PrPry ~)(K)

where x?(z) denotes the chi-square distribution with = degrees
of freedom. Similarly,

|
;yPiffPTLy ~x*(n—K)

Based on the fact that the numerator and denominator of y are
independent of each other, both of them follow the chi-square
distribution of degrees of freedom of K and n — K, hence their
ratio follows F distribution, v ~ F(K,n — K). [ |
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