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ABSTRACT

A considerable amount of research in the field of human-
robot interaction has shown that a human teacher can be an
integral component during the learning process of a robot.
In this paper, we propose a learning framework that is based
on learning from demonstration at a trajectory level. Specif-
ically, we illustrate a scenario where the Sawyer Robotic
Arm must learn to pick and place a specific object accord-
ing to the demonstration of a human teacher. The purpose
of the experiment is to facilitate the effectiveness of the pro-
posed method.
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1. INTRODUCTION

Learning new motor tasks online while adapting to envi-
ronmental changes is important for human robot interaction.
To cope with the complexity involved in motor skill learning,
robots could rely on the insight that humans have when it
comes to the decomposition of motor tasks into smaller sub-
tasks. We will address these movement patterns as motor
primitives. Thus, motor primitives are a sequence of motor
commands, which can accomplish a given task. Learning
from demonstration can provide a good framework for mo-
tor skill learning as it allows an efficient acquisition of motor
primitives through kinesthetic teaching [1], [2].
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2. SYSTEM OVERVIEW

In this section we illustrate an overview of the proposed
system. Figure 1 shows the primary modules of the system.
Initially, a human is expected to demonstrate the desired
task by physically manipulating the robotic arm. During
the demonstration, the state of the robot, the users input
and any environmental parameter that associate with the
given task, will be recorded. These data will be stored in
the Library of Motion primitives. Traditionally, data that
represent a series of continuous events, such as the data
representing the state of the robot, can be exploited with
dimensionality reduction techniques. A mapping between
the state of the robot (s) and state of the environment (§) to
the actions of the human («) that were captured during the
performance of a demonstration will represent a primitive
motion. To generate a new motion, the system learns a
policy 7 (s, ) = « that maps the captured actions of the
user («), with the equivalent augmented states (s, §). The
policy will be computed by combining each primitive motion
according a weight that is assigned from a gating network.
Once the policy is learned, the robot is expected to perform
a particular action by interpolating between the different
primitive motions given the augmented state.

Library of s.6.0 Mixture m(s.0)=a
Motion of Motion Robot
Primitives Primitives
kinesthetic action
teaching

s: state of robot
o: state of environment
a: action
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Figure 1: System Overview.
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3. KINESTHETIC TEACHING

In this section we will describe an experimental set-up to
facilitate the effectiveness of the proposed system. Let us
consider the scenario illustrated in Figure 2. The human
teaches a robot to pick the objects on the table and place



them in the bucket, while the state of the robot and the
position of the objects (blue cubes in Figure 2) are being
recorded. To achieve this, the human has to grab the end
effector of the robot, move it in an appropriate position for
the robot to grab the object, order the robot to close the
gripper, guide the end effector of the robot to the goal (the
black bucket) and then command the robot to open its grip-
per again, so that the object falls in the bucket.

Figure 2: Kinesthetic Teaching.

4. MIXTURE OF MOTION PRIMITIVES

Each demonstration will be learned in a supervised man-
ner by estimating a non-linear function from the equivalent
(s, ) to (). To achieve this, we will employ shallow sigmoid
feed forward neural networks which act as function approxi-
mators. Figure 3 below depicts the role of each expert neural
network in the overall module of the system which consti-
tutes a mixture of experts architecture [4], [3]. The gating
network acts as a soft-max layer that assigns a probabil-
ity to each expert according to the state of the robot and
the environment. The final output is the weighted sum of
all the experts according to their assigned probability.Thus,
the role of the Mixture of Primitive Motion module is to act
as a manager neural network that decides, which is the most
efficient local estimation that represents a Primitive Motion.

Note, that to increase the training time of the network,
certain preprocessing techniques can be applied. Redun-
dant experts can be eliminating by classifying the different
input state and action trajectories in an unsupervised learn-
ing manner. This means that an expert may specializes in a
cluster of similar trajectories. Moreover, research has shown
that before the clustering of the trajectories, data that rep-
resent a series of continuous events, such as the data repre-
senting the state of the robot, are susceptible for to dimen-
sionality reduction techniques. Lastly, it must be mentioned
that the expert neural networks and the gating network will
be trained separately.

S. EXPERIMENTAL RESULTS

In this section we will briefly present simulated experimen-
tal results, which were produced through the conduction of
two kinesthetic teaching sessions with the Rethink Robotics
Sawyer Robotic Arm. In Figure 4, each expert (1 & 2) rep-
resents a recorded trajectory acquired through kinesthetic
teaching. The Mixture of Motion Primitives module acts
as a high level manager that decides, how much each local
expert is going to contribute in the construction of the final
learned motor skill.
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Figure 3: Mixture of Motion Primitives Architec-

ture.
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Figure 4: Experimental Results.
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