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SUMMARY

Researchers sometimes have a priori information on the relative importance of predictors that
can be used to screen out covariates. An important question is whether any of the discarded
covariates have predictive power when the most relevant predictors are included in the model.
We consider testing whether any discarded covariate is significant conditional on some pre-
chosen covariates. We propose a maximum-type test statistic and show that it has a nonstandard
asymptotic distribution, giving rise to the conditional adaptive resampling test. To accommodate
signals of unknown sparsity, we develop a hybrid test statistic, which is a weighted average of
maximum- and sum-type statistics. We prove the consistency of the test procedure under general
assumptions and illustrate how it can be used as a stopping rule in forward regression. We show,
through simulation, that the proposed method provides adequate control of the familywise error
rate with competitive power for both sparse and dense signals, even in high-dimensional cases, and
we demonstrate its advantages in cases where the covariates are heavily correlated. We illustrate
the application of our method by analysing an expression quantitative trait locus dataset.

Some key words: Adaptive resampling; Conditional marginal regression; Forward selection; Hybrid test.

1. INTRODUCTION

Researchers are often interested in the effect of covariates X on a response Y, conditional on
other covariates Z. This problem occurs when the effects of Z have been verified or are assumed to
be significant through prior knowledge or previous studies. Classical examples of such variables
are age, gender and patient stratum in psychological or biological studies.

To test the significance of X in the presence of Z, Lan et al. (2014) proposed a partial F-test,
which has a simple asymptotic null distribution and can be applied with p > n. However, the test
focuses on the joint effect of X and hence cannot identify which covariates in X are significant
conditional on Z; it is also not powerful for sparse signals. We propose a maximum-type test
to detect the effects of X in the presence of Z by considering conditional marginal regression,
where the response variable is separately regressed on each component of X conditional on Z.
Conditional marginal regression has numerous benefits in the high-dimensional regime: it can
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help to recover hidden significant covariates and to reduce false positive and false negative rates
(Barut et al., 2016). The proposed test based on conditional regression differs from the post-
selection inference procedures in Leeb & Potscher (2005) and Belloni et al. (2015), where the
inference focuses on the effect of Z after the selection of variables in X. In addition, we assume
that the effects of variables in the conditioned set, Z, have either been validated through numerous
previous studies or that their inclusion is necessary for statistical analysis.

The proposed test differs from the unconditional test in McKeague & Qian (2015) in three
major aspects. First of all, our test is conditional, designed to check for the presence of significant
variables given a set of conditioned variables. Second, it is based on a scale-invariant ¢-statistic,
whereas that in McKeague & Qian (2015) is based only on the maximum slope estimator. In
particular, our method selects the most predictive covariate through maximizing (éjz )? I7j| 7, where

éjZ is the estimated coefficient of X; when regressing ¥ on Z and X; together, and I7j| 7 is the

estimated conditional variance of X; given Z. Because of the covariate-specific IA/J-\ 7 in our set-up,
pre-standardization of covariates is not sufficient to make the type of statistic in McKeague &
Qian (2015) scale-free, so it is important to incorporate the scale of éjZ in the test statistic, and
this requires new computation and theory. Finally, to accommodate signals of unknown sparsity,
we propose a new hybrid test statistic, a weighted average of maximum- and sum-type statistics.
The hybrid test not only is powerful for detecting sparse and large signals but also can have good
power against dense alternatives. For test calibration, we adapt the idea in McKeague & Qian
(2015) and develop a conditional adaptive resampling test procedure by using the asymptotic
properties of the maximum-type test statistic under the local model.

In applications, one can use the proposed test as a first step to assess the overall significance
of the effect of X on Y in the presence of Z. When the null hypothesis is rejected, one natural
question is which variables in X should be included in the model. To answer this question, we
can apply our proposed test in the context of forward regression, where at each step we add the
selected covariate to the conditioning set Z until no more significant covariates are identified.

This forward regression approach differs from the stepwise method in McKeague & Qian
(2015), where at each stage the adaptive resampling test procedure is successively applied by
treating residuals from the previous stage as the new response. Barut & Wang (2015) showed that
the marginal regression-based adaptive resampling test method is susceptible to unfaithfulness
when correlations between covariates increase, and that forward regression selects important
variables under conditions comparable to those of the lasso. Our numerical studies suggest that
using the adaptation of our test in forward regression leads to more accurate variable selection
when covariates are highly correlated.

2. CONDITIONAL ADAPTIVE RESAMPLING TEST
2-1. Conditional marginal regression
Suppose that Y is a scalar response and (Z7,X")" is a p-dimensional set of predictors, where

Z is a g-dimensional set of variables that are known to be related to Y, and X is a d-dimensional
set of remaining variables, with d = p — ¢q. We consider the linear regression model

Y =ag+Z az0+ X" Bxo + e, (1)

where g, azp = (a10,...,040)" and Bxo = (Bio,...,Bas0)" are unknown and & has zero
mean and finite variance and is uncorrelated with (Z7, X7)T. We are interested in testing whether
at least one of the predictors in X affects Y after accounting for the effects of Z.
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We develop a testing method based on conditional marginal regression, which consists of
fitting d separate linear models by regressing ¥ on each predictor in X conditional on Z. For
J = 1,....d we define (a0,0,,6) = argmingg, o E{(Y — a — Z"07 — X;6))*}, where 6/
measures the conditional effect of X; on Y given Z. Write Vzz = cov(Z), Vz = cov(Z, X;) and
Vi = var(X;). We define the index of the most predictive covariate given Z as

ko = argmax (67)*Vz, @
j=1,....d

where Vjjz = Vj; — VZTJ. VZ_Zl Vzi. When (Z",X™)" follows a multivariate normal distribution, ¥}z
is the variance of X; conditional on Z. With QOZ = 9,5) , testing whether any predictor in X is
correlated with Y given Z is equivalent to testing Hy : 90Z = 0 versus H, : GOZ + 0.

