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ABSTRACT

As more industries adopt the use of robots to increase productivity,

there is an increased need for effective human-robot interaction

training, especially in the case of heavy and high precision robots.

This implies the need for easy assessment methods that ensure accu-

rate and personalized employee training. Most current assessments

are done via manual observation and surveys. This paper addresses

the need for the design of intelligent systems to assess a user’s

training needs based on the user’s behavior and engagement while

performing a vocational task simulation. In this paper, we propose a

multi-sensory intelligent system to predict user engagement using

facial expression and body posture data while the user performs

a task to provide cognitive assessment of the user’s capabilities, a

critical factor in successful vocational performance using robots.
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1 INTRODUCTION

Assessment of user’s performance is a commonly used method by

employers in all industries. For example, IT companies measure an

employee’s performance every year in order to decide on salary

raises and bonuses. Vocational assessment methods to assess an

employee’s capacity to work in a specific domain is done using task

simulations. As more and more industries are moving towards the

use of intelligent agents and robots (called ’Industry 4.0’), employers

look for smart ways to assess suitability of an employee and thus

ensure safety and productivity when working with robots. Such

assessments use a common task to collect performance data from

which an expert analyst can extract information to predict person-

alized training needs and design a system based on reproducible

and repetitive user performance over time. Using machine learning

algorithms, the aim is to automate user assessment and evaluation,

based on behavior monitoring and analysis of the collected data.

In this paper, we focus on developing a system that predicts user’s

engagement level using facial expressions and body postures while

the user is engaged in task sessions.

2 RELATEDWORK

Sequence learning (SL) tasks [18, 32] test a person’ s ability to ar-

range thoughts and information in a meaningful order. These have

been recognized as important abilities in vocational assessment, es-

pecially in the case of human-robot interaction where the user has

to exercise attention, good working memory and decision making

in interacting with robots safely and efficiently [20]. A great deal

of cognitive science research has shown that sequence learning

can be used as a tool to assess human behavior towards learning

ability, temporary memory and attention [15, 16]. Different SL tasks

can be used to predict and assess different abilities: sequence predic-

tion, sequence generation, sequence learning and sequence recognition.

In this paper we study the sequence learning and working mem-

ory of the users. This ability is considered important in industries

involving assembly line work for example.

Besides sequence learning, there have been various other meth-

ods to enable vocational cognitive assessment [4, 25]. EEG signals
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have been used for emotion detection [21], stress detection[17],

bodymovement tracking [30] and enjoyment evaluation [1].Research

has also been conducted to prove the association of emotion with

task engagement [26] and to estimate task engagement from Brain

Mapping and neuro imaging data [27]. Most of these techniques in-

volve the participant wearing different types of sensors while being

assessed. This shows the need for designing unobtrusive vocational

assessment methods to monitor user performance.

Our approach uses Convolutional Neural Networks (CNN) to

recognize emotions from facial expressions. Since facial expres-

sions are most often connected with body movements, our paper

considers both types of data. The assumption is that both face and

body data contribute to conveying an emotion of the individual

being assessed, and can be combined to enable us to predict the

fluctuation of the user’s engagement while executing a task [24].

Hence, we can extract features such as the position of hands, head,

body orientation, etc. from the person’s body postures in order

to recognize the user’s emotional state while performing a task

[11, 12]. Estimating emotions, facial expressions with computer

vision has existed for a long time. Research in this area is still an

ongoing research topic [2, 28, 31]. Research has also been done to

monitor stress levels of a user using facial expressions, head move-

ments and eye movements using Bayesian networks [22]. Research

has also been conducted [7, 8, 29] that shows how task engagement

is reflected in one’s body postures.

3 FACE AND BODY MONITORING SYSTEM

3.1 Sequence Learning Task Assessment

We use the Sequence Learning (SL) task as a use case to evaluate

users. The SL task is recognized as an important tool for assessing

cognitive load and its relation to training by therapists and perfor-

mance experts [5, 32ś34]. The SL task involves listening or seeing a

set of character sequences and being able to repeat them correctly

in a certain amount of time. The sequences could be delivered

via sound (speech) or image on a computer screen. Performance

outcomes from SL task can help therapists and other experts to

determine what particular treatment or rehabilitation an individual

might need to enhance his/her performance in a given domain

or application. Although task specific engagement assessment for

cognitive tasks, memory tasks has been explored previously [6, 32]

using sensors, we explore the possibility of using unobtrusive mon-

itoring methods that include a user’s facial expressions and body

postures recorded with RGB camera towards task specific engage-

ment in this study.

3.2 System Architecture

We propose an application with a GUI to administer tasks and

monitor user performance metrics. Since performance evaluation

is a very broad area, we focus on working memory assessment.

For this purpose, we used the Sequence Learning experimental

setup, explained further in the later sections. Using this GUI, an

expert/administrator will be able to administer tasks and view per-

formance metrics such as, current sequence, user response, and

engagement value computed from data feed from the MUSE sensor.

The MUSE sensor is an off-the shelf, low-cost EEG headband by

InteraXan, and it has been used in multiple studies [10, 14, 19]. The

GUI in Figure 1 shows the initial design.

Figure 1: Initial design of proposed system administrator

GUI to administer the cognitive assessment.

During the experiment, the user performs the SL task as the

socially assistive robot NAO, dictates the sequences. While the user

performs the task, the user’s EEG data is recorded using the MUSE

sensor to measure engagement. Also, an RGB camera is used to

monitor user postures and facial expressions based on which the

user’s current emotional state is predicted. Analysis of the data

was done to compare the change in the emotional state of the user,

predicted by the vision system and the engagement value computed

with the data feed from the MUSE sensor while performing the task.

The computed engagement values were used as ground truth. This

system’s architecture is explained with the help of an architecture

diagram in Figure 2 below.

4 METHODOLOGY

4.1 Experimental Setup

Our experimental setup was inspired from the work described by

Tsiakas et. al. [32], with minor modifications. The setup consists of

a NAO robot that dictates sequences of random difficulty and gives

feedback to the users as they perform the SL task. There are three

levels of difficulty for the task, based on the length of the sequence

L = [5,7,9] characters. Thus, level 1 has sequence length 5, level 2

has sequence length 7, and level 3 has sequence length 9 and this is

the highest difficulty level. At this point of our research, the robot

is used only as a system to dictate the sequence. During the task,

the users have three buttons in front of them (’A’, ’B’, ’C’) and as

the robot dictates the sequences, the user plays the SL task while

standing, by pressing the buttons in front of them and repeating the

sequence from memory. An RGB camera is used to record the user

performing the SL task and a MUSE sensor is used to capture the

EEG signals of the user. The data from the camera is used to predict

user’s emotional state using face recognition and body posture data.

A computer is used to run the application GUI through which the

administrator can administer the task. The experimental setup is

shown in Figure 3.
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