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Promising new technalogy has féeently emergedtaincréasethelevel of safety and autonomy
in driving, including lanelfandidistance keeping.assist systems, automatic braking systems, and
even highway auto-drive systems. Each of these technologies brings cars closer to the ultimate
goal of fully autonomous operation. While it is still unclear, if and when safe, driverless cars

will be released on the mass market, a comparison with the development of aircraft autopilot
systems can provide valuable insight. This review article contains several Additional Resources at
the end, including key references to support its findings. The article investigates a path towards
ensuring safety for “self-driving” or “autonomous” cars by leveraging prior work in aviation.

It focuses on navigation, or localization, which is a key aspect of automated operation.
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There are many good reasons
for getting excited about highly
automated vehicles, or HAVs,
which is the acronym used by the
National Highway Traffic Safety Admin-
istration (NHTSA). HAVs can make
driving more fuel- and time-efficient.
They can significantly reduce traffic
congestion and emissions by driving a
precise speed, minimizing lane changes,
and maintaining an exact distance to
neighboring cars. They can also increase
accessibility and mobility for disabled
and elderly persons.

Sharing an HAV instead of owning
is projected to dramatically reduce a

household’s yearly transportation bud-
get, which currently ranges between
approximately $8,000 and $11,000 per
car. HAVs carry promises not only in
improved road mobility, and accessibil-
ity, but also in producing architectural
and societal changes that can make mass
parking spaces and personal car owner-
ship obsolete in urban areas. Above all,
HAVs can help improve road safety by
preventing car accidents that cause more
than 30,000 deaths/year in the United
States alone, cost approximately $230
billion/year in medical and work loss
costs, and are caused by humans 90% of
the time.
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Press articles in the 1950s and 1960s
predicted that autonomous cars and
“electronic highways” would become
widely available by 1975. Major mile-
stones in the use of new sensor, compu-
tation, and communication technology
have recently reenergized the eager-
ness for HAVs. This first started with
the 2005 “DARPA Grand Challenge”,
where four dikerent HAVs designed by
teams of engineers from industry and
academia completed a 132-mile trip
across the Mohave desert in less than 7.5
hours with no human intervention. The
2007 DARPA “Urban Challenge” saw six
teams autonomously complete a 60-mile
course in an urban environment, while
following traffic laws. Most teams used
a combination of LiDAR, cameras, dif-
ferential GPS, and computation power
that is multiple orders of magnitude
higher than what is typically needed for
a commercial passenger vehicle. In 2009,
Google (now Waymo) began designing
and testing “self-driving” cars, which
have since accumulated more than three
million miles in autonomous mode.

Currently, most car manufactur-
ers have HAV prototype systems and
Google, Uber, NuTonomy have HAV
pilot testing programs, including fully
autonomous systems for public trans-
portation, which, for now, are con¥ned
to segregated lanes and geo-fenced areas.
Multiple Tier-2 supplier companies have
emerged, which specialize in autono-
mous car technology. In early 2017, 36
companies were registered to test pro-
totype HAV systems on public roads in
the state of California.

However, in Figure 1, Gartner’s “2016
Hype Cycle for Emerging Technologies”
shows that HAV technology might be
at the “peak of inflated expectations”,
approaching the “trough of disillusion-
ment”. Hype cycle curves are non-scien-
tilc tools that have been empirically ver-
iXed for multiple example technologies
over many years. Two example emerging
technologies, commercial unmanned
aircraft systems (UAS) and virtual real-
ity, are included in Figure 1 for illustra-
tion purposes. The curve’s time scale
may diller for each technology. One of
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trailer truck from
the bright Florida
sky. The Model S
ran under the trail-
er causing its roof to be torn off and
the operator to lose its life. The car kept
going full speed on the side of the road
through two fences until it hit a pole and
came to a stop.

