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ABSTRACT

In this paper, we present a taxonomy in Robot-Assisted
Training; a growing body of research in Human-Robot Inter-
action which focuses on how robotic agents and devices can
be used to enhance user’s performance during a cognitive
or physical training task. The proposed taxonomy includes
a set of parameters that characterize such systems, in or-
der to highlight the current research trends and needs for
the design, development and evaluation of Robot-Assisted
Training systems. Towards this direction, we review re-
lated taxonomies in Human Robot Interaction, as well as
recent works and applications in Robot-Assisted Training.
The motivation of this research is to identify and discuss is-
sues and challenges, focusing on the personalization aspects
of a Robot-Assisted Training system.
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eHuman-centered computing — Human computer
interaction (HCI); Interaction design;
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1. INTRODUCTION

Robot-Assisted Training (RAT) is a growing body of re-
search in Human-Robot Interaction (HRI) which studies how
robots can assist humans in a task-dependent interaction.
RAT systems have a wide range of applications, varying
from physical assistance in post-stroke rehabilitation and
robotic prosthetics [13, 32], cognitive training for patients
suffering from dementia and Alzheimer’s disease [4, 19], to
intervention and therapy for children with Autism Spectrum
Disorders [29, 11, 22] and Socially Assistive Robotics (SAR)
for language learning and children education [23, 16, 9]. As
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a multidisciplinary research field, it requires expertise in sev-
eral research areas, including robotics, human-machine in-
teraction, machine learning, data mining, computer vision,
as well as expertise in psychology and educational sciences,
kinesiology, occupational therapy and others.

Despite this large variety of applications, target popula-
tions and system requirements, a common goal of Robot-
Assisted Training systems is to enhance user’s performance
by providing personalized and targeted assistance towards
maximizing training and learning effects. Personalization
has the potential to create a tailored and compelling expe-
rience that encourages and assists users to perform a given
task and meet the training goals.

The motivation and purpose of this research is to iden-
tify a common set of parameters (i.e., taxonomy categories)
that characterize a Robot-Assisted Training system, taking
into consideration related taxonomies in human robot inter-
action, as well as recent works in Robot-Assisted Training
systems, in order to highlight the current research trends
and challenges in this growing research area.

2. RELATED TAXONOMIES IN HRI

One of the most generalized and broad classifications for
HRI systems provides a classification framework based on
eleven taxonomy categories [36, 35]: task type, task critical-
ity, robot morphology, ratio of people to robots, composition
of robot teams, level of shared interaction among teams, in-
teraction roles, physical proximity, decision support for op-
erators, time-space taxonomy and autonomy level/amount
of interventions from operators.

These different variables can be used to define and classify
an HRI system. System requirements can be defined by
task type, task criticality and robot morphology. The task
type variable defines the task in a high-level representation
(e.g., physical rehabilitation task). It is important because it
sets the system requirements and the basic design guidelines.
Some possible values of this variable are: tutoring session,
assembly manufacturing task, rehabilitation exercises, etc.
Task criticality considers safety issues (e.g., human safety
risk) and has three values: high, medium, low. Since robot
appearance affects how people interact with it, the robot
morphology variable describes the robot appearance type,
i.e., anthropomorphic, zoomorphic, and functional.

Depending on the application, there are different inter-
action types and roles for human and robot members.
One parameter under this category is the ratio of people
to robots, which simply defines the number of humans and



robots participating in the interaction. Another parameter
is the type of interaction between human and robot partici-
pants, defining the level of shared interaction among (robot
and human) teams (as we show in Figure 3). The most
straightforward example is a single robotic agent that inter-
acts with a single human user. A more complex example is a
human operator that sends commands to a team of robots,
which has to autonomously coordinate its members to exe-
cute the command. Another example is a team of human
users that coordinates and sends specific commands to in-
dependent robots.

