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Abstract—Smart wearable devices have lead to an increased
need for processing and sharing large streams of physiological
data in real-time. Modern Human-Machine Interaction (HMI)
systems, especially applications designed for user training and
assessment (e.g., educational or smart-rehabilitation systems),
should be able to track and monitor those signals and adapt
their parameters accordingly in order to optimally facilitate the
special needs of each individual. Towards this end, we propose
a passive Brain-Computer Interface (BCI), using a wireless
non-intrusive EEG sensor under a robot assisted training task
designed for cognitive assessment. As part of this ongoing work,
we demonstrate our initial results on predicting user’s task
performance, from the EEG signals, before task completion.
Our findings highlight the potentials of our hypotheses as
we achieve a maximum accuracy rate equal to 74% when
evaluated on 69 real subjects.
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I. INTRODUCTION

Monitoring user’s performance and behavioral patterns

during a task has been a very challenging research topic and

has gained a lot of attention throughout the years. The main

goal of such research is twofold. Firstly, monitoring user’s

performance and physiological signals using a dynamic

framework can provide significant insights towards develop-

ing adaptable and personalized human-machine interaction

and collaboration scenarios able to adjust their parameters

on-the-fly. Secondly, such information can capture important

user-behavior patterns, aiming to assist experts from other

domains, such as education and smart rehabilitation, to

improve the quality of their service [1], [2].

Moreover, recent technological advances both in terms of

software and hardware, have allowed real-time access to dif-

ferent types of user’s physiological signals in an unobtrusive

way. Thus, creating breading ground for more sophisticated

approaches to be applied. As related research has shown,

passive BCIs are a very promising solution towards building

safe and intelligent human-machine collaboration scenarios.

[3].

Researchers in [4] proposed a passive BCI framework

that adapts its behavior through interaction. Similarly, results

showed in [5], [6] highlight the benefits of BCI frameworks

for human-machine collaboration tasks in the domain of

education and smart rehabilitation.

Inspired by the aforementioned research, we investigate

the potentials of a BCI when applied on a robot assisted

training system for working memory. Our experiments focus

on predicting user’s performance from the EEG data, before

the user completes the task. According to our knowledge,

this is the first effort that aims to directly predict user’s

performance on a specific task from the EEG data. Initial

results indicate that there is a clear correlation between

the EEG measurements and the final outcome of the task

and that there are potential patterns able to capture certain

cognitive behaviors across different users.

II. THE SEQUENCE LEARNING TASK

Sequencing is the ability to arrange language, thoughts,

information and actions in an effective order [7]. Extended

research on the field of cognitive sciences has shown that

sequence-learning tasks can be applied to evaluate human

behaviors related to learning ability, short term memory and

attention [8], [9].

Towards this direction, we developed the Sequence Learn-

ing (SL) task; a working memory task that evaluates the

ability of a human to remember and repeat a sequence of

items (e.g., letters, numbers, actions) [10]. For our exper-

imental setup, we deploy the NAO1 robot as a socially

assistive robot that instructs, monitors and evaluates user’s

performance during the task. While performing the SL task,

users have three buttons in front of them (”A”, ”B”, ”C”) and

the robot asks the user to repeat a given sequence of these

letters by pressing the corresponding buttons. The game

consists of four difficulty levels where, each level corre-

sponds to a combination of 3,5,7 and 9 letters respectively.

1https://www.ald.softbankrobotics.com/en/cool-robots/nao



A complete session (human-robot interaction) consists of 25

turns/sequences. The level of each turn/sequence is decided

randomly and all levels are equally distributed within a

session. For the purposes of this research we considered a

binary score at each turn, success or fail

III. DATA COLLECTION

For the data collection, we recruited 69 CSE undergrad-

uate and graduate students from the University of Texas

at Arlington. Each user completed a single session of the

SL task (25 turns/sequences). During the task, EEG signals

were recorded using the Muse EEG headset2, a low-cost and

non-invasive EEG wearable device which, has been used

previously for similar research purposes [11]. The Muse

provides 4 channels of data; two coming from the forehead

and two from behind the ears. The EEG signals were

generated at a sampling rate of 220Hz. The device provides

access to raw EEG signals as well as to a set of power

spectral density measurements extracted from the raw data.

The frequency bands provided by the device are δ (1-4 Hz),

θ (5-8 Hz), α (9-13 Hz), β (12-30 Hz) and γ (30-50 Hz).

Extensive details regarding the available data can be found at

[10], [12]. At each turn of every session we store separately

user’s EEG captured during the listening process (robot

pronounces a new sequence) from the EEG collected during

the acting-process (user repeats the sequence by pressing the

buttons). In the following Section, we describe our initial

results on the task of predicting final user’s performance

(fail/success) at a single turn, using only the EEG from the

listening process. In Figure-1, we illustrate the experimental

setup.

Figure 1. The Sequence Learning setup

The original data and details of the SL task along with

the processed data and the code for the proposed work are

available online34.

