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Abstract—Spectrum sensing in next-generation wireless radio
networks is considered a key technology to overcome the problem
of spectrum scarcity. Unfortunately, many approaches to spectrum
sensing do not work well in low signal-to-noise ratio (SNR) environ-
ments. This paper proposes and analyzes a new algorithm named
kernelized generalized likelihood ratio test (KGLRT) for spectrum
sensing in cognitive radio systems to overcome this problem. Ef-
fectively, KGLRT uses a nonlinear kernel to map input data onto a
high-dimensional feature space; then, the widely accepted (linear)
generalized likelihood ratio test is used for hypothesis testing. This
new algorithm gives a gain of 4 dB in SNR over its linear coun-
terpart. A theoretical analysis for this algorithm is given for the
first time and is shown analogous to algorithms used in image sig-
nal processing. The detection metrics are found to be concentrated
random variables; furthermore, the probability distributions of the
detection metrics are proved to follow the F-distributions, which
agree with the results obtained using the concentration inequality.
The analytical thresholds are derived for target false-alarm prob-
abilities. The thresholds are independent of noise power; thus, the
proposed algorithm can overcome noise uncertainty issues at very
low SNR levels. Simulations validate the theoretical results.

Index Terms—Spectrum sensing, GLRT, KGLRT.

I. INTRODUCTION

S
PECTRUM sensing is a core function required in cognitive

radio [1] or any spectral approach to adaptive communica-

tions. In general, this sensing is used to detect the presence of the

primary signal; however, spectrum sensing is more challenging

in an extremely low signal-to-noise ratio (SNR) environment,

e.g., −20 dB, which forces researchers to revisit classical detec-

tion problems for these modalities. Due to high rate hardware,

for even short durations of interest (on the order of one second),

we often have at our disposal a large number of samples. For

example, with digital television (DTV) signals, it is feasible for

there to be 10,000 samples that could fit as input to the available

Manuscript received September 10, 2017; revised January 27, 2018 and March
19, 2018; accepted March 19, 2018. Date of publication April 6, 2018; date of
current version August 13, 2018. This work was supported by the National
Science Foundation under Grant CNS-1738034. The review of this paper was
coordinated by Prof. D. B. da Costa. (Corresponding author: Adam Lane An-

derson.)

L. Li and S. Hou are with the Department of Electrical and Computer En-
gineering, Tennessee Technological University, Cookeville, TN 38505 USA
(e-mail:,lli21@students.tntech.edu; shou42@students.tntech.edu).

A. L. Anderson is with Oak Ridge National Laboratory and the Department
of Electrical and Computer Engineering, Tennessee Technological University,
Cookeville, TN 38505 USA (e-mail:,aanderson@tntech.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2018.2824023

algorithms. To take advantage of this large number of samples

in sensing, we formulate the problem as a high-dimensional

probability space through the use of kernel functions.

Associated with high dimensional control, the concentration

of measure phenomenon [2] means that certain random fluctua-

tions become tractable. With the success of asymptotic methods

in random matrix theory, we can exploit the high-dimensionality

of data in the feature space. In fact, one essential feature of Big

Data research topics is related to high-dimensional statistics.

High dimensionality enables us to obtain central limit theorems

for some advanced statistics—detection metrics in our case. In

other words, the power of our proposed algorithm arises from

the high dimensionality of the feature space and the novel use

of kernel mappings.

A. Related Works

Different kinds of techniques have been developed for

spectrum sensing. Classic methods include energy detection

(ED), matched filter detection, cyclostationary feature detec-

tion, wavelet-based detection and cooperative detection. See

e.g., [1], [3] for details. The line of research relevant to this pa-

per starts with eigenvalue-based detection [4]–[7]. The idea is

to form a sample covariance matrix (SCM) from the measured

data samples; then, a specific statistic only using eigenvalues of

the SCM is used for the detection metric in a hypothesis test.

This is a counterpoint to when the eigenvectors of the SCM are

used [1], [8], [9].

Using the leading eigenvector of the SCM, a detection algo-

rithm named feature template matching (FTM) is first proposed

in [10] and presented with more details in [8]. The kernel ver-

sion of feature template matching (KFTM) is considered in [9].

Compared with FTM, KFTM deals with high-dimensional data

and applies a kernel trick that not only avoids the limitations

of linear problems but also decreases calculation complexities,

resulting in significantly improved detection performance. Only

a leading eigenvector (rank-one matrix approximation) is con-

sidered in the nonlinear kernel version [9]. This paper, on the

other hand, considers the subspace counterpart (rank-k matrix

approximation) of both linear and nonlinear (kernel) versions.

As in [11], [12], linear subspace detection methods have been

used for spectrum sensing to improve detection performance in

low SNR environments.

A critical advancement is made in the context of hyperspec-

tral target detection for pattern recognition in [13], where it is
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necessary for the GLRTs in the feature space to be kernelized

before they can be implemented due to the high dimension-

ality of the feature space. Their algorithm is derived but no

analysis is attempted. The current work helps fill this gap by

conducting an analysis for the algorithm used in the context of

cognitive radio. The distribution of the decision threshold is de-

rived to satisfy an F-distribution; numerical simulations agree

with the derived result. Surprisingly, in unrelated work [14],

F-distribution is also used to model composite fading channels

accurately.

Other relevant works include: [15] which proposes a kernel-

ized energy detection algorithm (KED) which is much more

robust against impulsive noise and displays a considerably bet-

ter detection performance than the conventional ED. [16] shows

how a kernel matrix can asymptotically be well approximated

by an analytically tractable random matrix.

B. Contributions

This paper devises a subspace matching method [17] com-

bined with the so-called kernel trick that was first used in the

context of images by [13] (which lacked analysis for the algo-

rithm). This paper’s main contributions are as follows:

1) Based on [17], [18], a linear version (called linear GLRT

here) algorithm has been generated using the linear sub-

space of the detected primary user. The subspace is built

via the well-known Karhunen-Loeve transform (KLT). To

the best of our knowledge, this is the first time the ex-

tended nonlinear version of GLRT, called KGLRT, is pro-

posed for spectrum sensing with detailed analysis of the

proposed algorithms. Through second order statistics of

GLRT, higher-order statistics/correlation is investigated.

