Towards Predicting Task Performance from EEG Signals
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Abstract—Smart wearable devices have lead to an increased
need for processing and sharing large streams of physiological
data in real-time. Modern Human-Machine Interaction (HMI)
systems, especially applications designed for user training and
assessment (e.g., educational or smart-rehabilitation systems),
should be able to track and monitor those signals and adapt
their parameters accordingly in order to optimally facilitate the
special needs of each individual. Towards this end, we propose
a passive Brain-Computer Interface (BCI), using a wireless
non-intrusive EEG sensor under a robot assisted training task
designed for cognitive assessment. As part of this ongoing work,
we demonstrate our initial results on predicting user’s task
performance, from the EEG signals, before task completion.
Our findings highlight the potentials of our hypotheses as
we achieve a maximum accuracy rate equal to 74% when
evaluated on 69 real subjects.
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I. INTRODUCTION

Monitoring user’s performance and behavioral patterns
during a task has been a very challenging research topic and
has gained a lot of attention throughout the years. The main
goal of such research is twofold. Firstly, monitoring user’s
performance and physiological signals using a dynamic
framework can provide significant insights towards develop-
ing adaptable and personalized human-machine interaction
and collaboration scenarios able to adjust their parameters
on-the-fly. Secondly, such information can capture important
user-behavior patterns, aiming to assist experts from other
domains, such as education and smart rehabilitation, to
improve the quality of their service [1], [2].

Moreover, recent technological advances both in terms of
software and hardware, have allowed real-time access to dif-
ferent types of user’s physiological signals in an unobtrusive
way. Thus, creating breading ground for more sophisticated
approaches to be applied. As related research has shown,
passive BCIs are a very promising solution towards building
safe and intelligent human-machine collaboration scenarios.

[3].

Researchers in [4] proposed a passive BCI framework
that adapts its behavior through interaction. Similarly, results
showed in [5], [6] highlight the benefits of BCI frameworks
for human-machine collaboration tasks in the domain of
education and smart rehabilitation.

Inspired by the aforementioned research, we investigate
the potentials of a BCI when applied on a robot assisted
training system for working memory. Our experiments focus
on predicting user’s performance from the EEG data, before
the user completes the task. According to our knowledge,
this is the first effort that aims to directly predict user’s
performance on a specific task from the EEG data. Initial
results indicate that there is a clear correlation between
the EEG measurements and the final outcome of the task
and that there are potential patterns able to capture certain
cognitive behaviors across different users.

II. THE SEQUENCE LEARNING TASK

Sequencing is the ability to arrange language, thoughts,
information and actions in an effective order [7]. Extended
research on the field of cognitive sciences has shown that
sequence-learning tasks can be applied to evaluate human
behaviors related to learning ability, short term memory and
attention [8], [9].

Towards this direction, we developed the Sequence Learn-
ing (SL) task; a working memory task that evaluates the
ability of a human to remember and repeat a sequence of
items (e.g., letters, numbers, actions) [10]. For our exper-
imental setup, we deploy the NAO' robot as a socially
assistive robot that instructs, monitors and evaluates user’s
performance during the task. While performing the SL task,
users have three buttons in front of them ("A”, ”B”, ”’C”) and
the robot asks the user to repeat a given sequence of these
letters by pressing the corresponding buttons. The game
consists of four difficulty levels where, each level corre-
sponds to a combination of 3,5,7 and 9 letters respectively.

Uhttps://www.ald.softbankrobotics.com/en/cool-robots/nao



A complete session (human-robot interaction) consists of 25
turns/sequences. The level of each turn/sequence is decided
randomly and all levels are equally distributed within a
session. For the purposes of this research we considered a
binary score at each turn, success or fail

IIT. DATA COLLECTION

For the data collection, we recruited 69 CSE undergrad-
uate and graduate students from the University of Texas
at Arlington. Each user completed a single session of the
SL task (25 turns/sequences). During the task, EEG signals
were recorded using the Muse EEG headset?, a low-cost and
non-invasive EEG wearable device which, has been used
previously for similar research purposes [11]. The Muse
provides 4 channels of data; two coming from the forehead
and two from behind the ears. The EEG signals were
generated at a sampling rate of 220Hz. The device provides
access to raw EEG signals as well as to a set of power
spectral density measurements extracted from the raw data.
The frequency bands provided by the device are ¢ (1-4 Hz),
0 (5-8 Hz), o (9-13 Hz), § (12-30 Hz) and ~ (30-50 Hz).
Extensive details regarding the available data can be found at
[10], [12]. At each turn of every session we store separately
user’s EEG captured during the listening process (robot
pronounces a new sequence) from the EEG collected during
the acting-process (user repeats the sequence by pressing the
buttons). In the following Section, we describe our initial
results on the task of predicting final user’s performance
(fail/success) at a single turn, using only the EEG from the
listening process. In Figure-1, we illustrate the experimental
setup.
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Figure 1. The Sequence Learning setup

The original data and details of the SL task along with
the processed data and the code for the proposed work are
available online*.