When ¢ = 1, kyp = arg max; [corr(X;, Y | Z)], i.e., the index of the predictor that maximizes
the absolute partial correlation with ¥ given Z. For general cases, the following proposition gives
two other equivalent definitions of kg.

ProposITION 1. Forj =1,...,d, let njz = VZ_Z1 Vz; denote the slope vector from regressing
Xj on Z, and letf(ﬂz = X; — Z"njz. Under model (1), ko in (2) is equivalent to

ko = arg max |corr()~(j|Z,XTﬁx,0)| =argmin min E{(Y —a —Z"0; —)~(j|26j)2}.
j=l,d j=l,,d 4929

Given a random sample {(Y;, Z;, X)), i = 1,...,n} of (Y, Z,X), let (&, éé, éjZ, lAcn) be the least

squares estimators of (g, 9;, sz ,ko):

n
(&,0,.07) = argmin Y "(¥; — o — Z]07 — X;0)°,  k, = argmax (07)*V}z,
aaQZﬂj i=1 j=1,...d

where f/jlz = f/jj — 172TJ 172_21 ffzj, V77 = covn(Z) is the sample covariance matrix of Z, IA/Zj =
cov,(Z, X)) is the sample covariance of Z and X, and 19}-] = var, (X}) is the sample variance of X;.
We then define the conditional marginal regression estimator of 002 as énz = élg .Forany givenj, the

standard error oféjz by regressing ¥ onZ and X;is 6;/(n I7j|z) 12 where c}jz =y, éé/(n —q-—2)
withe; =Y, — &) — ZlTéé — Xl-jéjz. Write 6, = 6; and Vn|z = IA/,; 7 For testing Hy, one natural
choice is the maximum-type test statistic

Ty = 0F [ 60/ nVu2)'?} = (nV2) 1?07 [ 60,

but its calibration is difficult. Firstly, under Hy, ko can be any index and so is not identifiable.
Secondly, énz has a nonnormal limiting distribution. In particular, the limiting distribution of
(n IA/,,\ 2)1/2 (énZ — GOZ ) /6y is discontinuous in the neighbourhood of GOZ = 0, so the limiting normal
distribution that holds away from OOZ = 0 cannot be used to calibrate the test. Discussion of

nonuniform convergence caused by nonregularity can be found in Cheng (2015) and McKeague
& Qian (2015).
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2-2. Limiting distribution of T, under the local model

To construct a suitable test based on 7}, it is crucial to study local models. We consider the
local regression model that replaces Sy o in (1) by

Bx.n = Bx.o+n"?by. 3)

Throughout, we assume that the distributions of ¢ and (Z*, X 7)™ are fixed, and only the distribution
of Y depends on n through By ,; we also suppress # in the notation for Y. Under the local model,
we rewrite ko defined in (2) as &, and write 67 = Oé .

For any b € R?, define k(b) = arg max;_; 4 |corr()~(j‘ 7,X'h)|. From Proposition 1 it is easy
to see that under the local model (3), &, = I_C(ﬁX,n). If Bx,o = 0 and l%(,BX,o) is unique, then
ky — ko and énz is asymptotically bounded away from zero, representing a nonlocal alternative.
If Bx.0 = by = 0, then k, is not well defined and QnZ = 0, representing the null model. However,
if Bx,o =0and by 0, GnZ lies in the neighbourhood of zero, representing a local alternative, and
k(bo) is weakly identifiable even though the local parameter by is nonidentifiable. The benefit
of studying the local model is that we can establish and express the nonregular asymptotic
distribution of énz at By o = 0 in terms of the local parameter by.

Define S;(Bx) = Xjz[e +HX —XjizCj/Viiz—cov(X, ZV ;) Z) Bx], where C; = cov(X, X;7).
Itis easy to show that sz = CJ-T,B)(,O/VﬂZ and Sj(Bx,0) = )~(j|Z(Y—a0—ZT9§— ij|29j-z),where 09 =
VZ_Z1 cov(Z,Y).Hence S;(Bx o) is proportional to the score function of E{(Y —« AL —)?j\ ZGJ)Z}
with respect to 6;, evaluated at (o, OgT, OjZ )'. Define W (Bx,0) = {I/Vj(/.‘b(,o)}]‘.":1 as a normal

random vector with mean zero and covariance matrix cov{S(Bx )}, where S(Bx) = {S;(Bx) }j‘.":1 .
We make the following assumptions:

Assumption 1. (1) E(Z) = 0 and E(X) = 0; (ii) E{||(Z7,X™)"||*} is bounded; (iii) the condi-
tioning design matrix (Z1, ..., Z,)" is of full rank; (iv) for eachX; € X (j =1,...,d), X; cannot
be linearly represented by Z or, equivalently, V;z = Vj; — ng ngl Vzi > 0; (v) for X;, X € X,
|corr(X;, X;)| < 1 forj = k; (vi) p and g are fixed positive integers, and ¢ < n;

Assumption 2. in model (1), ¢ has zero mean and finite variance, and is uncorrelated with
ZhXH.