By applying a kernel trick, the detection metric in high-

dimensional space greatly simplifies calculations required

for the nonlinear mapping. Simulations using measured

DTV signals show that, compared with its linear coun-

terpart, our proposed KGLRT yields a 4 dB gain in SNR

for a fixed false-alarm rate. This significant gain justifies

the approach of exploiting high-dimensionality for spec-

trum sensing. Simulation comparisons with other spec-

trum sensing methods [5], [19]–[22] show that KGLRT

achieves the best performance.

2) The statistical distributions of proposed GLRT and

KGLRT for different kernels are thoroughly analyzed.

Under null hypothesis, the closed-form expressions with

decision thresholds for different false-alarm probabilities

are obtained. Simulations validate these closed-form ex-

pressions. Furthermore, the derived thresholds make no

use of noise power, which avoids the noise uncertainty

problem in spectrum sensing and encourages the proposed

method in low SNR environments.

3) The analysis based on Tao’s Lemma is accomplished.

This Lemma shows the concentration inequality regard-

ing distance between orthogonal projections [23]. Our

results demonstrate the advantage of the proposed high-

dimensional detection metrics for both linear and nonlin-

ear cases.

This paper is organized as follows: In Section II, the prob-

lem model is built upon a binary hypothesis test, and the GLRT

algorithm for subspace matching is derived step by step. In

Section III, the kernel trick is introduced in detail; and then the

KGLRT subspace detection algorithm is proposed as the nonlin-

ear version of GLRT; furthermore, the computational complex-

ities of both GLRT and KGLRT are compared in Section III-D.

In Section IV, the statistical distribution of the detection metric

is derived and the decision thresholds are obtained. For dif-

ferent spectrum sensing algorithms, comparisons of computa-

tional complexities and detection performances are presented in

Section V. The paper is summarized and future challenges are

proposed in Section VI.

Notation: In the following, we depict variables in lower case

letters, vectors in lower case boldface letters and matrices in

uppercase boldface letters. The transpose operator is given be

(·)T
while 〈x,y〉 would be the inner product of two vectors x

and y, for example.

II. LINEAR SUBSPACE DETECTION

A. Linear Subspace Model Statement

Consider a cognitive radio scenario with a pair of users: one

designated as “primary” and the other as “secondary”. Let y(t)
be the continuous-time signal received by the secondary user

through some unknown channel; the signal y(t) is sampled with

period Ts to create the discrete-time received samples y[l] =
y(lTs).

Spectrum sensing is performed between two hypotheses: the

null hypothesis H0, where the primary user is absent; and the

alternative hypothesis H1, where the primary user is present

H0 : y[l] = w[l]

H1 : y[l] = x[l] + w[l] (1)

where w[l] ∼ N (0, σ2) are samples of an independent and iden-

tically distributed (i.i.d.) Gaussian noise source, and x[l] are the

received samples including the effects of path loss, channel fad-

ing and time dispersion [6]. x[l] can be the superposition of

signals from primary users after passing through an unknown

channel with unknown distribution. Signal and noise are as-

sumed to be independent of each other.

At some discrete moment in time, i, the sensing segment

consisting of n consecutive observations is congregated into a

received vector

y = (y([i], y[i + 1], ..., y[i + n − 1]) (2)

Spectrum sensing is performed based on the statistics of y by

the secondary user. Parameters Pd and Pf are used to evalu-

ate detection performance. Our goal is to maximize detection

probability Pd at a target false alarm rate Pf .

B. Generalized Likelihood Ratio Test

It is assumed that the primary user’s signal x ∈ R
n×1 lies in a

K-dimensional subspace which is spanned by the columns of an

orthonormal matrix T ∈ R
n×K , so x = Tθ, where θ ∈ R

K×1

is an unknown coefficient vector [18], and T represents a full
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rank matrix whose column vectors span the original signal sub-

space. Since T is orthonormal, it has the well-known property

that TT T = I, where I stands for the identity matrix while

matrix T and its transpose TT are not commutative. Additive

noise is represented by vector w ∈ R
n×1 with w ∼ N (0, σ2In ).

We concatenate N successive samples of vectors given by (2).

The spectrum sensing detection problem presented in (1) can be

formulated as

H0 : y = w

H1 : y = Tθ + w (3)

Since cognitive radios have the ability to learn [24], part

of the received primary user signals can be saved and uti-

lized to learn the matrix T. T can be approximated by ma-

trix T̂ = (v1,v2, . . . ,vK ), with {vi , i = 1, ..,K} are dominant

eigenvectors of the sample covariance matrix for the zero mean

or centered samples [13]. K ≤ min (N,n) is the dimension of

the subspace which best preserves the primary user’s power in

the least mean squared error sense.

According to Neyman-Pearson criterion, likelihood ratio test

(LRT) which is defined as

ρlrt =
f1(y|H1)

f0(y|H0)

H1

≷
H0

Tlrt (4)

is the optimal detection rule where Tlrt is the threshold value,

f1(y|H1) and f0(y|H0) stand for the conditional probability

density function of y under the hypotheses H1 and H0. Their

distributions can be represented as conditional Gaussian proba-

bility densities N (Tθ, σ1
2I) and N (0, σ0

2I).
However, in general while exploring LRT approach, the pa-

rameters θ, σ0, σ1 are unknown. An alternative way is to replace

θ, σ0, σ1 by their maximum likelihood estimators θ̂, σ̂0, σ̂1 [17],

[18]. The general likelihood ration test (GLRT) can then be ob-

tained in a straightforward manner as

ρ̂lrt =
max f1(y|H1)

max
θ

f0(y|H0)

=

(
σ̂2

1

σ̂2
0

)−n/2

exp

{
− 1

2σ̂2
1

‖ŵ1‖2 +
1

2σ̂2
0

‖ŵ0‖2

}

H1

≷
H0

Tlrt (5)

The least squares solutions to the model presented in (3) are

produced by projection of the input vector onto a subspace.

ŵi are the MLE estimators of wi for both the hypotheses H0

and H1.