In parallel, until-the.end.of 2016,
Google was providing detailed reports
of theirself-driving carperformance,
which were-designed to operate in
real-world urban environments. These
reports contain records of millions of
miles driven autonomously, but also
acknowledge “disengagements”, i.e.,
where the operator needed to take over
control to avoid collisions. The data
shows that HAVs are much more likely
to be involved in collisions, even though
these collisions are often of lower sever-
ity than in conventional human driving
[HAVs typically get rear-ended because
of their unusual road behavior] (see B.
Schoettle, and M. Sivak, “A Preliminary
Analysis of Real-World Crashes Involv-
ing Self-Driving Vehicles,” Additional
Resources). Also, Uber’s autonomous
taxis in Pittsburg have a reported rate
of one disengagement per mile autono-
mously driven.

Moreover, the first fielded autono-
mous systems have revealed new safety
threats. In particular, the technology’s
functionality, as perceived by the human
operator, does not always match the
intended operational domain: for exam-
ple, there have been cases of highway
autopilots being used in urban areas and
passing red lights without slowing down.

Time

FIGURE 1 Gartner's “Hype Cycle for Emerging Technologies”, As of July
2016 [16].

In addition, human-machine interaction
is at the heart of role confusion (is the
operator or the HAV in charge?) of mode
confusion (is the HAV in autonomous
or manual mode?) and of the operator’s
trust in this multimodal system. Mis-
interpretation may grow even wilder
because a given functionality will not
achieve the same level of performance
across models and manufacturers, and
operators may not be aware of the sys-
tems’ independently veriled safety rat-
ings. And, within the next few years,
operators will be expected to anticipate
hazardous situations and take over
control. Thus, operating an HAV may
require more education and different
training than driving a car manually.

Current Safety Assessment Efforts
To focus this article, Krst consider the
Society of Automotive Engineer (SAE)
International’s classifcation of driving
autonomy levels in Table 1. Under Levels
0 to 2, the human driver is responsible at
all times, either for driving by himself, or
for supervising the HAV in autonomous
mode and taking control if needed.
Under Levels 3 to 5, the system is self-
monitoring and the driver is expected to
take control, but only if requested by the
system. Levels 0-4 provide partial auto-
mation under predelned driving modes
and circumstances, whereas Level 5 is
full autonomy.

The most advanced private car sys-
tems are currently Level 2, and pilot pro-
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SAE Level Name Description
Human driver monitors the driving environment
0 No Automation | The human driver performs all driving tasks at all times.
1 Driver Either steering or acceleration/deceleration task by the
Assistance system; driver expected to perform all other aspects of
driving.
2 Partial Both steering and acceleration/deceleration tasks by the
Automation system; driver expected to perform all other aspects of
driving.
HAV monitors the driving environment
3 Conditional The HAV performs all driving tasks under limited, pre-
Automation defined conditions, and can request the human driver to
intervene and take over control.
4 High The HAV performs all driving tasks under limited,
Automation predefined conditions, without the expectation of any
human intervention.
Full Automation | The HAV performs all driving tasks under all conditions.

Table 1 Society of Automotive Engineer (SAE) International’s Levels of Driving Automation

FIGURE2 Example Similarities and Differences in Future Automated Flying versus Driving. The
figure shows technical aspects of future automation that may be common to aviation and
automotive applications (in the center of the figure), versus others that are specific to each
application (towards the edges).

grams aim at achieving Level 3, although
the mere presence of a kill-switch would
imply that the system is actually Level
2. The transition from Level 2 to 3 is a
remarkable leap that has significant
implications on trust and comfort of
human-machine interactions, on legal
responsibility allocation between system
and driver, and on technical challenges
to overcome to guarantee passenger
safety.

Over the past four years, the most
publicized approaches to demonstrate

Level 2 HAV safety have been experi-
mental testing campaigns by Google,
Tesla and Uber. Google’s approach
to have HAVs drive millions of miles
with minimal human intervention has
been documented up until 2015. At this
time, Google cars have autonomously
travelled an impressive three million
miles. Tesla’s autopilot is reported to
have driven more than 130 million
miles — on highways only - before it
caused a fatality in May 2016.