IV. PRELIMINARY RESULTS

As explained in the previous Section, we exploit the EEG
signals captured during the listening process, to predict the
final outcome of a single turn of the SL task. For validation
purposes, we perform a 10-fold cross-validation across all

Zhttp://www.choosemuse.com/
3https://github.com/TsiakasK/sequence-learning
“https://github.com/MikeMpapa/EEG-Sequence-Learning

users. At each fold, 80% of the users (55 subjects) were
randomly picked for training, and the rest were used for
testing. From each user, 25 interaction results were available,
equal to the total number of turns/sequences played within
a session. In total, we had 1375 training samples and 350
testing samples available at each fold. The distribution of
the samples across the two classes always depended on
the personal performance of the users picked each time for
training. Across the 10 folds, the average prior-probabilities
for success and fail in a single turn/sequence were 60% and
40% respectively.

A. Feature Extraction

As discussed in Section-III, the Muse provides a set of
frequency bands, extracted from the raw EEG in real-time
through a digital signal processing component embedded in
the device. For every frequency band, Muse estimates the
absolute and relative band powers along with a band-power
session score. According to Muse’s documentation, the band
session score is computed by comparing the current value of
a band power to its history. Detailed information regarding
the exact metrics and how they are estimated can be found at
[12]. In total, for our experiments we exploited 15 different
data streams, each coming from 4 different channels (see
Section-III) thus, ending up with an initial feature represen-
tation of size equal to 4 x 15 = 60. More specifically, from
every channel the following data streams were analyzed; &,
0, a, B and -y relative band powers, their respected absolute
band powers and their session-score signals. From each of
the 60 EEG feature-streams captured during the listening
process, we extract the following statistical features:

o standard deviation

o mean value

o maximum value

o minimum value

e spectral centroid

The center of gravity of the spectrum after applying

FFT on the original signals.

o spectral rolloff

The frequency below which 90% of the magnitude dis-

tribution of the spectrum is concentrated after applying

FFT on the original signals.
The final feature vector representation consists of 60 x 6 =
360 features, extracted from the EEG signals of a single
subject and captured during the listening process, of a single
turn/sequence of the SL task.

B. Classification

For classification, we experimented with 5 different classi-
fication methods; SVMs , SVMS with an RBF kernel , Ran-
dom Forests (RF), Extra Trees (ET) and Gradient Boosting
(GB). For tuning, the ¢ parameter of each classifier and for
training each classification method the implementation de-
scribed at [13] was applied. Before feeding the training data



into the classifier, features are normalized to have mean = 0
and std = 1. In Table-I, we show the classification results.
Since the two versions of SVM provided very similar results,
we show only the linear-SVM evaluation as it was slightly
superior. In all the cases, estimated time required for a single
prediction was in the scale of milliseconds.

Table 1
EEG CLASSIFICATION RESULTS
SVM GB RF ET
S F S F S F S F

Prec 075 048 | 0.81 056 | 0.89 024 | 091 0.2
Rec 069 055|078 06 | 069 054 | 069 0.54

F1 072 051 | 079 058 | 078 033 | 0.78 0.29
Acc 0.65 0.74 0.67 0.67
AVG F1 0.62 0.69 0.56 0.54

It is clear from the results that there is a significant statis-
tical correlation between the EEG features and user’s final
performance. Despite the simplicity of the final features, the
amount of captured information seems sufficient to provide
a rough estimate with an average accuracy of 74% for
the outcome of the task, when using a Gradient Boosting
classifier.

V. FUTURE WORK

These initial results indicate the potentials of the proposed
approach. The most important aspect of this research is to
investigate methods for building robust and adjustable user-
models that can adapt to the behavior of each individual
using a limited amount of new data. Towards this direction
our future steps are to investigate additional features that
can represent generic EEG patterns across different users, or
user groups. Deep Learning approaches have the potential to
significantly boost our results, since their superiority in many
applications has proven their ability to capture invariant
features. Moreover, the proposed problem seems that can
be formulated better as a gradient optimization problem. To
cross-validate our findings, we plan to evaluate our methods
in other similar human-machine interaction tasks.

VI. CONCLUSIONS

We propose a passive Brain-Computer Interface (BCI),
using the Muse, a wireless non-intrusive EEG sensor under
the scenario of the Sequence-learning task; a robot assisted
training task designed for cognitive assessment. Our prelimi-
nary results highlight a clear correlation between user’s brain
activation and the actual outcome of the task, significantly
before task completion. We evaluated our system on 69 real
subjects following a user-independent modeling approach
(each user was used either for training or for testing). Each
interaction between the user and the system was represented
by a feature vector of 360 statistical features extracted from
the 60 available data streams captured at each timestamp by
the Muse. Gradient Boosting classification provided the best

classification results achieving a maximum accuracy of 74%
with an average F1 of 69%
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