Assumption 1(i) is imposed for simplicity, and can be satisfied by centring the covariates prior
to data analysis. Assumption 1(ii) requires the tails of the predictor vectors to be well behaved,
and (iii) requires a nonsingular conditioning design matrix. Assumption 1(iv) and (v) are needed
for model identifiability, and neither requires X to be of full rank; (iv) rules out the case where
the remaining predictors are linearly dependent on Z, while (v) excludes the case where two
components in X are linearly dependent and is imposed to ensure the uniqueness of K (bg) in
Theorem 1. Assumption 1(vi) specifies a fixed dimension. However, the proposed method can be
used when p > n as long as ¢ < n, though no theory is provided in this paper concerning the
asymptotic properties of the resulting procedure. Assumption 2 only requires ¢ and the covariates
to be uncorrelated, and can accommodate some heteroscedasticity in the error.

THEOREM 1. Suppose that Assumptions 1 and 2 hold, that ky = I;(,Bx,o) is unique when
Bxo *+ 0, and that k(by) is unique when Bx o = 0 and by # 0. Under the local model (3),
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(n IA/n\ )2 (énZ — 9,12) /6y converges in distribution to

Wi, (Bx 0)/(Vk foko), Bxo * 0,

12
Wk @ Veeoiz | Ckon _ Cien
Vi(bo)iz V/E(bo)|z

T
} bo, Bxo=0,

12
Vo) zPk o) K (o)

where o7 = E{(Y — ap — A — Xj07)} and K (bo) = argmax;_; __ 4 {W;(0) + Cbo}?/Vjz.

.....

Theorem 1 indicates that the limiting distribution takes a different form in each of two cases
and is discontinuous at Byo = 0. Under the null hypothesis Bxo = by = 0, ox©) = 0

and T, = (n f/,,| Y 2@,12 /60 = Wk 0)(0)/ {Vlzg)lzag} in distribution. Let O, o be the upper yth
quantile of Wk )(0) or, equivalently, 55(1((0)|Z; then pr[|T,| > Oy 2.0/ {Véég)lzae} | Hol = y.
Under the local model (3), assuming that k(bg) is unique when By o = 0 and by # 0, we have

N A7 L a 1/2
Ty = (0P2) 67 160 — Wi y) (0) + Ci 0y Y UV 0y 20K b} a8 1 — 00,
in distribution. The following corollary establishes the local power of the test based on T},.

COROLLARY 1. Suppose that Assumptions 1 and 2 hold, and k(bg) is unique when Bxo =20
and by &£ 0. Then under the local model (3),

. 1/2
pr(reject Hy | Hy) = pr[lTnl > Oy, 0/{VK{O)|ZGS} | Ha]

— prieXkmo)z < =4 — Cpyybo} + Pri{eXk gz = A — Ci sy b0}

asn — 0o, where A = Qy/ZOV (b0)|ZUK(bo)/{VK(0)|ZG€} Consequently, pr(reject Hy | Hy) — 1
ifC1T<(b0)b0 — 00, as n —> 0.

2-3. Conditional adaptive resampling for test calibration

In this subsection, we present a bootstrap method for calibrating the null distribution of 7,.
Because of the nonregularity of the limiting distribution in Theorem 1 at Sy ¢ = 0, the conven-
tional bootstrap (Efron & Tibshirani, 1993) is not consistent for estimating the distribution of
(n IA/,Z\ /2 (énz — 67)/6,. We propose a conditional adaptive resampling approach that takes into
account the asymptotic behaviour of 7, under the local model. The main idea is to decompose
(n IA/,,\ Y 2(@,12 — 9,12 )/6n into two components, corresponding to the nonlocal case with By o 0
and the local case with By o = 0. We separate the two cases by comparing |7, | with some positive
threshold A, that satlsﬁes A — 00 and Ap = o(nl/ 2.

Let)§| z=X — VZT] VZZ Z, where VZJ and V7 are sample estimates of V'7; and Vzz. It is easy

to see that the sample covariance cov,, (X]| z,Z) is equal to zero forj = 1, ..., d. Under the local
model (3) with Bx o = 0, and by Assumption 2, we have

n'20% = n'2cov(Xy, 12, X "n "V 2bo + €)/ Vi, 1z = cov(X, 2, X "b0)/ Vi, 2> 4)
n' 267 = n'eov, (X X0 Vb + )V =T, +covaXy L XDV 0 ()
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where Z,; = nl/zcov,,()?ﬂz,e) = pn1/2 o le(sz —n- Zlef(,ﬂz). Therefore,
(V) 1267 — 67)/6, equals

(nV2) 2 (67 — 67) /6,1 (ITy| > A or Bx.o = 0)
1 2 -
n |: nI/Z {Z + COVn(X |Z,XTb0) _ COV(an‘Z,XTb())

On Vi iz Viaiz

”1(|T | < An, Bx0=0). (6)

When A, — oo and A, = o(n'/?), we can show that pr(|7,| > 1,) — I(Bxo + 0).
Thus the first term in (6) can be consistently bootstrapped. We can express the second term in
the brackets as V,(b), a process indexed by b € R?, and then bootstrap V,,. Define K, (b) =
argmax;_; L j+covy, (X]|Z,XTb)}2/ Vjiz. By (5) and the definition of Z, ;, we have K, (bg) =
arg maxj(Qj-Z )2 Viiz = kn when By o = 0. By Proposition 1, k, = k(by). This, combined with 4),
motivates us to take