Since human participation is essential for any HRI sys-
tem, human roles must be well-defined. Scholtz [30] has
defined five different roles for a human participant in an in-
teraction with a robot: supervisor, operator, teammate, me-
chanic/programmer and bystander. Moreover, two more are
added by Goodrich [14]: mentor and information consumer.
In many applications, where the human acts as an opera-
tor or supervisor, an HRI system should provide the user
with decision support. The human user needs to monitor,
intervene, and modify robot’s behavior, when needed. Pro-
viding appropriate information to the operator can enhance
their decision making. For example, the robot can visualize
information about the list of all available sensors and data
streams. Interactive methods can be used to make the sys-
tem’s decision process transparent to the user, as humans
and machines require shared awareness and shared intent
during human-robot interactions [25, 12]. Another defining
factor for HRI is the level of autonomy (or the amount of
human intervention). Human operators or supervisors often
have the ability to control the robot and modify its behav-
ior. The level of the autonomy is defined as the amount of
time that the robot acts in an autonomous manner. In many
cases, this value can be adjusted during the interaction, re-
sulting to a progressively autonomous system. Human work-
load and cognitive capacity are two important factors to take
into consideration in order to define the level of autonomy.

Other parameters that are defined by this taxonomy are
spatiotemporal and define human robot interaction in terms
of space and time. More specifically, this parameters catego-
rize an HRI system based on whether human and robot share
the same space (collocated, non-collocated), and whether
they act at the same time or not (synchronous, asynchronous).
Moreover, in a collocated HRI system, the robot can be de-
fined by different proximity behaviors e.g., avoiding, pass-
ing, following, approaching, touching, and/or none. Focus-
ing on specific applications and domains requires a more
detailed description. For example, SAR systems have been
used for physical rehabilitation [34], where proxemics are de-
fined based on social interaction zones (e.g., social, personal,
intimate) used to define robot’s personality (e.g., introvert,
extrovert).

Depending on the application and the system require-
ments, several taxonomies have been introduced for human
robot interaction systems, such as human-robot collabora-
tion, child-robot interaction, assistive robotics and others.
More specifically, Salter [28] presented a taxonomy for child-
robot interaction (CRI), based on the control factors for
both robots and participants. They used three categories
for both robots and human participants: Autonomy, Group
and Environment. For example, the robotic autonomy (RA)
can be classified as one of the following: autonomous, fixed,
combination, Wizard of Oz, and remote-controlled. The par-

ticipant autonomy (PA) can be: free, natural, comfortable,
directed, and controlled, based on how the users are allowed
to interact with the robot. The authors have provided a
taxonomy rating in relation to participant and robot influ-
ences, for all three categories. They used a rating scale from
1 (None) to 9 (High) to describe the level of control of robots
and participants.

Other taxonomies focus and elaborate on specific param-
eters, such as robot autonomy level. In [3], the authors
present a framework for Levels Of Robot Autonomy (LORA)
in HRI, identifying parameters that influence and get influ-
enced by the level of robot autonomy. They provide a guide-
line flow chart to determine robot autonomy and effects on
HRI. Their taxonomy for robot autonomy takes into con-
sideration the level of autonomy during sensing, planning
and acting. The guidelines can be used to identify task and
environmental influences on robot autonomy level, measure
and categorize autonomy level and identify HRI parameters
that have an impact on robot autonomy.

Focusing on human robot collaboration systems, another
recent taxonomy describes the level of automation, specifi-
cally for collaborative robots [7]. The Interaction Readiness
Model (IRM) classifies a system in one of the four levels,
based on the level of automation. This model correlates the
level of automation with task complexity in a manufacturing
environment. The automation level varies from gated robots
mode, where robot is idle while human is present to fully
interactive mode, where humans and robots learn how to
solve a synergistic task. This model has been defined based
on real industrial needs, towards Industry 4.0 and "robofac-
turing” [18].
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Figure 1: Taxonomy Categories for Robot-Assisted
Training

3. TAXONOMY CATEGORIES

Based on the existing taxonomies and classification frame-
works, we propose a list of parameters that may be consid-
ered for the design and development of a Robot-Assisted
Training system, as we show in Figure 1. The defined cat-
egories are: Task Type and Requirements, Interaction
Types and Roles, Level of Autonomy and Learning and
Personalization Dimenstions. We argue that these cat-
egories should be defined in the order presented, since the
values of some parameters are dependent to others, i.e., the



requirements of a rehabilitation system (high level of task
criticality) may require a supervisor to monitor the interac-
tion - interaction roles. For each category, we review recent
works in order to highlight the current trends; an indicative
set of examples is shown in Figure 2.