In parallel, NHTSA reports about

3,000 billion miles travelled each year
on U.S. highways by human drivers,
with 30,000 deaths caused by traffic
accidents; this corresponds to about
one fatality in traffic accidents per 100
million miles driven in the U.S. But, this
number accounts for incidents on all
roads, in all weather conditions, and for
all vehicle ages and types. Thus, a purely
experimental, complete proof that HAVs
match the level of safety of human
driving would take about 400 years at
Google’s current testing rate (of approxi-
mately 250,000 test miles per year), and
would still take many decades if the test-
ing rate increased exponentially. This is
assuming that no fatalities occur during
that time, that no major HAV upgrade is
performed, and that the testing environ-
ment is representative of all U.S. roads.
Thus, while an experimental proof is
conclusive, it is not practical. Other,
analytical, methods must be employed
to ensure HAV safety.

Research Challenges In
HAV Navigation Safety
Multiple technical aspects developed
over decades for automated flying could
serve as starting points for automated
driving systems. Figure 2 shows research
areas with overlap between aircraft (in
blue) and car (in yellow) applications.
Figure 2 is not intended to give a com-
prehensive list of all aspects of auto-
mation, but instead, it shows example
technical areas that can be addressed
using similar methods in aviation and
automotive applications (in the green
area). For example:

o performance standards set for soft-
ware, communication, and electron-
ic equipment are already being com-
pared for aircraft versus cars in the
NHTSA report by Q. D. Van Eikema
Hommes, Additional Resources.

o the design of aircraft cockpit has
been continuously improved over
the past few decades, especially for
highly-automated Unmanned Air
Systems (UAS) with a remote pilot
“in-the-box”; few car manufactur-
ers envision futuristic car interiors
where humans do not participate
in driving, but as long as human-
machine interactions are needed,
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lessons learned in cockpit design to
avoid information overload are key.
o while Automatic Dependent Sur-
veillance-Broadcast (ADS-B) will be
mandatory on all aircraft by 2020, a
petition for proposed rule making
has been issued to mandate Vehicle-

to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) by the same
date. (ADS-B is a situational aware-
ness system for collision avoidance,
through which aircraft share their
positions with Air Traffic Control
and with other aircraft.)

e GNSS/INS navigation systems,
which are extensively used in safety-
critical aircraft navigation, are also
being investigated for HAVs.

o overall safety standards also have
similarities for aircraft and HAVs,
which are discussed again below.
The focus of this article is on navi-

gation safety. In aviation navigation,
safety is assessed in terms of integrity
(as well as accuracy, continuity, and
availability, which are not discussed for
brevity). Integrity is a measure of trust
in sensor information: integrity risk is
the probability of undetected sensor
errors causing unacceptably large posi-
tioning uncertainty (See RTCA Special
Committee 159, “Minimum Aviation
System Performance Standards for
the Local Area Augmentation System
(LAAS), Additional Resources”). This
top-level quantifiable performance
metric is sensor- and platform-inde-
pendent, and can thus be used to set
certilable requirements on individual
system components to achieve and
prove an overall level of safety.

The multiple separate eMorts towards
achieving Levels 3-to-5 HAVs reveal a
compelling lack of coordination towards
a common, uniform, quantiable safety
goal. Integrity can be used as an objec-
tive performance metric for open, trans-
parent comparison and categorization
across manufacturers. It can also pro-
vide a governmental regulating agency
performance and testing standards for
HAV certification, which would help
accelerate the development, growth, and
maturation of such HAVs, as displayed
in Figure 3.