ŵ0 = y

ŵ1 = (y − Tθ) = (I − PT )y (6)

where PT = T(TT T)
−1

TT = TTT is a projection matrix as-

sociated with the K dimensional subspace T. We then obtain:

PT
T = PT ,P2

T = PT (7)

Afterwards, the signal energy can be derived as:

‖ŵ1‖2 = (y − PT y)T (y − PT y)

= yT y − yT PT y − yT PT
T y + yT PT

T PT y

= yT y − 2yT PT y + yT PT y

= yT (I − TTT )y (8)

We also know that ‖ŵ0‖2 = yT y. Since wi has normal distri-

bution as N(0, σi
2I), therefore

σ̂2
0 =

1

n
‖y‖2 =

1

n
‖ŵ0‖2

(9)

σ̂2
1 =

1

n

∥∥∥y − Tθ̂

∥∥∥
2

=
1

n
‖ŵ1‖2

(10)

θ̂ = (TT T)−1TT y = TT y (11)

Substituting the maximum likelihood estimators σ̂2
0 , σ̂2

1 and θ̂

into (5) and taking n/2 root, GLRT rule is

ρg lrt = (ρ̂lrt)
2/n

=
‖ŵ0‖2

‖ŵ1‖2

=
σ̂2

0

σ̂2
1

=
yT y

yT (I − TTT )y

H1

≷
H0

Tg lrt (12)

III. KERNEL-BASED SUBSPACE DETECTION

A. Kernel Method

Kernel methods have been generally employed in machine

learning where data is implicitly mapped to feature space via

the so-called “kernel trick”. Let X be an n-dimensional input

space (X ∈ R
n ). With a mapping ϕ, x is mapped to ϕ(x) in a

nonlinear feature space F , where x is an input vector in X and

ϕ is an implicitly defined mapping. After mapping data via a

map ϕ into the feature space F [25], the kernel function k is

defined as the inner-product of data, i.e.,

k(xi ,xj ) = 〈ϕ(xi), ϕ(xj )〉 (13)

where < · > stands for the inner product. The feature space F ,

also named as kernel space, is a space of functions mapping X
into R, denoted as F := {f : X → R}. The map ϕ is defined

via

ϕ : X → F
x 	→ ϕ(x) (14)

Thus a feature space F associated with ϕ can be constructed.

Such a space is defined by the selected kernel function. The

mapping ϕ can be so ordinary that various types of data can

be operated upon; thus, a large number of affiliations between

data can be detected [25]. Typically, projective kernels (func-

tions of inner-product) and radial kernels (functions of distance)
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are the two most popular groups of kernels. In this paper, poly-

nomial kernel (a projective kernel) and Gaussian radial basis

function (RBF) kernel (a radial kernel) are chosen for use and

comparison.

The Gaussian RBF kernel is defined as

k(xi,xj ) = exp

(
−‖xi − xj‖2

2υ2

)
(15)

where υ > 0. The polynomial kernel with order d is defined as

k(xi ,xj ) = (〈xi ,xj 〉 + c)d
(16)

and c = 0 for homogeneous kernels and c = 1 for inhomoge-

neous kernels.

After Gaussian kernel mapping, the dimension of the fea-

ture space (kernel space) can be huge or even infinite [26]. For

polynomial kernel with order d, the dimension of the feature

space, which is the number of different monomials, becomes

(d + P − 1)!/d!(P − 1)!; To explicitly avert direct operation

on ϕ(x), the kernel function of (13) is selected to exploit only

the inner product of data in the feature space. This trick ad-

equately bypasses calculating the large high-dimensional data

set generated by different nonlinear mappings. Without know-

ing precisely what ϕ stands for, we can develop a kernel-based

algorithm in kernel space using only kernel functions. Thus the

proposed nonlinear algorithm can not only be attained without

causing too much computational load, but also take higher order

statistics/ correlation into account.

Accordingly, when data from the original input space exhibits

a nonlinear formation, applying the kernel trick leads to less

computational load and achieves better performance than linear

methods. On the other hand, not all functions defined in the input

space can be used as a kernel function. Only when a mapping

ϕ exists and (13) is credible can the kernel function k be well-

defined. Equivalently, if a function meets Mercer’s condition

[27], it is a well-defined kernel.

B. Linear Subspace Models Defined in Kernel Space

Recent works in random matrix theory, as presented in [28],

consider the spectrum of certain kernel matrices in high-

dimensional space. Under various technical assumptions, ker-

nel random matrices, i.e. n × n matrices whose (i, j)th entry

is f(〈xi ,xj 〉/p) (polynomial kernel belongs to this group) or

f(‖xi − xj‖2

2
/p) (Gaussian kernel belongs to this group), where

p is the dimension of the data and x1,x2, ...,xn are independent

vectors, behave essentially like matrices closely connected to

sample covariance matrices. Here f is assumed to be a local

smooth function and p can approach infinity but is comparable

to the size of n, i.e. p/n ∈ (0, 1). As mentioned in [28], in high-

dimensional space, the nonlinear methods that rely on kernel

metrics may behave like their linear counterparts. Furthermore,

for a more specific case, following the procedure in [13], we

make the essential assumption that the spectrum sensing in the

feature space can be formulated in hypotheses

H0ϕ
: ϕ(y) = wϕ

H1ϕ
: ϕ(y) = Tϕθϕ + wϕ (17)

where the columns of Tϕ are the basis of the primary user’s

subspace in F , θϕ are unknown vectors whose entries are co-

efficients that account for the abundances of the corresponding

columns in Tϕ . Although the assumption of (17) appears very

restrictive, practical examples show that this linear model is ap-

proximatively valid in the feature space, as confirmed by the

superior performance of the algorithm.

We can consider that the linear subspace model (3) in the

feature space F approximately has a corresponding nonlinear

subspace model in the original input space, denoted as (17).

Therefore, the GLRT of the linear subspace in F is equivalent

to the GLRT of the corresponding nonlinear subspace model

in the input space. When the two hypotheses H0ϕ
and H1ϕ

in

feature space F still follow Gaussian distributions [13], based

on (12), GLRT for ϕ(y) can be transformed into

ρkglrt =
ϕ(y)T ϕ(y)

ϕ(y)T (Iϕ − TϕTϕ
T )ϕ(y)

(18)

where Iϕ is an identity matrix in F . Apparently, (18) cannot be

implemented straightaway because after mapping ϕ the dimen-

sion might become infinite. It should be kernelized to obtain an

expression in terms of the kernel function k. Hence we name

GLRT of the nonlinear subspace of the original input space as

KGLRT. KGLRT is the nonlinear version of GLRT in an arbi-

trary dimension space. Since Gaussian distribution transformed

into the feature space exhibits a more complex structure than in

input space, KGLRT can accomplish a better detection job than

traditional GLRT. As mentioned above, our choice of kernel

functions are Gaussian RBF kernel and polynomial kernel.