3.1 Task Type and Requirements

When designing a Robot-Assisted Training system, the
task type and requirements are the first parameters to be
defined, since they can set the tone for the overall design,
implementation and evaluation process. The task type and
requirements define important parameters as task critical-
ity and safety issues, target populations, robot morphology,
set of appropriate sensors and type of assistance (physical,
social, mixed). Task type provides a high-level description
of the task and the system requirements. Based on a recent
taxonomy [37], types of assistive robots include physically
assistive robotics (PAR), socially assistive robotics (SAR),
as well as sensory and feedback systems.

For example, in [15] the authors have presented a SAR sys-
tem for language learning with children, where the system
uses a camera to capture and analyze facial expressions and
affective features (gaze, smile, engagement, valence, etc) in
order to provide a personalized affective interaction through
social verbal behavior (valence and engagement of spoken
instructions). Another work presents a physically assistive
robot for upper-limb rehabilitation [20]. In this work, the
authors presented an automated system for a rehabilitation
robotic (physically assistive) device that guides stroke pa-
tients through an upper-limb reaching task. The system uses
task-related observations (e.g., task completion time and as-
sistance needed) to estimate user-related metrics (e.g., user
fatigue, progress, etc.) and adapt the reaching task param-
eters to enhance training effects. As part of the system’s re-
quirements, the authors argue that the use of sensors (cam-
era, EMG sensors, etc.) could lead to noisy and untrustwor-
thy observations and system’s decisions. Due to high task
criticality, a supervisor monitors the system’s decisions and
intervenes when needed.

Social robots can provide supportive behavior, feedback
and recommendations, as well as attention acquisition sys-
tems to assist users in several applications, e.g., attention ac-
quisition through gestures in a memory game [17]. Another
example demonstrates how socially assistive robots can be
deployed for physical rehabilitation [34], investigating dif-
ferent robot behavior parameters (human-robot personality
matching, robot proxemics, etc.). Social assistance can also
improve compliance and performance for physical exercising
in child-human interaction [26].

3.2 Interaction Types and Roles

Similar to previous taxonomies, we define the human-
robot interaction types and roles. These parameters define
the interaction types; how the human-robot team is formu-
lated and communicates, as well as the interaction roles for
each part of the interaction. In Figure 3, we show the dif-
ferent interaction types of humans and robots in a Robot-
Assisted Training system.

Previous taxonomies have focused on human members
roles [36, 35], as mentioned in Section 2. In this work,
we focus on interaction roles that both human and robot
members can have in a Robot-Assisted Training session, in-
cluding: primary user, supervisor, operator, instructor and

teammate. A primary user is the end user who participates
actively in the interaction (e.g., patient). While the most
frequent case is that this is a human user, there are works
that focus on training a secondary user (therapist) [1], by
simulating the primary user using the robot in order to eval-
uate the system from the aspect of the supervisor [31]. A
(human or robot) supervisor monitors the training session
(i.e., through sensors or interfaces) to capture essential in-
formation of the training session (e.g., task parameters, user
performance and condition, etc.). A human operator can
control the parameters of the training session (e.g., using a
control interface), while a robot operator is the actual actu-
ator which assists the user in the task (e.g., robotic arm for
wrist rehabilitation [2]). An instructor plays the role of a tu-
tor who guides and instructs the user during the task (e.g.,
educational robots). Team co-ordination and collaboration
can be used as training tasks, thus the role of a (human
or robot) teammate who interacts with the user can be an
important member role in a training session.

3.3 Level of Autonomy and Learning

An essential aspect of a Robot-Assisted Training system is
the level of robot autonomy, which defines whether the robot
acts autonomously or under the guidance of a human user.
Specific system requirements and parameters may require
the presence of a human expert who acts as a supervisor
to ensure safety and efficiency during the training session.
Influenced by LORA [3], the level of autonomy in a RAT sys-
tem varies from tele-operation to fully-autonomous systems,
including sliding autonomy systems.