Vn(b) = 6']K ®

~1/2 R ~
Vi, 01z | Znx,@») + covalXk, @)z, X b} _ cov{XG 42> X b}
Vi, )1z Viwyz

Therefore, to approximate the asymptotic distribution of (n I7n| 7)1/? (éz GZ ) /6y, it suffices to

bootstrap (n¥z)"/2(GF — 62)/aI (Tl > Ay or Bx o % 0) + V(b)) (1Tl < hn, Bx0 = 0).
Hereafter, we use a superscript * in any statistic to denote its bootstrap version based on the

bootstrap sample, obtained by resampling {(Y;, Z;, X;), i = 1,. .., n} with replacement. Define

Ri = Vi V207 — 60 /65 1(T;| > kot [Tyl > Ay)
+ V5 (b)) (IT,)| < Any 1Tl < An). (7

The following theorem shows that the distribution of the maximum-type test statistic can be
bootstrapped consistently under the local model (3).

THEOREM 2. Assume the conditions of Theorem 1 ana{ that A, = o(n'’?)y and x,, — oo as
n — o0. Then under the local model (3), R, — (nVn|z)1/2(0nZ — 9,12)/6,, in distribution,
conditional on the data.

To test the significance of X conditional on Z, we only need to obtain the sampling distribution
of T, under the null hypothesis 9,12 = 0; that is, we only need to apply the bootstrap procedure
with b9 = 0. For any given significance level y, let ¢;(A,) and ¢, (A,) be the lower and upper
(y/2)th quantiles of R, with by = 0. If T}, falls outside the interval [c;(X,), c,(X,)], then we
reject Hy and conclude that there exists at least one predictor in X that has significant correlation
with ¥ conditional on Z. Hereafter, we refer to the bootstrap procedure for testing the presence
of a conditional effect of X on Y given Z as the conditional adaptive resampling test.

2-4. The hybrid test procedure

Maximum-type statistics are known to be better at capturing sparse and strong signals, but
less powerful in regimes with dense and weak signals. To adapt the test to accommodate signals
of unknown sparsity, we propose a hybrid test statistic 7,,(w) = oT, ,% + (1 — w)S,, where w

Downloaded from https://academic.oup.com/biomet/article-abstract/105/1/57/4711135
by D H Hill Library - Acquis Dept S user
on 16 August 2018
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is a tuning parameter between 0 and 1, and S, = d~! 27:1 T 3] is the average of the squared
conditional marginal ¢-statistics T,,; = (n I7J|Z)1/ 20}2 /6;.

The sum-type statistic S, is regular and its limiting distribution has no discontinuity, so we
can approximate the critical value for 7}, (w) by using a modified bootstrap version 7 “(w) =

R+ (1—w)R}y, where Ry is defined in (7) with by = Oand Ry = d ™! YL i) 267~
sz )/ 6].* }? is the standard bootstrap version of S, under Hy. Specifically, at significance level y, the
hybrid test rejects Hy if Ty (w) > ¢y (w, Ay), where ¢y, (w, A,) is the upper y th quantile of T “(w).
The validity of this modified bootstrap for the hybrid test statistic is established in Theorem 3.

THEOREM 3. Suppose that the assumptions in Theorem 1 hold and that 1, = o(n'/?) and
An — 00 as n — oo. Then for a given w € [0, 1], under the local model (3),

d
i) — o]0l 267 —67)/64) + (1 — 0)d™ 1Y |l V07 — 67)/8;)°
j=1

in distribution, conditional on the data.

The proposed hybrid test has connections with the method of Fan et al. (2015), which improves
the power of the sum-type test against sparse signals through an added enhancement term that
is negligible under the null but large under the alternative. Consequently, the test in Fan et al.
(2015) may have inflated Type I error if the enhancement component is not tuned properly. In
contrast, our proposed hybrid test can control the Type I error rate for any w € [0, 1], though
it may lose power with a poor choice of w. Ideally, a larger w is preferred for sparse and large
alternatives, and vice versa. We suggest a data-driven procedure for choosing w. Let x; = T, nz]
and let x(; be the jth order statistic (j = 1,...,d). Define x, = {x@) — X—@) — My}/0y>
where ¥4 = (d — 1)7! ngl:—ll x¢) and ., and o, are the expectation and standard deviation
of X() — X—(a)> which are approximated through Monte Carlo simulation of independent x2(1)
random variables. A large x, value suggests that the maximum ¢-statistic is far away from the
rest and therefore indicates large and sparse signals. We set the data-adaptive weight w™ to be a
continuous function of y,, where w* equals 0 if x, < 3, equals 1 if x,, > 5, and is linear in x, if
3 < xn < 5; the test based on this weight exhibits competitive power for both sparse and dense
alternatives.