C. Kernelized Generalized Likelihood Ration Test

The priori knowledge of primary user’s signal is accessible

in specific situations, which can be used for spectrum sensing.

As in matched filter detection [7], [29], [30], the receiver needs

to know the primary user’s signal in advance. For linear feature

template matching in [8], [10], feature template is generated

by primary user’s signal. In [31], prior information of signal

is considered. The kernel feature template matching method

proposed in [9] requires a historical database of signal samples

in order to apply the kernel trick. Since a cognitive radio system

has the ability to learn [24], the historical information of primary

users, such as DTV or 4G signal can be saved and utilized for

subspace learning.

Similar to linear GLRT, for the zero mean or centering data

ϕ(xi), i = 1, 2, ...,M , each column of Tϕ is the eigenvector

corresponding to the non zero eigenvalue of

Rϕ(x) =
1

M

M∑

i=1

ϕ(xi)ϕ(xi)
T (19)
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If matrix Rϕ(x) has Kf non zero eigenvalues, to avoid

heavy computational load of calculating Rϕ(x) , each col-

umn of Tϕ can be represented as a linear combination of

ϕ(x1), ϕ(x2), ....ϕ(xM ) [32]. e.g.,

v
f
i =

M∑

j=1

βiϕ(xj )

where βi = (β1i , β2i , ..., βM i)
T , i = 1, 2, ...,Kf are the eigen-

vectors corresponding to all non-zero eigenvalues of the kernel

matrix defined as

K = (k(xi ,xj ))M ×M = (〈ϕ(xi), ϕ(xj )〉)M ×M (20)

It is clear that every kernel matrix is a positive semi-definite

matrix. Let B = (β1,β2, ...,βK f
). Hence Tϕ can be expressed

implicitly as [32]

Tϕ = (v1
f ,v2

f , ...,vkf

f ) = (ϕ(x1), ..., ϕ(xM ))B (21)

Accordingly, ϕ(y)T TϕTϕ
T ϕ(y) can be represented as

ϕ(y)T TϕTT
ϕ ϕ(y) = ϕ(y)T (ϕ(x1), ϕ(x2), ..., ϕ(xM ))

(β1,β2, ...,βK f
)(β1,β2, ...,βK f

)T

⎛
⎜⎜⎜⎜⎜⎝

ϕ(x1)
T

ϕ(x2)
T

...

ϕ(xM )T

⎞
⎟⎟⎟⎟⎟⎠

ϕ(y)

= (k(y,x1), k(y,x2), ..., k(y,xM )(β1,β2, ...,βK f
)

(β1,β2, ...,βK f
)T

⎛
⎜⎜⎜⎜⎜⎝

k(y,x1)

k(y,x2)

...

k(y,xM )

⎞
⎟⎟⎟⎟⎟⎠

= kT BBT k

where k = (k(y,x1), k(y,x2), ..., k(y,xM ))T . Substitute the

last equation into (18),

ρkglrt =
k(y,y)

k(y,y) − kT BBT k
(22)

Thus, the KGLRT detection rule is

ρkglrt

H1

≷
H0

T kglrt (23)

In general, we should center the values of ϕ(xi), i =
1, 2, ...,M and ϕ(yi), i = 1, 2, ..., N first since usually we con-

sider the zero mean case. However, even though the data set

of ϕ(x) and ϕ(y) are not centered, the sample covariance ma-

trix still embodies correlation between data sets. Therefore, the

above derivation procedures can be used for both centering and

non-centering situations.

Algorithm 1: KGLRT – For Centering and Non-Centering.

1: Retrieve training samples of primary user from a given

database.

2: Choose appropriate kernel function k. Kernel matrix

K = (k(xi ,xj ))M ×M based on the given samples

x1,x2, ...xM . This matrix is updated when different

features are chosen.

3: Use secondary user signal to build the received vectors:

y1,y2, ...,yN . Calculate K̃ = (k(yi ,yj ))N ×N .

4: Compute the inner product of the received

N -dimensional vector k(y,y).
5: k = (k(y,x1), k(y,x2), ..., k(y,xM )), the kernel

vector is computed.

6: if centering then

7: Calculate the centering matrix K = Kc .

8: The centered inner product of received vector

k(y,y) = kc(y,y) is calculated.

9: Calculate the cross kernel matrix Kt =
(k(xi ,yj ))M ×N .

10: The centered kernel vector kc of k is calculated.

k = kc .

11: end if

12: Eigen decomposition of the kernel matrix K to obtain

the eigenvectors β1,β2, ...,βK f
which corresponding

to all non zero eigenvalues.

13: Compute the value of ρkglrt according to (22).

14: Determine a threshold Tkglrt .

15: if |ρkglrt | > Tkglrt then

16: Primary exists.

17: else

18: Primary does not exist.

19: end if

20: Hence , Pd = P (|ρkglrt | > Tkglrt |y = x + w), and

Pf = P (|ρkglrt | > Tkglrt |y = w).

Similarly, the centering of ρckg lrt in feature space can be

cast as

ρckg lrt =
kc(y,y)

kc(y,y) − kc
T BBT kc

(24)

detailed derivation see Appendix A

Following the above derivation, the kernel GLRT algorithm

is illustrated as in Algorithm 1.

D. Complexity Analysis

Either the subspace of linear space or feature space needs to

be learned a priori and then used as a template. For linear GLRT

we do not need to know exactly the PU signal; we only need

to know (or learn) the subspace where the signal lies in. For

KGLRT, we need storage of historical data to build the kernel

matrix.

The main computational load for liner GLRT includes

two parts: generate sample covariance matrix and its eigen-

decomposition. Similarly, KGLRT algorithm needs to calculate
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the kernel matrix and eigen-decomposition of the kernel matrix.