Moreover, the Federal Aviation

Administration

Create a mathematically rigorous method to

(FAA) has devel-
oped analytical
methods to evaluate
integrity. This pro-

. Identifies
vides the means to: unsafe
« quantify safe- conditions

ty of existing
multi-sensor
systems under a
variety of oper-
ating environ-
ments, thereby
reducing the
need for experi-
mental testing
« allocate safety requirements to indi-
vidual system components to achieve
an overall target level of safety, there-
by enabling design for safety
o perform risk prediction, which is
a key operational feature to enable
hazard avoidance maneuvers
Several methods have been estab-
lished to predict the.integrity risk in
GNSS-based aviation applications,
which are instrumental.in.ensuring the
safety of pilotsand crew. As an example,
Figure 4 illustrates a simpliXed deXnition
of the'integrity risk for aircraft landing
applications. The aircraft positioning
prediction is uncertain because of sen-
sor measurement noise. An alert limit
(AL) requirement box is represented
around the predicted aircraft position.
This AL is set by the certiXcation author-
ity, i.e., by the FAA in this application.
Simply put, the risk of the actual aircraft
position being outside the AL box is the
integrity risk. (In practice, the most
challenging part of risk prediction is to
account for potentially undetected sen-
sor faults, such as excessive GNSS satel-
lite clock drift.)
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FIGURE 3 Motivation and outcomes for using analytical integrity evalu-

ation methods to quantify and predict safety.

Unfortunately, the same methods
do not directly apply to HAVs, because
ground vehicles operate under sky-
obstructed areas where GNSS signals
can be altered or blocked by buildings
and trees. In general, the HAV environ-
ment is much more unpredictable than
the aircraft’s, for reasons that include:

« a changing environment: traffic
lights, construction, impact of rain
on road adherence, sensor masking
and occlusions,

» environmental diversity: intersection
topography, road conditions, mark-
ings on ground, various traffic signs

« road users that may interfere with
HAV motion: other cars, trucks,
pedestrians, bicyclists, etc.

» comparatively large number of car
manufacturers, equipment suppliers,
and vehicle models, as well as with
shorter model cycles than aircraft,
causing wide variations in vehicle
age and maintenance levels

« non-uniform vehicle and road regu-
lations at both the state and federal
levels in the U.S. coupled with dif-
ferent international standardization
processes

~ Predicted future
Alertlimit time pose

Current )
requirement box

time pose

FIGURE 4 Safety Risk Prediction Concept. To ensure safety, the predicted vehicle position must
be within a predefined acceptable limit called the “alert limit” (AL) box. Integrity is the proba-

bility of the vehicle being inside the box while accounting for both nominal sensor errors and
faults. The AL box is an order of magnitude smaller for HAV than it is for aircraft applications.
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HAV SAFETY

Thus, HAVs require sensors in addi-
tion to GNSS, including laser scanners,
radars, cameras, and odometers.

The parallel between aircraft and
car applications in Figure 4 illustrates
the signi¥cant challenge that lies ahead
when bringing aviation safety standards
to HAVs. It took decades of research and
considerable resources to bring the alert
limit requirement box down to 10 meters
above and below the aircraft using the
FAA’s GPS augmentation systems (the
Wide-Area Augmentation System and
the Local Area Augmentation System).
For a car to stay in its lane, the alert limit
requirement box must be an order of
magnitude smaller, and has to maintain
this level of safety in a more dynamic
and unpredictable environment.

HAV Taxonomy
Creating a path to successful automated
navigation requires an overall meth-
odology to prioritize on imminently
achievable objectives, and then expand
to more challenging missions. First in
this HAV taxonomy, a classification
using six SAE autonomy levels has been
presented in Table 1. This classifcation
is further rened by segmenting a car’s
trip into basic driving competencies,
and by specifying the conditions under
which a given HAV shall achieve these
competencies. A similar classification
was made in the early days of GPS-
based commercial aircraft navigation
safety analysis, where distinctions were
made between dierent phases of flight,
weather conditions, vehicle equipment,
and airport infrastructure capabilities.
For example, in the early 1990’s, 40%
of aircraft accidents were occurring dur-
ingMnal approach and landing, and 26%
during take-oX and initial climb, which
only represented an average of 4% and
2% of flight time, respectively. The FAA
therefore concentrated their eXorts on
improving safety during these phases
of flight. GPS augmentation systems
were designed, with varying capabili-
ties depending on airborne equipment
and airport infrastructure, to guide
the aircraft under the cloud ceiling, or
to bring it all the way to touch-down.
Similarly, the “first and last mile” are
identiXed as the most challenging parts