2-5. Some computational issues

The adaptive resampling procedure depends on the tuning parameter A,. The conditions A, =
o(n'/?) and A, — oo ensure that the pretest is consistent with asymptotically negligible Type I
error, since limy,— oo pr(|7x| > Ay | QnZ = 0) = 0. In practice, the test is conservative if A, is
chosen too large, and is liberal otherwise. When A, = 0, the test is equivalent to the centred
percentile bootstrap, which estimates the critical values by the upper and lower quantiles of
(n f/;“ Z)l/ 2 (énz* — énZ )/6,; see Efron & Tibshirani (1993). We show in §3-1 that the centred
percentile bootstrap often fails to control the Type I error rate. Our numerical investigation shows
that the rule-of-thumb suggested by McKeague & Qian (2015), A,, = max[(alogn)'/?, &~ 1{1 —
y/(2d)}] witha € [5,25], is a good choice for large samples, where ® is the distribution function
of N(0, 1) and y is the significance level. In our implementation, we choose the constant a from a
grida; < --- < ay, € [0,25] by adopting the following double bootstrap procedure. We describe
the procedure only for the maximum-type statistic, as that for the hybrid statistic is similar.
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Step 1. Generate a bootstrap sample {(Y*,Z*,X), i = 1,...,n} by resampling {(Y;, Z;, X;),

s &

i = 1,...,n} with replacement, and obtain the bootstrap estimates é,,Z * IA/:| zand 6.

Step 2. Generate By double bootstrap samples by resampling {(Y*,Z*,X*),i = 1,...,n}
with replacement. Let A, x = max[(ay log m'/2, e~11 — y/Q2d)}] (k = 1,...,m), and write
R:T . for the double bootstrap statistic of R}, with by = 0 and A, = A,,x. Then denote the lower
and upper (y/2)th quantiles of R;’;T’k by ¢ (Anx) and cj; (A ).

Step 3. Repeat Steps 1 and 2 B) times, calculate the proportion of times that the test statistic
(n V;‘l Z)l/ 2 (9,,2* - an )/ 6, falls outside the interval [c} (An ), (A k)] for each A, x, and choose
the tuning parameter A to be the one that gives the rejection proportion closest to y.

The double bootstrap can be computationally costly. However, when all the gy, in the grid lead
to the same rejection conclusion, we can avoid the double bootstrap by taking any constant from
the grid to perform the test and thus reduce the computational burden.

When ¢ is independent of (Z7, X™)", we have ok 9y = o, and Wk )(0) ~ N (0, ) under Hy,
where Xy = %2 Yxz and Xy |z = cov()~(1|z, ... ,)?d\Z)- By Theorem 1 we can obtain the critical
value for 7, by constructing W) (0)/ Vé{g)‘ , with random draws from a normal distribution

with mean zero and covariance Xx|z, an estimator of Xyz. This test calibration approach is
computationally convenient, but our empirical studies show that it often leads to distorted Type I
error in small samples. In addition, the method relies on a stronger independence assumption
between ¢ and X. When ¢ and X are dependent, we would need to estimate moments of the
form E (82)?]" Z;(k| z) to simulate draws from the asymptotic null distribution of 7}, and this is not
feasible without further distributional information.

2-6. Forward regression via a sequential conditional adaptive resampling test

The proposed conditional adaptive resampling test can be used sequentially as a stopping rule in
forward regression to select important predictors. To account for multiple testing in the sequential
procedure, we consider a two-stage forward regression based on the multiple test adjustment idea
in Holm (1979). Our numerical studies show that this two-stage procedure controls the familywise
error rate well for modest and large samples.

In the first stage, initial forward regression is carried out in the following steps.

Step 1. Test for the presence of significant predictors by applying the adaptive resampling test
of McKeague & Qian (2015), which is a special case of the conditional adaptive resampling test
with Z = (. Let p; be the associated p-value in this step. If p; > y, we stop the procedure and
declare that there is no significant predictor; otherwise we let Z(V) = {X; i }, where ki is the index
of the predictor that has the strongest marginal dependence with Y.

Step 2. Conditional on Z1, perform the conditional adaptive resampling test with X1 =
X\ZW . Let p, be the associated p-value. If p; > y, we stop; otherwise we repeat the proposed
test with updated covariate vectors Z® = {X; i X, ) and X @ = x\Z?®, where X 7, is the index

of the predictor that is most correlated with ¥ conditioning on Z(1.

Step 3. Repeat Step 2 until no more significant predictors are detected. Assume that the
procedure stops after N steps, and denote the selected covariate set by ZW) = {XAI, e ,X];N}
and the associated p-values by {p1,...,pn}, wherep; <y (j=1,...,N).
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In the second stage, multiple test adjustment is performed as follows. Suppose that N > 1.
Define N = 1ifp; > y/N,or N = max1\1<N{] p<y/N=I+1),l=1,...,j} otherw1se

the finally selected covariate set is chosen as Z ) — {XA1 D (I
‘N

The above forward regression procedure differs from the stepwise procedure in McKeague
& Qian (2015), which successively applies the adaptive resampling test method by performing
marginal regression on the remaining predictors, treating residuals from the previous stage as
the new response. As demonstrated in Barut & Wang (2015), the performance of the stepwise
adaptive resampling test procedure deteriorates with higher correlation between covariates. In
contrast, our sequential procedure re-estimates the coefficients of variables already included at
each step, and thus is less susceptible to problems due to high correlation. Furthermore, we
control the familywise error rate for the sequential tests. Our numerical studies in § 3 show that
this procedure outperforms the stepwise procedure of McKeague & Qian (2015) in cases with
highly correlated covariates.