Assume we have N segments of observations where each obser-

vation is represented by a n × 1 vector. To calculate the sample

covariance matrix of a signal, n(N − 1)(n + 1)/2 additions

and nN(n + 1)/2 multiplications are needed, thus the compu-

tational order is O(n2N). To generate the kernel matrix, one

needs to compute N(N + 1) kernel functions. Either Gaussian

or polynomial kernel function operate on two n dimension vec-

tors and have computational order n, thus generating the kernel

matrix the computational complexity is of order O(nN 2). With

the use of fast component analysis algorithm [33], [34], the com-

putational complexity of eigen-decomposition of sample covari-

ance matrix has order O(n2), whereas for the kernel matrix the

order is O(N 2). Since N is greater than n, the computation

complexity of KGLRT is around N/n times its linear version.

IV. STATISTICS ANALYSIS UNDER H0

A. Linear GLRT Case

Overall, for a fixed false-alarm probability Pf , the target of

a well-performed detection algorithm is to maximize the detec-

tion probability Pd with reasonable computational complexity.

Setting the threshold is the core issue for any likelihood ratio

testing algorithm. If the closed-form of probability under H0

can be formulated, the theoretical value of the threshold can be

derived for some target Pf , which is a goal of this work.

For simplicity, the analysis, which will be extended to

KGLRT, is performed based on the GLRT algorithm. The de-

tection metric in (12) can be written as

ρg lrt =
yT y

yT (I − TTT )y

=
yT (I − TTT )y + yT TTT y

yT (I − TTT )y

= 1 + γ · K

n − K

where

γ =
yT TTT y

yT (I − TTT )y
· n − K

K

and γ is an alternative metric of the GLRT algorithm. We use γ
for GLRT detection.

Theorem 1: The probability distribution of γ is F distribu-

tion, γ ∼ F(K,n − K) when the covariance matrix of noise is

σ2I.

Proof: See Appendix B. �

Given a threshold Tg lrt , it yields

Pf = P (γ > Tg lrt |H0) = 1 − F (Tg lrt ;K,n − K) (25)

where F (·;K,n − K) is the cumulative distribution function

(CDF ) of F distribution with parameters K,n − K. Thus for

a target Pf

Tg lrt = F−1(1 − Pf ;K,n − k) (26)

while F−1(·,K, n − K) being the inverse function of

F (·,K, n − K). (26) shows that the threshold is noise power

independent. Intuitively, the noise power is eliminated since the

detection metric (35) is in a ratio form.

B. Statistics Analysis in Kernelized GLRT

Theorem 1 can be extended to a nonlinear case in order to find

the threshold for the KGLRT algorithm. From (35), we obtain

ρkglrt = 1 + γϕ
Kf

nf − Kf

where

γϕ =
yT

ϕ TϕTT
ϕ yϕ

yT
ϕ (Iϕ − TϕTT

ϕ )yϕ
· nf − Kf

Kf

where Kf is the dimension of Tϕ and nf is the dimension of

ϕ(y). For a kernel function kϕ , if it is smooth and continuous as

well as data being band-limited [13], the topographic ordering

of the data in the input space is also preserved in the feature

space after the nonlinear mapping. Hence we can assume the

Gaussian distribution of the two hypotheses H0ϕ
and H1ϕ

is

valid, which can be found in [26], [35]. The model presented by

(18) becomes a linear model in feature space. We use γϕ as the

detection metric. Similarly, as for GLRT, we define

PTϕ
= TϕTT

ϕ ,PT ⊥
ϕ

= Iϕ − TϕTT
ϕ

It is straight forward that PTϕ
and PT⊥

ϕ
both are orthogonal

projections, following the steps in the proof of Theorem 1, we

have γϕ ∼ F(Kf , nf − Kf ).
For convenience, let d1 be equal to Kf and d2 be equal to

nf − Kf . The distribution of γϕ for null hypotheses for different

kernels are discussed below:

1) Gaussian kernel: In theory, the dimension of feature space

generated by Gaussian kernel (denoted as nf ) is infinite

[26], thus d2 can not be calculated. However, only a small

compact subspace of F is occupied by mapped data [13],

thus the dimension used is actually finite. From simula-

tions an unbiased estimator of d2 can be obtained. Since

Tϕ can be estimated, we have d1 = Kf . After empirical

simulations to a great extent, γϕ ∼ F(d1, d̂2) where d̂2 is

an estimator of d2.

Let E(·) denote expectation and µ = E(ρckg lrt − 1), then

E(γϕ ) =
d2

Kf
· E(ρckg lrt − 1) = µ · d2

Kf

µ can be estimated from simulation samples by

µ̂ =
1

SIM

SIM∑

i=1

(ρckg lrt − 1)

where ρckg lrt is the sample from the ith simulation and

SIM is used to denote the total number of Monte-Carlo

simulations. With the assumption that γϕ ∼ F(d1, d̂2), we

know E(γϕ ) = d̂2

d̂2−2
, for d2 ≥ 2. Thus, the estimation of
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d2 can be derived as

d̂2 =
Kf

µ̂
+ 2

Hence the analytical threshold for a given Pf can be de-

rived as

Tckg lrt =
Kf + 2µ̂

Kf
(27)

2) Polynomial kernel: Theoretically analyzing the distribu-

tion of γϕ under H0 is difficult. Alternatively, through nu-

merous simulations, the distribution can be approximately

considered as γϕ ∼ F(d̂1, d̂2) for second and third order

polynomial kernels, where d̂1 and d̂2 are estimators of d1

and d2.

Let var denote variance and S2 = var(ρckg lrt − 1), then

µ · d2

d − 1
= E(γϕ ) =

d2

d2 − 2

S2 · (d1

d2

)
2

= var(γϕ ) =
2d2

2(d1 + d2 − 2)

d1(d2 − 2)2(d2 − 4)

The estimators of d1 and d2 can be derived as

d̂1 = µ̂(d̂2 − 2), d̂2 = 4 +
2(µ̂ + 1)µ̂

Ŝ2

where

Ŝ2 =
1

SIM − 1

SIM∑

i=1

((ρckg lrt − 1)2 − µ̂)
2

(28)

is an unbiased estimator of S2. Therefore, after applying second

or third order polynomial kernel, the threshold for a target false

alarm probability is

Tckg lrt = 1 +
Ŝ2

Ŝ2 + µ̂(µ̂ + 1)
(29)

C. Concentration Inequalities of Generalized Likelihood

Ratio Test

The concentration inequalities of statistics for the proposed

algorithm will be analyzed in this section. Based on the well-

known Tao’s Lemma presented as below:

Lemma 1. [36]: Let X = (ξ1, ..., ξn ) ∈ Cn be a random

vector whose entries are independent with zero mean,

variance 1, and are bounded in magnitude by K almost surely

for some K ≥ 10(E‖ξ4‖ + 1). Let H be a subspace of di-

mension d and πH be the orthogonal projection onto H . Then

P
(∣∣∣‖πH (X)‖ −

√
d
∣∣∣ ≥ t

)
≤ 10 exp

(
− t2

10K 2

)
.