of HAV operations, whereas highway
auto-drive systems have already been
developed and implemented. In its 2016
Federal Automated Vehicles Policy,
NHTSA identiXes 28 HAV behavioral
competencies, which are particularly
challenging to meet in the Mrst and last
miles of a typical trip. These competen-
cies are basic abilities that an HAV must
have to complete nominal driving tasks;
they include, for example, lane keeping,
obeying traffic laws, and responding to
other road users.

To better describe an HAV’s ability,
the Federal Automated Vehicles Policy
further speciXes that basic driving com-
petencies should be available under an
HAV’s predened Operational Design
Domain (ODD), described by its geo-
graphical location, road type and con-
dition, weather and lighting condition,
vehicle speed, etc. The ODD captures the
circumstances under which an HAV is
supposed to operate safely.

Such classification-is key to safety
analysis. It can allow HAVs at diXerent
stages of their developmentto be simul-
taneously Kelded, and for them to evolve
by expanding their ODDs. The classiX-
cation can also help in identifying geo-
graphical areas where improved road
infrastructure is needed for automated
operation, similar to airports requiring
equipment for instrument navigation to
deal with higher traffic density.

Furthermore, standards for electron-
ic equipment, measured by Automotive
Safety Integrity Levels, have been issued
and compared with the aviation’s Design
Assurance Levels (DAL). And, overall
system safety levels have been codiXed,
which in aviation account for both the
severity and probability of occurrence of
an incident, and in automotive applica-
tions account, in addition, for “controlla-
bility”, which is a measure of how likely
an average driver is to maneuver out of
a given imminent danger.

All of the above elements: (a) HAV
autonomy level, (b) basic driving com-
petency, (c) operation design domain,
(d) vehicle electronic equipment, and
(e) overall safety risk requirement must
be specied to carry out a formal HAV
safety analysis. Still missing from the
HAV documents are clear guidelines, or

example methods, on how to implement
these safety requirements.

A Path Towards HAV Navigation Safety
When quantifying the safety of HAV
navigation systems, such as in the
example displayed in Figure 5, every
component of the system including raw
sensors, estimator and integrity moni-
tor, and safety predictor, can potentially
introduce risk. Unlike aircraft, HAVs
require multiple and varied sensors to
compensate for GPS signal blockages
caused by buildings and trees. These
sensor types must be integrated, and
new methods to evaluate the integrity of
multi-sensor systems must be developed.
Furthermore, HAVs must have the abil-
ity to continuously predict integrity in a
dynamic HAV environment.

In general, research on analytical
evaluation of HAV navigation safety
is sparse. For example, J. Lee et alia,
Additional Resources use the concept
of a “safe driving envelope,” but the
approach focuses mostly on collision
avoidance. The paper by O. Le March-
and, et alia, evaluates ground vehicle
navigation, but shows an “approxi-
mate radial-error” of tens of meters, far
exceeding the necessary sub-meter alert
limit. A multi-sensor augmented-GPS/
IMU system is used in the paper by R.
Toledo-Moreo, et alia with “horizontal
trust levels” of 7 meters to 10 meters, still
an order-of-magnitude higher than the
required HAV alert limit.

Multi-sensor integrity is addressed by
M. Brenner, Additional Resources, but for
a sensor combination specilc to aviation
and insufficient for terrestrial mobile
robots. Other approaches to multi-sensor
integration show promise, but do not pro-
vide rigorous proof of integrity. In fact,
most publications use pose estimation
error covariance as a measure of perfor-
mance, which is understood as not being
sufficient, but is the only metric currently
available. Most critically, the metric does
not account for fault modes introduced
by feature extraction and data associa-
tion, two algorithms commonly used in
mobile robot localization (and discussed
again below).