In the upper-limb reaching task example (Section 3.1),
the system suggests an action to the supervisor, through a
GUI, and the supervisor agrees or disagrees with the system
decision, resulting to a safe semi-autonomous interaction.
This Wizard-of-Oz (WoZ) paradigm has been extensively
used for RAT applications, where the robot executes the
behaviors decided by a human supervisor. Despite its effec-
tiveness, a main limitation relates to the amount of expert
workload and attention to ensure a safe robot behavior. To-
wards this end, recent approaches enable the robot to learn
through human (expert) input and progressively act in an
autonomous manner. Robotic agents can be either learning
or non-learning agents, or they can switch between these
levels of learning, depending on different parameters (i.e.,
uncertainty). Active Learning is a research area which stud-
ies when an agent should ask for human input (i.e., correct
label/action) in order to improve system performance. In-
teractive Machine Learning and Interactive Reinforcement
Learning are two promising approaches to integrate such
human expertise and feedback in the learning mechanism of
an interactive system (Human-in-the-Loop). Following such
interactive learning approaches, intelligent WoZ interfaces
can enable an assistive robot to integrate expert knowledge
and guidance and switch from tele-operation to a progres-
sively autonomous mode, decreasing expert workload and
effort.

For example, neural networks have been used to learn
robot behavior from human expert input in a RAT session
[31]. The presented system simulates a RAT session, where
a human supervisor monitors a robot-child and a robot-
instructor during a card classification task, using a WoZ
interface. The neural network is trained using human in-
put as training labels. Their user study results indicate that



Task Type and Requirements

Interaction Types and Roles

Level of Autonomy and Learning

Personalization Dimension(s)

Socially Assistive Robotics (SAR)
for Language Learning in Children
Education [15]

A social robot acts as an affective tutor
as the child plays a language learning
game

The robot acts fully autonomously and
adjusts its behavior online using
Reinforcement Learning (RL)

The robot personalizes its affective strategy
by adjusting its engagement and valence
during verbal instructions

Socially Assistive Robot for Post
Stroke Rehabilitation Therapy for
Elderly Patients [34]

The robot acts as a therapist who
monitors, assists, encourages users
during rehabilitation

The robot acts fully autonomously and
learns the optimal personalized policy
using policy gradient RL

The robot adjusts its personality (e.g.,
introversion/extroversion), as well as
movement parameters (e.g., proxemics)

Robot-Based Wrist Rehabilitation
through Gamification and Dynamic
Player Modeling [2]

The user performs a game-based
rehabilitation task using a robotic
haptic device

The robot acts autonomously and learns
through dynamic player modeling and RL

The system adjusts the difficulty of the game
by modifying the game parameters to
challenge the user

Adaptive Upper-Limb Stroke
Rehabilitation using a Robotic Arm
for a Reaching Task [20]

The robotic arm trains the user in a
reaching task. A human supervisor
monitors system's decisions

The robot act autonomously based on a
given policy (no learning); an expert
evaluates the chosen action

The system adjusts the task difficulty by
choosing the reaching target, the level of
resistance, and when the exercise should stop

Social Robot Assistant for
Attention Acquisition during a
Memory Game [17]

The robot acts as a tutor who guides
user's attention during a memory
game, in a wizarded setup (e.g.,

supervisor)

The system acts semi-autonomously. The
supervisor provides the user state and RL
selects appropriate gestures

The robot provides personalized behavior by
selecting the appropriate combinations of
gestures to grab user attention

Physical Exercising for Children
using a Social Robot and Wizard-
of-Oz Interfaces [26]

The robot demonstrates the exercises
to be performed. A supervisor controls
the robot through a WoZ interface

The system acts in a semi-autonomous
manner. A supervisor controls the robot
(WoZ). The robot learns from human input

The robot personalizes the exercise regimen
and its behavior according to exercise
performance and compliance

Figure 2: Recent works in Robot-Assisted Training. Considering our proposed taxonomy, we characterize
these systems based on (a) Task Type and Requirements, (b) Interaction Types and Roles, (c) Level of
Autonomy and Learning and (d) Personalization Dimensions
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Figure 3: Examples of Interaction Types in Robot-
Assisted Training (inspired by [35]).

learning agents can decrease expert workload, as they learn
how to provide human-like decisions. The robot shifts from
a tele-operated agent (WoZ) to a fully autonomous robot,
demonstrating that progressive robot autonomy results in
lower supervisor workload.

