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ABSTRACT

Recent research has shown that hundreds of millions of workers
worldwide may lose their jobs to robots and automation by 2030,
impacting over 40 developed and emerging countries and affect-
ing more than 800 types of jobs. While automation promises to
increase productivity and relieve workers from tedious or heavy-
duty tasks, it can also widen the gap, leaving behind workers who
lack automation training. In this project, we propose to build a tech-
nologically based, personalized vocational cyberlearning training
system, where the user is assessed while immersed in a simulated
workplace/factory task environment, and the system collecting
and analyzing multisensory cognitive, behavioral and physiological
data. Such a system, will produce recommendations to support
targeted vocational training decision-making. The focus is on col-
lecting and analyzing specific neurocognitive functions that include,
working memory, attention, cognitive overload and cognitive flex-
ibility. Collected data are analyzed to reveal, in iterative fashion,
relationships between physiological and cognitive performance
metrics, and how these relate to work-related behavioral patterns
that require special vocational training.
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1 INTRODUCTION

Workplace cognitive training for automation has many challenges,
due to the complexity and variability of human nature. The aim
of this project is to develop a prototype that can "unlock" and
analyze complex cognitive human behavior as manifested in au-
tomated work environments. We propose a set of generalizable
cognition-recognition tools, that can be applied across different
domains and focus on cognitive assessment and training. In con-
trast to traditional vocational training done with manual paper and
pencil recording, we propose to build an intelligent, data driven
modular cyberlearning prototype system, called v-CAT (Vocational
Cognitive Assessment and Training). While decreasing the expert’s
workload and maximizing learning efficiency via user personaliza-
tion, v-CAT becomes progressively autonomous, offering reconfig-
urable training options. The goal of v-CAT is to design autonomous
training systems that are tailored to the special needs of each in-
dividual user. For this reason, v-CAT’s first phase is a cognitive
assessment phase that provides immersive hands-on experiences
to the user through a battery of context-aware tasks that are used
to collect multisensory data.

This immersive task-engagement is done through a set of care-
fully designed workplace task simulations during which we monitor
the user’s actions and reactions, and collect and analyze a variety of
data with different sensors. While the user executes an assigned task,
we collect and analyze three types of data, behavioral, physiological
and human input data, which are used to produce recommenda-
tions for personalized training to support targeted decision-making.
To do the analysis of the task-derived data, we use state-of-the-art
technologies in Human Computer Interaction (e.g., AR, VR, sensors)
and, more importantly, Machine Learning (ML). In particular, we
apply Deep Learning (DL), and Reinforcement Learning (RL) to
identify, compare and prioritize specific training needs for working
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in highly technological environments. This includes being able to
collaborate with intelligent machines and robots and to respond
effectively, without errors and delays.

2 MOTIVATION & RELATED WORK

Unlike early fully automated robotic systems that were "caged” for
safety, now humans need to work next to robots and learn how
to alternate actions in accomplishing a certain task. This requires
personalized training specifically designed to assess a user’s indi-
vidual weaknesses given their current skill level, which is a type
of training beyond the capabilities of known Vocational Education
and Training (VET) practices [11]. The importance of cognitive as-
sessment and its close relation to learning and education outcomes
has been thoroughly researched through the years [2]. The func-
tioning assessment provides key information on the relationship
between impairments and functional limitations and thus ascer-
tains a claimant’s work disability. Non-fatal brain injuries, such as
Post-Traumatic Stress Disorder (PTSD) , can cause communication,
executive functioning, and behavioral/emotional problems, which
put these persons at risk of losing their job or inability to get a new
one [12]. Other examples of people needing special vocational train-
ing are people with hearing, visual impairments, chronic illness, or
sustained injury that leaves them unable to perform manual tasks
[8].

In order for machines and humans to interact in an effective and
intuitive manner in such environments, vocational training needs
to be able to detect, monitor and predict changes in human affective
states implicitly [17]. Recent advances in artificial intelligence have
shown that extracting such affective indicators, related to working
memory, cognitive load, inattention, fatigue, stress, frustration, etc.
can be efficiently implemented using multisensory behavioral and
physiological activity data. EEG signals are well known for their
potential to provide meaningful indicators related to cognitive load,
engagement as well as stress, attention levels and emotion in real
time [14, 19]. In addition to EEG other sensing modalities, focusing
on the user’s behavioral characteristics, have been proven valu-
able in addressing similar problems. Specifically, body positioning,
speech analysis, facial expressions and other general interaction
patterns such as eye-gaze, keystroke dynamics and mouse tracking
have been used to infer cognitive metrics measuring emotion, stress
or cognitive [13]. It has been shown by various multi-disciplinary
researches that integrating cognitive based information in the learn-
ing process can significantly increase the education outcomes [20].
Adaptive, user-training systems, is a topic that has gained a lot of
attention in recent years [15]. Reinforcement learning and Interac-
tive Machine Learning approaches are currently the state-of-the-art
technologies for designing such adaptive training scenarios, mainly
by focusing into a human-in-the-loop approach [7]. However, de-
spite its proven significance, the research that relates cognitive
evaluation to training is still at its infancy and limited [9]. This
fact motivates our efforts on designing personalized and adjustable
training scenarios that adapt their parameters according to subject’s
cognitive characteristics.
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Figure 1: The proposed system architecture, following a Cy-
berPhysical System (CPS) approach. The figure shows how
the different components (human, physical, computational)
interact with each other.