Unlike GPS, which gives absolute
position Kxes, IMUs, LiDAR, radar, and

44  InsideGNSS

NOVEMBER/DECEMBER 2017

www.insidegnss.com



Odometer“ GPS II INS ”Laser H Feature Extraction I

sequential estimators (e.g., Extended Kalman KI-
ter or EKF), which has been readily used in many

=) Data
7| Association

—

Landmark

practical applications.
There are several problems that the FE and DA

Map

IA

A4 A4 A 4

v v |

Integrity Pose
Monitor Estimator

algorithms are addressing. First, landmarks in the
environment are unidentied, and their observa-
tions are not tagged in a manner similar to a GNSS
satellite signal’s Pseudo Random Noise (PRN)
number. Thus, the feature extraction algorithm
must isolate the few most consistently identiXable,
viewpoint-invariant landmarks in the raw sen-

1 | L

A 4

Controller

sor data. These features must be identiXable over
repeated observations and distinguishable from
one landmark to another. Features that are difficult

Robot

A
[Integrity Prediction [€— Robot Dynamics |

A 4

7'y
to distinguish from each other can be found easily,

but the possibility that the association is incorrect
will greatly negatively impact the integrity risk.

[ Integrity Map | Alarm

FIGURE 5 Example HAV Navigation System. Key Sensors are represented on top. Their
measurements are processed to estimate HAV position, velocity and orientation,

and then to predict safety risk and send alerts if needed.

cameras provide relative displacements with respect to a previ-
ous time-step, or with respect to a map. Thus, measurement
time-Xltering is required, which makes integrity risk evaluation
more challenging since past:time sensor errors and undetected
faults can now impact current-time safety.

Example LiDAR Navigation Safety Evaluation

While safety quanti¥cation for GNSS and GNSS/INS has been
rigorously performed for aviation applications, and is being
researched for HAVs, navigation safety for LiDAR, radar,
camera, and multi-sensor navigation is a widely unexplored
research area. To provide a speci¥c example on the research
work that lies ahead, we have started developing safety risk
evaluation methods for LIDARs. We selected LiDARSs because
of their prevalence in HAVs, of their market availability, and
because of our prior experience. However, the techniques we
are developing are general enough that radar, cameras, or any
future sensor that returns range data can be substituted.

Raw range data must be processed before it can be used for
navigation. One technique, visual odometry, establishes corre-
lations between successive scans to estimate sensor changes in
pose (i.e., position and orientation). These processes are highly
computationally intensive, and have the same problems as other
dead-reckoning techniques, such as wheel odometry over time.
Thus, they can become inaccurate or cumbersome for HAVs
moving over multiple time epochs. Although proprietary infor-
mation regarding the use of visual odometry by HAV manu-
facturers is unavailable, the research literature suggests that
it is only used for short time scale operations. A second class
of algorithms provides sensor localization by extracting static
features from the raw sensor data and associating those features
to a map. This is typically done in two steps, as illustrated in
Figure 6: feature extraction (FE) and data association (DA). The
resulting information can then be iteratively processed using

Second, range data based on extracted features
must match those features with those from a fea-
ture database or map. Data association algorithms
accomplish this; however, incorrect associations
commonly occur. These can lead to large naviga-
tion errors, as illustrated in Figure 6, thereby representing a
threat to navigation integrity.