3.4 Personalization Dimensions

Personalization plays an integral role in designing an effi-
cient Robot-Assisted Training system. Based on the famous
Bloom’s 2 sigma problem [5], one-to-one tutoring presents
better learning effects than group (conventional) tutoring.
Parameters that affect efficiency include training material
(e.g., exercise regimen) and teacher behavior (e.g., support-
ive, challenging, etc.). Such parameters can be adjusted in
order to maximize tutoring/training effects for each individ-
ual. Depending on the system parameters defined by the

other taxonomy categories, we define the personalization di-
Mensions.

Personalization dimensions refer to (a) the set of obser-
vations that the system perceives and considers in order to
adjust its behavior and (b) the set of control parameters,
that are adjusted to achieve personalization, as we show in
Table 1.

Table 1: Personalization Dimensions. A list of ob-
servations and control parameters for personaliza-
tion

Personalization Dimensions
observations control parameters
task performance task difficulty
user attention task duration
affective state supportive behavior
response time haptic feedback
USEr progress training material
errors robot proremics

One of the research questions regarding personalization
is how to use these observed parameters in order to learn
the control parameters. Interactive Reinforcement Learning
(IRL) techniques have been used to facilitate robot learning
from human-generated feedback. For example, a robot that
learns behavior by utilizing the emotional (and other social)
signals of the user could facilitate real-time personalization
in human-robot interaction on the wild.

For example, the affective language tutor [15] described in
Figure 1, uses a facial expression and feature extraction soft-
ware in order to estimate child’s affective state (engagement
and valence). The system combines these estimated values
into a reward signal and the system learns to adjust its be-



havior by selecting appropriate motivational strategies (us-
ing verbal and non-verbal actions), based on current child’s
state (affect and performance). However, it is of high im-
portance to ensure a user-friendly and non-intrusive sensory
system, selecting the appropriate (optimal) set of sensors,
considering factors as usability, effectiveness and efficiency.

4. CONCLUDING REMARKS

In this paper, we presented a taxonomy in Robot-Assisted
Training, considering related taxonomies in Human-Robot
Interaction, as well as current research trends and needs in
this growing body of research. The purpose of this tax-
onomy is to highlight several research objectives related to
Robot-Assisted Training systems. We presented a system-
atic literature review, aiming to delineate different aspects
and trends to be taken into consideration when designing a
RAT-based system. Future improvements, updates and ad-
ditions are required to establish a well-defined taxonomy in
such a wide research/application area, focusing on the needs
and dimensions for personalization. The motivation of this
research is how different types of users can participate in the
personalization procedure.

Robot-Assisted Training systems usually operate in con-
textually rich environments that can provide the system
with valuable information to achieve personalization. A re-
search question that arises is how to identify the optimal
(e.g., minimum) set of modalities and sensors to ensure an
efficient and effective interaction. As we discussed in Sec-
tion 3.2, different interaction types and member roles re-
sult to different types of human feedback that can be cap-
tured by different sensors/interfaces including, cameras, mi-
crophones, EEG sensors, GUISs, joysticks, and many others.

These different types of feedback can be integrated to the
system’s personalization mechanism, using interactive ma-
chine learning methods, towards interactive personalization.
Interactive Machine Learning can utilize human-generated
feedback (i.e., facial expressions, emotion, GUI input, etc.)
in order to facilitate personalization in the wild, covering
also rare user cases (e.g., unobserved or outlier users). Re-
search works investigate how informative user interfaces and
interactive learning methods can increase user engagement
while interacting with a learning control interface [24].

Personalization is a complex computational problem that
requires the training agent to interactively assess, adapt, and
leverage a model of the user’s ability and needs [6] and can
benefit from research reviews in several areas, including but
not limited to, Intelligent Tutoring Systems [21], Student
Modeling [8], Affective Computing [33], Cyber-Physical Sys-
tems [27] and Machine Learning for Interactive Systems and
Robots [10].
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