In particular, one has

‖πH (X)‖ =
√

d + O(Klogn)

with overwhelming probability.

The same conclusion holds (with 10 being replaced by an-

other explicit constant) if one of the entries ξi of X is assumed

to have variance c instead of 1, for some absolutely constant

c > 0.

It is straightforward to show that E‖πH (X)‖2 = d [23]. We

study the linear case first. Since any Gaussian signal can be

centered and normalized, we can assume entries of vector y

in (35) are mean 0, variance 1 independent Gaussian variables.

[37] shows for sub-Gaussian case the magnitudes of entries are

bounded almost surely, then this result also works for Gaussian

case, while all Gaussian variables belong to sub-Gaussian fam-

ily. Hence the conditions in Lemma 1 are satisfied. Projection

PT is the orthogonal projection of y onto subspace T, and PT ⊥

is the orthogonal projection of y onto orthogonal complement of

T. From (35) we can derive expectation of the detection metric

γ as below:

E(γ) = E

(
yT PT

T PT y

yT PT
T ⊥PT ⊥y

)
· n − K

K

=
E

(
yT PT

T PT y
)

E
(
yT PT

T ⊥PT ⊥y
) · n − K

K

=
E‖PT y‖2

E‖PT ⊥y‖2
· n − K

K

=
K

n − K
· n − K

K

= 1 (30)

The second equality comes from the fact that the nu-

merator and denominator of γ are independent (proved in

Appendix B). From the above derivation, we know that E(γ) =
1 with overwhelming probability. This result agrees with the

analysis that γ ∼ F(d1, d2), E(γ) = d2

d2−2
≈ 1 while d2 is large

enough. Equivalently, this conclusion is valid only in high-

dimensional space. As we mentioned before, a nonlinear model

in an original linear space becomes a linear model if it is pre-

sented in a feature space. When vector y in linear space satisfies

Gaussian distribution, as well as in feature space yϕ itself can

be approximately considered as Gaussian distribution too [13].

Thus the result in (30) can be extended to Gaussian kernel GLRT

case.

V. NUMERICAL RESULTS

In this section, we first give a brief review for other spectrum

sensing algorithms from theoretical perspective. Then give sim-

ulation results for different algorithms using a digital TV (DTV)

signal, which was captured (field measurements) in Washington

DC [38].

A. Comparison With Other Algorithms

In the following, we will discuss other algorithms for compar-

ison purpose. Energy detection [19] is a commonly employed

method for spectrum sensing and will be used as a benchmark to

the proposed detection algorithms. We compare GLRT, KGLRT

with ED and four other algorithms, Arithmetic-to-geometric

(AGM) [20] and Maximum-minimum (MME) [5] are eigen-

values based detection techniques, while Cooperative Power
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spectral density Cancellation (CPSC) [21] and Circular-folding

CPSC (CF-CPSC) [22] are FFT based methods.

1) ED: ED is easily implemented and optimal when signals

are uncorrelated. However, it suffers from noise uncer-

tainty since its threshold is noise power dependent and

detection requires accurate knowledge of the noise power.

2) AGM: AGM finds an unstructured estimation of the sam-

ple covariance matrix Ry can be represented as Rx + σ2
n

under H1 and σ2
n under H0. The dimension of Ry is M

and λi , i = 1, 2, . . . ,M are ordered eigenvalues of Ry .

The arithmetic mean and geometric mean of all eigen-

values can be calculated, compare their ratio with the

threshold,

TAGM =
1

M

∑
i λi

(
∏

i λi)
1

M

> γAGM

AGM is able to sense the spectrum without prior knowl-

edge and overcome the noise uncertainty.

3) MME: MME is also a eigenvalue-based detection method,

it shows the ratio of the maximum eigenvalue and mini-

mum eigenvalue of the sample covariance matrix Ry can

be used to detect the signal existence. By using results

from random matrix theory, the ratio can be approximated

and the threshold is found. MME can be used without prior

knowledge of the signal and noise but has difficult to ob-

tain a precisely closed form formula for the threshold.

[39], [40] have made progress but not resolved yet.

4) CPSC: Cooperative Power spectral density Split Cancel-

lation (CPSC) method takes advantages of the asymptotic

normality and independence of Fourier transform, thus

the stochastic properties of the power spectral density can

be achieved. CPSC algorithm divides the power spectrum

into L subbands, calculates the ratio of the each subband

to the full band, after comparing with the threshold, the

decision for each subband can be made. Making the final

decision based on the results from all the subbands. The

test statistics is expressed as

ravg =
1

U

U∑

u=1

Fl,u∑L
l=1 Fl,u

There exist U second users and Fl,u is the spectrum power

of the subband l of each second user u. The threshold is

not related to the noise power.

5) CF-CPSC: Based on CPSC, [22] proposes a circular

folding CPSC (CF-CPSC). The fundamental difference

between CF-CPSC and CPSC is that CF-CPSC applied a

circular-even component [41] that compute Fu (k) as

Fu (k) =

⎧
⎪⎪⎨
⎪⎪⎩

F
′
u (1) + F

′
u (M/2 + 1)

2
, k = 1

F
′
u (k) + F

′
u (M − k + 2)

2
, k = 2, 3, ...,M

where Fu
′(k) is the power spectral density and M is the

total size of the sampling set. The cumulative distribu-

tion functions of the main random variables that form the

TABLE I
COMPLEXITY COMPARISON OF DIFFERENT ALGORITHMS

decision statistic is derived, yields a impressively precise

closed-form expression of the threshold.