3. SIMULATION STUDY
3-1. Size and power

We test the significance of a subset of predictors after conditioning on Z, a known subset of
conditioning covariates, using the conditional adaptive resampling test. Because the distribution
of T, is symmetric, the test based on 7}, is equivalent to 7, 2 ie., Ty(w) with w = 1. We compare:
(i) the adaptive resampling test based on T (@) with equal to 1, 0-5, ™ and 0, where ™ is the
weight selected by the data-driven rule-of-thumb; (ii) the test based on direct estimation of the
asymptotic critical value of the maximum-type statistic 7;, assuming independence of the noise
and the covariates; (iii) the centred percentile bootstrap that constructs the critical value of 7,, with
standard bootstrap quantiles; (iv) the partial covariance-based test proposed by Lan et al. (2014);
(v) the permutation test based on the maximal absolute partial correlation; and (vi) marginal
t-tests with Bonferroni correction. The test of Lan et al. (2014) is based on the partial covariance
of the response and the predictors after controlling for Z, and is applicable when d > n. The
permutation test is based on the test statistic max;—; . 4 |corr(Y,X; | Z)|, where the critical value
is constructed by the upper yth sample quantile of max;—; . 4 |corr(Y ,Xj* | Z2)|, with X]* being
a row-permuted version of X;. For the centred percentile bootstrap, permutation and conditional
adaptive resampling tests, we use 500 bootstrap samples or permutations. For the proposed test
based on 7, w(w) with w > 0, we select the tuning parameter A, by a double bootstrap of 100
samples.

We consider the standard regression model given by

Yi=Zloz + X Bx +e (i=1,...,n),

where (Z,X)" € R? ~ N(0,X), with ¥ having an exchangeable structure with ones on the
diagonal and p on the off-diagonals, Z; € R>, az = (1,0-8,0-6,0-4,0-2)", and &; ~ N(0, 1) is
independent of Z; and X;. We consider different scenarios with n € {100,400}, p € {0-5,0-8} and
p € {100,400}. For each scenario, the simulation is repeated 1000 times. We let Sy = 0 for size
assessment, and consider two types of By for power analysis: (i) sparse signals, By = (81,0")"
where B ranges from 0 to 10/n1/2; (ii) dense signals, By = k(B1,...,Bs)" where B1,..., B4
are simulated from a standard normal distribution and « is selected so that the signal strength
5= ,B)T( X x)zBx ranges from 0 to 20/ n'/2, with © x|z being the conditional covariance matrix of
X given Z. The nominal level is set at y = 0-05.
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Table 1. Simulation results under the null hypothesis: the reported values are average rejection
rates (%) for different methods with a nominal level of y = 0-05

o n p T,(1)  T.05) T, T,0) ASYM PCBT BON PERM CPB
05 100 100 6-1 6-1 4.9 3.5 8-0 4.5 7.3 9.4 725
400 7-4 7-1 4.9 3.5 9.5 5.0 83 12-3 89-1

400 100 4.3 4.3 4.8 4.5 5.0 4.5 4.2 7-4 739

400 7.1 6-8 5.9 4.5 7.8 4.7 6-7 14-1 93.8

0-8 100 100 4.5 4.6 3.2 2:6 7.5 4.2 6-2 25.7 70-8
400 6-7 6-0 4.2 3.0 8.7 4.8 7.8 44.6 872

400 100 5.5 6-0 4.1 3.8 6-3 3-8 4.9 25.6 747

400 5.5 6-3 4.4 3.9 6-4 4.7 5.5 46-4 923

T, (w), the proposed conditional adaptive resampling test with @ = 1,0-5, w*,0; ASYM, the test based on direct
estimation of the asymptotic critical value of 7,,; PCBT, the partial covariance-based test of Lan et al. (2014); BON,
the ¢-test with Bonferroni correction; PERM, the permutation test; CPB, the standard centred percentile bootstrap.

The computation was done using R (R Development Core Team, 2018) on a server comparable
to a MacBook Pro, with 2.5 GHz Intel Core i5 and 8 GB 1600 MHz DDR3. The computational
complexity for the test based on 7} (w) is mainly due to the bootstrap resampling of R}, and
RY,. Thus, in terms of computing time, there are no differences between performing a test with
a single @ or with multiple ones. Among 1000 replicates, the average computing times for the
adaptive resampling test with 500 bootstrap repetitions and a given A, were 3-3, 7-0, 18-0 and
54-1 seconds for (n,p) = (100, 100), (400, 100), (100,400) and (400,400), respectively, and
the corresponding standard errors were 0-09, 0-11, 0-17 and 0-33 seconds.

Table 1 summarizes the empirical sizes of all methods for testing the effect of X; conditional
on Z;. Both the proposed resampling test and the test of Lan et al. (2014) control the sizes
reasonably well, except in cases with large d and small n. The centred percentile bootstrap gives
highly inflated Type I error, and the asymptotic-based test and the #-test with Bonferroni correction
give inflated Type I error for the small sample size of » = 100. When X and Z are uncorrelated,
the permutation test performs well in terms of both Type I error and power; see the Supplementary
Material. However, the permutation test gives inflated Type I error when X and Z are correlated,
and the inflation is more severe for larger p.

In Fig. 1 we plot the power curves for T, »(w) with w equal to 1, 0-5, the data-driven weight
o* and 0 as well as for the test of Lan et al. (2014), in the case where p = 0-5, p = 100 and
n = 400; the results for » = 100 can be found in the Supplementary Material, and the results
for p = 0-8 are similar and hence omitted. We omit other methods from the power analysis
because of their inflated Type I errors. When the signal is sparse and large, the hybrid test using
the selected weight w* is competitive with those using w = 1 and 0-5, and it appears to be more
powerful than the test with @ = 0 and the test of Lan et al. (2014). When the signals are dense
and weak, the hybrid test with selected weight w* results in powers almost identical to those of
the sum-type test with @ = 0 and the test of Lan et al. (2014).