3 SYSTEM MODEL & ARCHITECTURE

To build v-CAT, we follow a human centric Cyber Physical Sys-
tems (CPS) approach. This Human-Centric Cyber-Physical Sys-
tem (HCPS) has three components, shown in Figure-1: (A) the hu-
man component (green squares), (B) the physical component (blue
rectangle), and (C) the computational component (red rectangle).
Figure-1 shows how the different components are connected and
share information. We have two types of human components: users
who interact and provide input to the system: (A1) the primary
user (trainee) and (A2) the secondary user (trainer, supervisor). The
physical component is the set of physical entities of this CPS system
(robots, sensors, physical setups) with which the user interacts. The
computational component (C) collects and analyzes this informa-
tion and performs the appropriate system adjustments, following
a traditional CPS-type closed loop architecture. The primary user
(A1) interacts with the physical component B (e.g., robot), doing a
work task interaction (cognitive task). During the assessment and
training phases, behavioral and physiological data are used by the
computational component (C) to update its parameters. The sec-
ondary user (A2) can monitor the interaction through the system’s
Graphical User Interface (GUI) (3) and intervene when needed to
improve the system’s decisions. This results in a progressively au-
tonomous system for vocational task assessment and training that
utilizes behavioral, physiological and expert guidance to provide
personalized training. Thus, the proposed cyberlearning prototype
integrates these components to investigate the importance of work-
place cognitive factors through iterative user studies and evaluation.
Moreover, v-CAT serves as a decision support system, to train ex-
perts on how to monitor and control automation and robot-based
training sessions and enhance their decision-making.

4 VOCATIONAL COGNITIVE ASSESSMENT &
TRAINING: SYSTEM PHASES AND
COMPONENTS

v-CAT has the following phases and components for Cognitive
Assessment and Training: assessment, analysis, recommendation,
training, human supervision. The system starts with the user going
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Figure 2: The different phases of the proposed v-CAT sys-
tem. The system includes the following phases: assessment
(top box) , recommendation (intermediate box), training
(bottom-box) and human expert supervision (through the
GUI component). Data from assessment and training ses-
sions, as well as human intervention data are stored and
used for personalization.

through the multisensing cognitive skill assessment phase (1) that
has the user go through a set of work task simulations, with the
aim to extract specific needs/metrics,related to attention, cogni-
tive workload, working memory, and cognitive flexibility, using
multiple sensors. Behavioral and physiological data are analyzed
to represent and detect individual differences and weaknesses in
cognitive functioning (see 2 in Figure-2). This analysis is then used
to recommend a specific set of training tasks to provide person-
alized and adaptive training (see 3 in Figure-2). Human experts,
trainers or supervisors have the ability to monitor and intervene at
any phase of the system (see 4 in Figure-2), by using an intelligent
Graphical User Interfaces. The user performs the proposed training
tasks (see 5 in Figure-2) and information is stored in a database
for system improvement and evaluation. Combining Human-in-
the-Loop & Interactive Learning, both humans and systems can
learn from each other and improve over time, in what is expected
to become a lifelong learning setup. The modular closed-loop archi-
tecture has a built-in evaluation mechanism because it evaluates
user performance during each system iteration. The proposed sys-
tem’s innovation integrates several important aspects of human
activity together: using advanced machine learning methods to
process multimodal human sensing, behavior monitoring, user pro-
filing and personalization, and to evaluate user performance in
a user-specific cyberlearning approach. In order to develop effec-
tive and appropriate assessment and training tasks, we follow the
guidelines, requirements and metrics of the official NIH toolbox
Cognition Battery [5].

5 COGNITIVE FACTORS

The user’s task execution activity and other data are analyzed with
respect to four critical vocational cognitive functionalities: working
memory, attention, cognitive flexibility and cognitive load. Cognitive
flexibility is important because a worker has to be able to shift
smoothly from one task to another and to recognize that different
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situations call for different solutions. The opposite, rigidity, is espe-
cially common in impaired individuals, particularly when frustrated.
In conjunction with these neurocognitive measures, it is important
to note that there may be other related physiological measures
(or factors), including the role that arousal plays in the workplace
(possibly causing stress, distraction or even accidents). Our system
can test additional factors besides the four mentioned above, such
as processing speed, cognitive reserve, response time, delays, and other
metrics. Based on the analysis of the data we derive from given
tasks, recommendations for personalized training will be used to
provide just-in-time assistance, (e.g., audio-visual cues, virtual re-
ality (VR), augmented reality (AR) or robot support). The training
phase follows the assessment phase. It uses carefully selected tasks
to address any cognitive needs perceived during the assessment
phase, such as improving attention. Once the training phase ends,
the system goes back to the assessment phase with more assess-
ment tasks selected to refine the assessment process. To model
the system, we use a closed feedback loop architecture based on
CyberPhysical Systems (CPS) methodology. The CPS approach has
several advantages, including a data-driven self-learning method-
ology, iterative evaluation and monitoring longitudinal learning
outcomes.