6) Complexity Comparison: For N segments of data vec-

tors with dimension n, N is larger than n, the calculation

complexity for ED is the simplest as it only needs nN mul-

tiplications and (nN − 1) additions. Linear GLRT, MME

and AGM have the same order since they all need to cal-

culate the sample covariance matrix (order O(n2N)) and

do eigen-decomposition (order O(n2)). The main compu-

tational load of KGLRT is generating the kernel matrix

(order O(nN 2)) and the kernel matrix decomposition (or-

der O(N 2)). Both CPSC and CF-CPSC need Nn-point

FFTs, which have order O(nN log(Nn)). The compari-

son of these algorithms is illustrated in Table I.

B. Simulation Results

For simulations using DTV signal, field measurements were

recorded in Washington D.C. from [38]. The data rate of the

vestigial sideband (VSB) DTV signal is 10.76 MSps. The cap-

tured DTV signals were sampled at a receiver using 21.52

MSps and down modified to a low central intermediate fre-

quency (IF) of 5.38 MHZ. The SNR level of receiver signal

and the communication channel between the transmitter and re-

ceiver are unknown. White Gaussian noise is added to obtain

various SNR levels for simulation purposes. The performance

of the proposed nonlinear algorithm (KGLRT), its linear version

(GLRT), ideal ED, AGM, MME, CPSC and CF-CPSC are pro-

vided. The process of choosing an appropriate kernel is still an

open problem as in almost every kernel-based algorithm [26].

The most widely used - polynomial kernel and the Gaussian

RBF kernel - are chosen in this paper to demonstrate advances

of the proposed approaches to spectrum sensing. Parameters are

empirically chosen for different kernel functions.

1) Detection Performance on Proposed Algorithms: A size

of 2e4 data set is generated and is formed into a 400 by 50

matrix. The signal is corrupted by white Gaussian noise. 1000

Monte Carlo simulations are performed for centering KGLRT

in Algorithm 1, linear GLRT, ED, MME, AGM, MME, CPSC

and CF-CPSC. The false-alarm is preset as 1% and 10%. The

proposed nonlinear method performs best among all the methods

and outperform its linear version at around 4 dB gain.

The receiver operating characteristic (ROC) curves generated

by different algorithms is illustrated in Fig. 1 at SNR level of

−12 dB,−16 dB and−20 dB using DTV signal. Fig. 2 shows the

plots of Pd vs SNR at Pf = 1% and Pd vs SNR at Pf = 10%.
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Fig. 1. ROC curves at different SNR levels, considering signals with unknown
distribution through unknown channel; the subspace of signals learned as a priori
knowledge. (a) SNR equals −12 dB. (b) SNR equals −16 dB. (c) SNR equals
−20 dB.

The thresholds are set up numerically to satisfy the target false

alarm probabilities. Polynomial kernel with d = 2, c = 1 and

Gaussian kernel with υ2 = 402/2 are exploited. It can be seen

that KGLRT, CPSC, CF-CPSC and GLRT all outperform ideal

ED, AGM and MME. Ideal ED is comparable to AGM and

Fig. 2. Detection probabilities at different preset false alarm probabilities,
demonstrating Polynomial KGLRT and Gaussian KGLRT outperform other
algorithms. (a) False alarm probability equals 1%. (b) False alarm probability
equals 10%.

MME since noise power is assumed be accurately known. Per-

formances of CPSC and CF-CPSC are between GLRT and Gaus-

sian GLRT. However, from Fig. 1 we find that the performance

of both CPSC and CF-CPSC drop rapidly when SNR gets lower

and perform worse than linear GLRT.

In cognitive radio, Pf relates to spectral utilization since false

detections lead to timid secondary users. Fig. 3 shows Pf vs.

SNR at Pd = 90%. The thresholds are set numerically to satisfy

the target detection probability. The analytical Pf derived in

Section IV are also plotted for comparison. Analytical results

match the numerical results from simulations. Different KGLRT

approaches outperform GLRT approaches as expected. Further-

more, polynomial KGLRT can achieve the lowest false-alarm

probability among the three proposed methods.

2) Statistics Under H0: Simulation results verify the theo-

retical analysis for PDF and thresholds. The signal is corrupted

by White Gaussian noise at different SNR levels. For SNR levels

of −8, −12, −16 and −20 dB, one thousand Monte Carlo sim-

ulations are done for GLRT, centering Gaussian kernel GLRT

and centering polynomial kernel GLRT. The total size of re-
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Fig. 3. For a preset target detection probability at 90%, simulated and ana-
lytical false alarm probabilities for GLRT, Gaussian KGLRT, and Polynomial
KGLRT, showing Polynomial KGLRT performs the best, the second is Gaussian
KGLRT, and then GLRT.

Fig. 4. Comparison of histogram, simulated and theoretical pdfs of linear
GLRT detection metric ρg lr t under H0.

ceived data set is 104. The two selected kernels are second-order

non homogeneous polynomial kernel and Gaussian kernel with

υ̂2 = 402/2.

The theoretical results of F(K,n − K) and F(Kf , nf −
Kf ) are generated for comparison in Figs. 4 and 5. Accordingly,

the histograms and pdf approximations for ρg lrt and ρckg lrt of

Gaussian kernel are plotted too. The pdf plots are generated

from simulation samplings using Matlab function ksdensity.

The theoretical and simulated results exhibit similar distribu-

tions as expected.

Figs. 6–8 corresponds to GLRT, Gaussian RBF kernel

GLRT, and polynomial kernel GLRT at different SNR level.

These plots show that theoretical and simulated thresholds are

extraordinarily similar to each other, confirm the correctness of

analytical results of this paper [see (26), (27) and (29)].

Fig. 5. Comparison of histogram, simulated and theoretical pdfs of Gaussian
KGLRT detection metric ρck g lr t under H0.

Fig. 6. Comparison of theoretical and simulated thresholds for GLRT, agree
with each other at different SNR levels.

Fig. 7. Comparison of theoretical and simulated thresholds for Gaussian
KGLRT, agree with each other at different SNR levels.
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Fig. 8. Comparison of theoretical and simulated thresholds for Polynomial
KGLRT, agree with each other at different SNR levels.