FE and DA can be challenging in the presence of sensor
uncertainty. This is why many sophisticated algorithms have
beendevised. But, how can we prove whether these FE and DA
methods are safe for life-critical HAV navigation applications,
and under what circumstances? These research questions are
currently unanswered. The most relevant publications on
DA risk are found in literature on multi-target tracking. For
example, in the paper Y. Bar-Shalom and T. E. Fortmann, an
innovation-based nearest-neighbor DA criterion is introduced,
which serves as basis in many practical implementations.
The article by Y. Bar-Shalom, et alia, “The Probabilistic Data
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FIGURE 6 Impact of Incorrect Association on Vehicle Trajectory Estima-
tion. The position-domain integration scheme on the right-hand
side experiences a missed association when the measurement-

integration scheme on the left-hand side does not. In this case, the
left-hand side can be considered truth reference trajectory; because
of the missed association, the Kawed estimated right-hand side tra-
jectory indicates that the vehicle drove into multiple building walls.
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Association Filter,” provides a detailed
derivation of the probability of correct
association given measurements. How-
ever, this Bayesian approach is not well
suited for safety-critical applications
due to the lack of risk prediction capa-
bility, and to the problem of bounding
the a-posteriori probability of associa-
tion (a similar issue is encountered in
the paper by F.C. Chan, et alia]). Anoth-
er insightful approach is followed in the
paper by J. Areta, et alia]. However, it
makes approximations that do not
necessarily upper-bound risks, hence
do not guarantee safe operation, and it
presents exact solutions that can only be
evaluated using computationally expen-
sive numerical methods, not adequate
for real-time navigation. Also, the risk
of FE is not addressed.

In response, we have been developing
a new, computationally-efficient integ-
rity risk prediction method to ensure
safety of localization using LiDAR-based
FE and DA. We have derived a multi-
ple-hypothesis innovation-based DA
method that provides the means to pre-
dict the probability of incorrectassocia-
tions considering all potential landmark
permutations. (For more details on these
methods, see the following four papers in
Additional Resources, Nos. 31, 49, 50 and
51.) We also determined a probabilistic
lower bound on the minimum feature
separation, which is guaranteed at FE,
with pre-defined integrity risk allo-
cation. The separation bound can be
incorporated in an overall integrity risk
equation. This new method was ana-
lyzed and tested to quantify the impact
of incorrect associations on integrity
risk. It showed that the positioning
error covariance can be a misleading
safety performance metric since cases
were found where the contributions of
incorrect associations to integrity risk
far surpassed that of nominal errors
accounted for in the positioning error
covariance. In addition, the following
key safety-tradeo was illustrated: the
more measurements are extracted, the
lower the integrity risk contribution is
under the correct association hypoth-
esis, but the higher the other integrity
risk contributions become because the
risk of incorrect associations increases in

the presence of cluttered, poorly-distin-
guishable landmarks. Finally, being sur-
rounded by many landmarks increases
the probability of continuous, uninter-
rupted navigation. The next step of this
research aims at dealing with unmapped
and non-static obstacles, and at quanti-
fying the continuity risk of FE and DA.

Conclusion
Looking at the emergence of future HAV
technology with the prior experience of
aircraft navigation safety provides the
means to scale up the challenges that
lie ahead in the development of fully
autonomous (Level 4 and 5) driverless
cars. Many parallels can already be
drawn between aviation safety require-
ments and early HAV standards and
regulations. Still, the methods to fulXIl
these standards and regulations have to
be established. If analytical methods are
pursued, the following tasks need to be
accomplished: (1) establish high-integ-
rity raw sensor measurement error.and
fault models for non-GPS sensors; (2)
developianalytical methods to quantify
the safety risk-of feature extraction and
data association algorithms required in
LiDAR, radar, and other pre-processing
steps in camera-based localization; (3)
design multi-sensor pose estimators
and integrity monitors to evaluate the
impact of undetected sensor faults on
safety risk; and (4) derive, analyze, and
experimentally implement integrity risk
prediction in dynamic environments.
If these challenges are overcome,
one will be able to quantify and prove
the performance of an HAV’s naviga-
tion system — an essential part of safety.
Proving navigation system integrity will
also help give humans more conXdence
to trust HAVs, thus further develop-
ing the symbiotic relationship between
humans and co-robots. Finally, as HAV
technology progresses from driver’s aids
such as active brake assist to full autono-
mous driving, this research is relevant
now and will remain essential through-
out the evolution of HAV technology.
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