6 EXPERIMENTAL TESTBEDS

For evaluation purposes we have developed several different scenar-
ios where user’s have to perform various tasks in collaboration to
a computer or robot based system. MAGNI, an upper-limb robotic
system for training and assessment, uses virtual reality (VR) tasks
and computer vision to evaluate a user’s arm control and smooth-
ness and adjust the exercise difficulty level accordingly [10]. The
Box and Blocks (BaB) task is an occupational therapy assessment
system that evaluates upper limb mobility, concentration, vision,
and working memory. The virtual version of BaB has sensors that
allow us to evaluate how well a worker can move his hand and
joints [6]. MyoLearn is a physical and behavioral data collection
and evaluation method which can assess worker safety and perfor-
mance, as well as extract meaningful human-centric information
during assemble tasks [4]. Similarly to MyoLearn the assembly
training task proposed in [3] is a task where users need to fol-
low instructions given by robot and assembly specific lego-parts
as shown in a display. Other tasks include cognitive based assess-
ment tasks such as the sequence learning [16] and the Towers of
Hanoi tasks [1] where user’s problem solving abilities and work-
ing memory are tested and evaluated. For all the aforementioned
testbeds, performance related metrics are closely monitored. Our
goal is to associate specific performance patterns with different
behaviors observed through multimodal user monitoring and adapt
system’s parameters on the fly in order to increase the outcomes
of both training and assessment. In Figure-3 we show some of the
experimental testbeds described above.

7 INTERACTIVE PERSONALIZATION FOR
ROBOT-ASSISTED TRAINING
As our team showed in [17] RL-based adaptive multimodal inter-

active systems can adjust their behavior, to match a current user’s
preferences and needs, in order to maximize the efficiency of the
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Figure 3: a) The MAGNI, an upper-limb robotic system for
training and assessment, b) physical and VR versions of the
Box and Blocks game , c¢) the MyoLearn assembly training
task d) The Sequence Learning cognitive task

interaction. Based on the Interactive Learning and Adaptation (ILA)
framework proposed in [17] we plan to evaluate the v-CAT cy-
berlearning framework with regard to interactive personalization
by using Interactive Reinforcement Learning (IRL) techniques. In
particular, our efforts focus towards developing a real-time IRL
system that utilizes prior knowledge from previous users, human-
generated data, informative user feedback and expert interventions
as guidance for real time personalization. Human feedback can
be provided through multisensory data information implicitly, to
indicate level of attention, task engagement, attention, emotion
etc., or explicitly, in the form of expert guidance or intervention.
Such interaction data are collected and used to learn personalized
training policies for different user skills. Our preliminary results
[14, 18] highlight the potentials of this framework on the Sequence-
Learning task. More specifically as shown in (Figure-4-a) users can
be clustered into different groups based on their engagement level
while playing the SL task. Indication metrics related to user’s en-
gagement and attention can be extracted directly and in real-time
from the EEG signals of the user. It is proven also cross-validated
by our experiments that engagement and attention levels highly
correlate to the final performance of the user when performing any
kind of cognitive task. Figure-4-b shows the different probabilities
of performance for each user-group when we trained the IRL frame-
work based on user’s engagement measurements. Engagement was
extracted from raw EEG in real time, for different difficulty levels
of the SL task. Figure-4-c. Shows the how engagement varies across
different levels and different clusters of users. The three graphs in-
dicate that EEG signals can describe general user behaviors, despite
the fact that engagement is an exclusively subjective measure.

8 CONCLUSIONS

In this paper we propose v-CAT, a vocational tool for Cognitive As-
sessment and Training. v-CAT takes as input multimodal sensory
data and creates complex user models describing user’s physio-
cognitive state. To do so, our system utilizes advanced ML and DL
techniques to analyze the sensory data and takes advantage of IRL
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Figure 4: Visualizing task performance and engagement pat-
terns during the sequence learning task. Such patterns can
be used to inform personalized training strategies.

approaches to achieve personalization and tailor the system pa-
rameters to the special needs of each individual. Our initial results,
along with multidisciplinary research done under the cyberlearning
domain highlight the potentials of our framework and show the
great correlation between user performance and specific cognitive
aspects such as working memory, attention, cognitive flexibility
and cognitive load.
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