VI. CONCLUSION

Through effectively applying the kernel trick, for the first

time a nonlinear algorithm is introduced for spectrum sens-

ing by taking advantage of high dimensionality associated with

a nonlinear mapping. Data in high-dimensional feature space

exhibits more complex structure which helps to improve de-

tection performance. However, the price of such an improved

performance is that computational complexity may rise to ex-

treme heights. To avoid this fatal disadvantage, kernel trick is

the solution to bypass direct computing in feature space. After

performing mathematical calculations of inner products to find

the detection metric, our proposed algorithm achieves impres-

sive performance progress with an acceptable computational

load.

Detailed derivations of theoretical statements are given for the

proposed algorithm (i.e., KGLRT), which are also valid for its

linear counterpart (i.e., GLRT). From Tao’s Lemma of distance

between orthogonal projections, the concentration property of

the analytical detection metric is revealed and the detection

metric is found to be a concentrated random variable that gives

guidance to set a threshold. The probability distributions for

both GLRT and KGLRT algorithms under null hypothesis are

formulated in closed-form. Therefore, given a target false alarm

rate, the closed-form of detection threshold can be obtained.

Closed-form formulations are verified by simulations. Analyti-

cal formulation of detection threshold clearly shows that thresh-

old is irrelevant to noise power, which addresses the challenging

issue of noise uncertainty that most of the traditional methods

such as ED cannot handle.

From this papers work there are abundant future research di-

rections. For example, we can apply the proposed algorithms

in cognitive radio vehicular ad hoc networks (CR-VANETs) for

reliable spectrum sensing. Different vehicles share the spectrum

in an intelligent way. Spectrum sensing is the key step for spec-

trum sharing and spectrum management. We can also extend

our work from the setting of single primary user and single

secondary user to the setting of multiple primary users and sec-

ondary users with consideration of multiple spectrum bands.

Cooperative spectrum sensing exploits spatial and temporal di-

versities for fast and accurate detection of primary users. When

the signals from primary users are extremely weak compared

with highway ambient noises (a low-SNR environment), it is

necessary to optimize/derive the detection performance and/or

to select the detection threshold for any secondary user over any

spectrum band efficiently. This task can increase safety, comfort

and information agility for vehicles on the road [42]–[44]. Our

work also might be applied to other applications such as a real-

time Smart Grid system where the smart meters are modeled as

secondary users [45].

APPENDIX A

DERIVATION FOR CENTERED THRESHOLD

We can center data in feature space F as

ϕc(xi) = ϕ(xi) −
1

M

M∑

i=1

ϕ(xi), i = 1, 2, ...,M

ϕc(yi) = ϕ(yi) −
1

N

N∑

i=1

ϕ(yi), i = 1, 2, ..., N

Consequently, the centering of ρckg lrt in feature space can be

cast as

ρckg lrt =
kc(y,y)

kc(y,y) − kc
T BBT kc

(31)

where

kc(y,y) = ϕc(y)T ϕc(y)

=

(
ϕ(y) − 1

N

N∑

i=1

ϕ(yi)

)T (
ϕ(y) − 1

N

N∑

i=1

ϕ(yi)

)

= ϕ(y)T ϕ(y) − 1

N

N∑

i=1

ϕ(y)T ϕ(yi)

− 1

N

N∑

i=1

ϕ(y)ϕ(yi)
T +

1

N 2

M∑

i=1

ϕ(yi)
T

N∑

i=1

ϕ(yi)

= k(y, y) − 2(k(y,y1) , ..., k(y,yN ))u + uT K̃u

(32)

and

kc = k − Ktu

u = (1/N, 1/N, ..., 1/N)T is an N-dimension unit column

vector, and y1,y2, ...,yN are i.i.d copies of y. Matrix K̃ =
(k(yi ,yj ))N ×N is a positive semi-definite matrix, and Kt =
(k(xi ,yj ))M ×N is the cross kernel matrix of x and y

APPENDIX B

PROOF OF THEOREM 1

Proof: As mentioned before, PT = T(TT T)
−1

TT =
TTT is a projection matrix associated with the K dimensional
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subspace T. It is easy to derive that

PT = PT
T ,PT = P2

T . (33)

Define another projection PT ⊥ = I − TTT , clearly PT ⊥ is

associated with the space T⊥; we call it the orthogonal comple-

ment of T

T⊥ = v ∈ V : v
′
t = 0,∀t ∈ T

The dimension of T⊥ is n − K and PT ⊥ = T⊥T⊥T
. The

following properties hold

PT ⊥ = PT
T ⊥ ,PT ⊥ = P2

T ⊥ (34)

hence, PT is the orthogonal projection matrix that projects vec-

tors onto T and PT ⊥ is the orthogonal projection that projects

vectors to subspace T⊥. This yields,

γ =
yT PT

T PT y

yT PT
T ⊥PT ⊥y

· n − K

K
(35)

Under the null hypothesis y ∼ N(0, σ2PT ), hence we have

PT y ∼ N (0, σ2PT PT
T ) = N (0, σ2PT ) (36)

and

PT ⊥y ∼ N (0, σ2PT ⊥PT
T ⊥) = N (0, σ2PT ⊥) (37)

It can be easily seen that PT y and PT ⊥y are indepen-

dent of each other, and their inner products yT PT
T PT y and

yT PT
T ⊥PT ⊥y are also independent.

On the other hand,

(v1, ...,vK )T
y = TT y ∼ N (0, σ2TT T) = N (0, σ2) (38)

So it is straight forward that viy is independent with vjy

while i �= j. Thus

1

σ2
yT PT

T PT y =
1

σ2
yT TTT y =

1

σ2
(TT y)T TT y

=
K∑

i=1

(
vT

i y

σ

)2

since
∑K

i=1(
v i

T y

σ ) ∼ N (0, I), we obtain

1

σ2
yT PT

T PT y ∼ χ2(K)

where χ2(x) denotes the chi-square distribution with x degrees

of freedom. Similarly,

1

σ2
yPT

T ⊥PT ⊥y ∼ χ2(n − K)

Based on the fact that the numerator and denominator of γ are

independent of each other, both of them follow the chi-square

distribution of degrees of freedom of K and n − K, hence their

ratio follows F distribution, γ ∼ F(K,n − K). �
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