As suggested by a referee, we also tried the case with larger noise, where ¢; ~ N(0,4). The
empirical sizes are almost the same as when ¢; ~ N(0, 1), but the signals must be doubled to
achieve the same power.

3.2. Forward selection

We compare the proposed sequential forward regression procedure with (i) the stepwise
method in McKeague & Qian (2015), (ii) the crossvalidation-based method, and (iii) the
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Fig. 1. Power curves of different methods under (a) sparse and (b) dense alternatives: condi-

tional adaptive resampling test based on w = 1 (solid), 0-5 (dash-dot), w* (solid with circles)

or 0 (dashed) and the test of Lan et al. (2014) (dotted), for the case with p = 0-5, p = 100 and

n = 400. In each panel the horizontal axis measures the signal strength: 8; = b/n'/? for the

sparse alternative and 8 = b/n'/? for the dense alternative; the grey horizontal line indicates
the nominal level of 0-05.

Benjamini—Hochberg method that controls the false discovery rate at 0-05. In the crossvalidation-
based procedure, we randomly perform a five-fold split of the data, calculate the sum of the
squared crossvalidation errors, and stop the procedure if the sum of the errors is not fur-
ther reduced. The Benjamini—Hochberg method is based on the adjustment in Benjamini &
Hochberg (1995) to p-values obtained from the marginal z-test. The data are generated from
Y = X'B + ¢ with ¢ ~ N(0,1), and we consider (I) 8 = (1,1,1,0-8,0-8, 01"1;_5)T and
am g = (1,1, 1,0-8,0-8,0-3,0-3,0;_7)T. We report only the results for the hybrid test with
w = 1, as the test based on the data-driven weight w* performs similarly.

Table 2 summarizes the selection results for case (I) with n = 400, including: the average
number of true positives; the average number of false positives; the proportion of times that the
exact true model was selected; the proportion of false negatives, i.e., the proportion of cases
missing at least one relevant predictor; and the familywise error rate, i.e., the proportion of times
that at least one irrelevant predictor was selected. The selection results shown in Table 2 suggest
that when covariates are independent, i.e., p = 0, the stepwise method of McKeague & Qian
(2015) performs similarly to our sequential method, with both giving accurate model selection
and controlling the familywise error rate well. However, the performance of the stepwise method
deteriorates with higher correlation between covariates, missing on average about one relevant
variable, and is even worse when » = 100. Our sequential procedure is less susceptible to high
correlation; it gives accurate variable selection in almost all scenarios considered, and controls the
familywise error rate well for both p = O and p = 0-5, while the stepwise method of McKeague &
Qian (2015) gives a highly inflated familywise error rate for p = 0-5. The crossvalidation-based
method always selects a larger model, and its familywise error rate is out of control. When p = 0,
the Benjamini—-Hochberg method controls the false discovery rates at 0-08 and 0-06 for » = 100
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Table 2. Simulation results for forward selection: comparison of

the proposed sequential forward regression procedure with other

approaches in case (1), the sparse and large signal setting, for
sample size n = 400

P P Method  NoTP  NoFP OracleP FN FWER

0-0 100 ART 5-00 0-05 0-95 0-00 0-05
CART 5-00 0-03 0-97 0-00 0-03

Ccv 5-00 6-23 0-03 0-00 0-97

BH 5-00 0-31 0-73 0-00 0-27

400 ART 5-00 0-06 0-94 0-00 0-06

CART 5-00 0-06 0-94 0-00 0-06

Ccv 5-00 14.71 0-00 0-00 1-00

BH 5-00 0-33 0-73 0-00 0-27

0-5 100 ART 4.01 1-46 0-00 0-62 0-64
CART 5-00 0-06 0-94 0-00 0-06

CvV 5-00 6-05 0-04 0-00 0-96

BH 5-00 95-00 0-00 0-00 1-00

400 ART 3.91 1-45 0-00 0-66 0-60

CART 5-00 0-06 0-94 0-00 0-06

CcvV 5-00 14-64 0-01 0-00 0-99

BH 5-00  395-00 0-00 0-00 1-00

NoTP, the average number of relevant predictors selected across simulation;
NoFP, the average number of irrelevant predictors selected across simulation;
OracleP, the proportion of replicates in which the true model is selected; FN,
the proportion of replicates in which at least one relevant predictor is missed;
FWER, familywise error rate, the proportion of replicates in which at least one
irrelevant predictor is selected; ART, the stepwise selection method of McKeague
& Qian (2015); CART, the proposed forward selection via sequential conditional
adaptive resampling test with multiple test adjustment; CV, the forward selection
based on five-fold crossvalidation; BH, the Benjamini—-Hochberg method.

and 400, respectively, but the familywise error rate is too large. For p = 0-5, the Benjamini—
Hochberg method always selects all of the predictors, possibly because of the exchangeable
correlation among the predictors. Further results can be found in the Supplementary Material.