IV. PRELIMINARY RESULTS

As explained in the previous Section, we exploit the EEG

signals captured during the listening process, to predict the

final outcome of a single turn of the SL task. For validation

purposes, we perform a 10-fold cross-validation across all

2http://www.choosemuse.com/
3https://github.com/TsiakasK/sequence-learning
4https://github.com/MikeMpapa/EEG-Sequence-Learning

users. At each fold, 80% of the users (55 subjects) were

randomly picked for training, and the rest were used for

testing. From each user, 25 interaction results were available,

equal to the total number of turns/sequences played within

a session. In total, we had 1375 training samples and 350

testing samples available at each fold. The distribution of

the samples across the two classes always depended on

the personal performance of the users picked each time for

training. Across the 10 folds, the average prior-probabilities

for success and fail in a single turn/sequence were 60% and

40% respectively.

A. Feature Extraction

As discussed in Section-III, the Muse provides a set of

frequency bands, extracted from the raw EEG in real-time

through a digital signal processing component embedded in

the device. For every frequency band, Muse estimates the

absolute and relative band powers along with a band-power

session score. According to Muse’s documentation, the band

session score is computed by comparing the current value of

a band power to its history. Detailed information regarding

the exact metrics and how they are estimated can be found at

[12]. In total, for our experiments we exploited 15 different

data streams, each coming from 4 different channels (see

Section-III) thus, ending up with an initial feature represen-

tation of size equal to 4× 15 = 60. More specifically, from

every channel the following data streams were analyzed; δ,

θ, α, β and γ relative band powers, their respected absolute

band powers and their session-score signals. From each of

the 60 EEG feature-streams captured during the listening

process, we extract the following statistical features:

• standard deviation

• mean value

• maximum value

• minimum value

• spectral centroid

The center of gravity of the spectrum after applying

FFT on the original signals.

• spectral rolloff

The frequency below which 90% of the magnitude dis-

tribution of the spectrum is concentrated after applying

FFT on the original signals.

The final feature vector representation consists of 60 ∗ 6 =

360 features, extracted from the EEG signals of a single

subject and captured during the listening process, of a single

turn/sequence of the SL task.

B. Classification

For classification, we experimented with 5 different classi-

fication methods; SVMs , SVMS with an RBF kernel , Ran-

dom Forests (RF), Extra Trees (ET) and Gradient Boosting

(GB). For tuning, the c parameter of each classifier and for

training each classification method the implementation de-

scribed at [13] was applied. Before feeding the training data



into the classifier, features are normalized to have mean = 0

and std = 1. In Table-I, we show the classification results.

Since the two versions of SVM provided very similar results,

we show only the linear-SVM evaluation as it was slightly

superior. In all the cases, estimated time required for a single

prediction was in the scale of milliseconds.

Table I
EEG CLASSIFICATION RESULTS

SVM GB RF ET

S F S F S F S F

Prec 0.75 0.48 0.81 0.56 0.89 0.24 0.91 0.2
Rec 0.69 0.55 0.78 0.6 0.69 0.54 0.69 0.54
F1 0.72 0.51 0.79 0.58 0.78 0.33 0.78 0.29

Acc 0.65 0.74 0.67 0.67

AVG F1 0.62 0.69 0.56 0.54

It is clear from the results that there is a significant statis-

tical correlation between the EEG features and user’s final

performance. Despite the simplicity of the final features, the

amount of captured information seems sufficient to provide

a rough estimate with an average accuracy of 74% for

the outcome of the task, when using a Gradient Boosting

classifier.

V. FUTURE WORK

These initial results indicate the potentials of the proposed

approach. The most important aspect of this research is to

investigate methods for building robust and adjustable user-

models that can adapt to the behavior of each individual

using a limited amount of new data. Towards this direction

our future steps are to investigate additional features that

can represent generic EEG patterns across different users, or

user groups. Deep Learning approaches have the potential to

significantly boost our results, since their superiority in many

applications has proven their ability to capture invariant

features. Moreover, the proposed problem seems that can

be formulated better as a gradient optimization problem. To

cross-validate our findings, we plan to evaluate our methods

in other similar human-machine interaction tasks.

VI. CONCLUSIONS

We propose a passive Brain-Computer Interface (BCI),

using the Muse, a wireless non-intrusive EEG sensor under

the scenario of the Sequence-learning task; a robot assisted

training task designed for cognitive assessment. Our prelimi-

nary results highlight a clear correlation between user’s brain

activation and the actual outcome of the task, significantly

before task completion. We evaluated our system on 69 real

subjects following a user-independent modeling approach

(each user was used either for training or for testing). Each

interaction between the user and the system was represented

by a feature vector of 360 statistical features extracted from

the 60 available data streams captured at each timestamp by

the Muse. Gradient Boosting classification provided the best

classification results achieving a maximum accuracy of 74%

with an average F1 of 69%
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