4. REAL-DATA ANALYSIS

Studies of expression quantitative trait locus are often used to link variations of genotype to
deviations in gene expression levels. The dataset we analyse, available at http://www.braineac.org/
(Trabzuni etal., 2011), contains gene expression levels and genotype sequences from 134 individ-
uals with no known neurodegenerative disorders. The gene expressions were collected from up
to 12 different brain regions. Comparison of gene expressions for a specific gene from different
brain regions can be used to understand how gene expression is regulated in different areas of the
human brain. Previous analyses by the data providers showed that gene expression levels vary
across different brain regions (Ramasamy et al., 2014).

We study the expression of the ATP5SG2 gene at transcript level 3456313 Chromosome 12.
The gene ATP5G2 regulates adenosine triphosphate synthase, which is an enzyme involved in
cellular energy transfer. ATP5G2 is also hypothesized to be a tumour suppressor for renal cell
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Table 3. Estimated coefficients and their 95% confidence intervals (in brackets) of the chosen
single nucleotide polymorphisms in the expression quantitative trait locus analysis for ATP5G2
in different brain regions, the confidence intervals are calculated using conditional bootstrap

Region rs11170631 rs11170639 rs12818213 rs112183557 rs188609099
CcC —0-39 [—0-44,—0-33]
ME  —0-28 [-0-35,—0-17] —0-29 [-0-86,—0-19]
ocC —0-38 [—0-44,—-0-33]
TC —0-36 [—0-43,—-0-27]
FC —0-32 [-0-37,—0-26]
HI —0-29 [-0-35,—0-19]
SN —0-31 [—0-38,—0-19]
TH —0-28 [-0-33,—-0-16]
PU —0-33[—0-39,—0-22]

CC, cerebellar cortex; ME, medulla; OC, occipital cortex; TC, temporal cortex; FC, frontal cortex; HI, hippocampus;
SN, substantia nigra; TH, thalamus; PU, putamen.

carcinoma (Morris et al., 2011). In the original study by Ramasamy et al. (2014), the authors
performed a single-variable study and showed that expression of 3456313 in all brain regions
can be consistently estimated by the single nucleotide polymorphism rs12818213. In this study
we use a multivariate estimator and check the consistency of the above statement when other
single nucleotide polymorphisms are considered.

The single nucleotide polymorphisms under investigation are located one megabase upstream
and downstream of the transcription start site of ATP5G2. Variables and individuals with missing
data are removed, which reduces the size of the dataset to 3853 variables and 124 samples.
Following the suggestion of the data providers, we treat the marker values as numerical; that is,
we do not treat allele type 1 or 2 separately, and instead code all of the covariates as numbers
ranging from 0 to 2. We fit a different regression for each brain region, where the gene expression
levels of ATP5G2 in that region are treated as the response, using the same 3853 covariates,
including rs12818213, in each regression. Such an analysis is useful for comparing the variation
of gene dynamics in different parts of the brain.

We use the conditional adaptive resampling test with forward regression to select among the
3853 variables that are significant at the 5% nominal level. We display the results for = 1, but
the data-driven choice of w gave similar outputs and only one extra covariate was recruited for
one of the regions, namely the thalamus. The fitted coefficients of chosen single nucleotide poly-
morphisms are presented in Table 3, along with their 95% confidence intervals. The confidence
intervals are estimated through conditional bootstrap, in which we vary the b term in V,,(b) and
look for the widest bootstrap quantiles of (n IA/;‘l Z)_l/ z&jR;"l over all by € R?, where Ry, is given
in (7). This approach produces robust confidence intervals (McKeague & Qian, 2015).

Table 3 shows that the single nucleotide polymorphisms recruited by the proposed test change
with respect to brain region. This difference is in line with the original study of Ramasamy et al.
(2014); however, in their analysis of the ATP5G2 gene, the authors concluded that rs12818213
had a consistent signal in all brain regions. We reach a different conclusion: the proposed test finds
that the variations in the ATP5G2 gene can be explained by rs12818213 only in the thalamus.
In other regions, completely separate single nucleotide polymorphisms appear to be significant
predictors.

We plot the correlation matrix for the displayed single nucleotide polymorphisms in Fig. 2. The
correlation matrix shows that the first to the fourth single nucleotide polymorphisms in Table 3
are heavily correlated. In fact, rs11170631, rs11170639, rs12818213 and rs112183557, which
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rs188609099 0-13 0-14 0-14 0-14 1

Fig.2. Correlation matrix of the chosen single nucleotide polymorphisms.

are related to all of the regions, have intercorrelations of higher than 95%. These findings are
complementary to the analysis of ATP5G?2 in the original paper. One surprising result from the
correlation matrix is the weak correlation of rs188609099 with the others. Since rs188609099
was found to be active only in the medulla region, this indicates that different mechanisms are at
work for expression of the ATP5G2 gene in the medulla and other regions of the brain.

5. DiscussION

If one is interested in inference regarding the effect of some pre-chosen covariate such as
the treatment, the uncertainty involved in the selection of nuisance confounding variables may
have potentially devastating effects and must be accounted for appropriately. We refer to Leeb
& Potscher (2005, 2008) for further discussion of post-selection inference issues, and to Mein-
shausen et al. (2009), Chatterjee & Lahiri (2011), Berk et al. (2013), Lockhart et al. (2014),
Zhang & Zhang (2014), Javanmard & Montanari (2014), Belloni et al. (2015), Lee et al. (2016)
and Candgs et al. (2016) for developments relating to post-selection inference methods.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online contains additional simulation results
and proofs of the theoretical results.
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