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ABSTRACT
Detecting anomalous patterns from dynamic and multi-attributed
network systems has been a challenging problem due to the com-
plication of temporal dynamics and the variations re�ected in mul-
tiple data sources. We propose a Multi-view Time-Series Hyper-
sphere Learning (MTHL) approach that leverages multi-view learn-
ing and support vector description to tackle this problem. Given
a dynamic network with time-varying edge and node properties,
MTHL projects multi-view time-series data into a shared latent
subspace, and then learns a compact hypersphere surrounding
normal samples with soft constraints. The learned hypersphere
allows for e�ectively distinguishing normal and abnormal cases.
We further propose an e�cient, two-stage alternating optimization
algorithm as a solution to the MTHL. Extensive experiments are
conducted on both synthetic and real datasets. Results demonstrate
that our method outperforms the state-of-the-art baseline meth-
ods in detecting three types of events that involve (i) time-varying
features alone, (ii) time-aggregated features alone, as well as (iii)
both features. Moreover, our approach exhibits consistent and good
performance in face of issues including noises, anomaly pollution
in training phase and data imbalance.
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1 INTRODUCTION
The problem of anomaly detection in dynamic networks has at-
tracted much attention in a broad range of domains, such as trans-
portation, communication, �nancial systems, and social networks.
Examples include detection of civil unrest using social media data
[6, 25], identi�cation of crowd activities or emergencies in cities
[5, 27, 33] and discovery of network intrusion or network failures
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[8, 36]. Particularly with the increasing adoption of ubiquitous
sensors and social mobile technologies, it becomes possible to con-
tinuously collect datasets from multiple data sources (so-called
“multi-view” datasets) in real time. The continuously-gathered data
allows us to understand the temporal regularities and irregularities
of a dynamic system. Furthermore, data collected frommultiple data
sources o�er complementary information about the same objects
from various perspectives, which promise the potential of more
e�ective anomaly detection than those only based on single-view
data.

Over the past decade, a variety of anomaly detection methods in
dynamic networks have been put forward [6, 15, 18, 25, 27, 32, 33,
35, 36]. These methods complement traditional anomaly detectors,
e.g., Support Vector Machines (SVM) [34] and the Local Outlier
Factor (LOF) [4], as the dynamic nature and network structure
have introduced new types of anomalies and challenges. For ex-
ample, Non-Parametric Heterogeneous Graph Scan (NPHGS) [6]
and EventTree+ [33] �nd anomalous subgraphs with structural
constraint as a way to detect tra�c accidents or abnormal crowd
activities. In spite of their success under some situations, these
approaches mainly focus on static or time-aggregated features and
lack the ability of mining time-sensitive anomalous patterns. For
example, EventTree+ directly uses the aggregated activity level
as an attribute for each node, without consideration of the daily
variation of activities. While converting time-varying attributes
into aggregated features is convenient, the process tends to lose
important information in detecting certain anomalies, e.g., anom-
alies with temporal irregularities whereas their time-aggregated
attributes may seem normal.

In addition to single-view approaches, there have been works
dealing with multi-view datasets, including Horizontal Anomaly
Detection (HOAD) [12], Multi-view Low Rank Analysis (MLRA)
[23], Outliers Ranking (OutRank) based on subspace analysis [28]
and anomaly detection by A�nity Propagation (AP) [11, 26]. Most
of these methods focus on inconsistent or di�erent behaviors across
di�erent sources, which is referred to as “horizontal anomaly de-
tection” [12]. However, methods that exploit multi-view data as
complementary information [23] for extracting normal and ab-
normal patterns are less explored. In this paper, we consider that
abnormal events would create a disturbance of regularities across
various views, and by mining such consistent irregular patterns
in multiple data sources, we can achieve a more reliable detection
result than those based on a single view.

Here we propose a novel anomaly detection framework named
“Multi-View Time Series Hypersphere Learning” (MTHL) in dy-
namic networks. Figure 1 illustrates the key idea of our proposed
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Figure 1: Illustration of our MTHL approach. In terms of the network system, node and edge attributes are taken as two
distinct views. The multi-view temporal information is represented as two (or multiple) sets of matrices and then projected
into a shared latent space. MTHL mines the normal pattern (soft boundary between normal and abnormal cases) by learning
a compact hypersphere surrounding reference samples, and detects outliers based on its distance to the hypersphere centroid.

approach. First, to preserve the temporal variation of multiple at-
tributes, we use multivariate time series representation – a chrono-
logically ordered sequence of feature vectors that capture varia-
tion in attribute values. Second, we assume normal samples col-
lected from multiple views would be close to one another in a low-
dimensional latent space. To obtain a good representation of normal
pattern, we leverage Support Vector Data Description (SVDD) [37]
to extract normal patterns. Speci�cally, MTHL learns a hypersphere
around the reference set and distinguishes normal and abnormal
samples according to their distances to the hypersphere center. Our
contributions can be summarized as follows:

(1) We propose a novel approach called MTHL for anomaly
detection in dynamic networks. By full exploitation of
multi-view time-series data, MTHL is able to detect events
that involve irregular temporal variations, which are easily
neglected by traditional approaches that only depend on
aggregated features.

(2) By leveraging multi-view learning and support vector de-
scription, our approach learns a hypersphere that facilitates
the e�ective identi�cation of anomalies.

(3) We propose an e�cient algorithm which involves two al-
ternating optimization stages, by using gradient descent
and Lagrangian duality theory. In our runtime comparison,
MTHL exhibits the best time performance at the testing
phase.

(4) We conduct extensive experiments on both synthetic and
real-world datasets. Results demonstrate that our method
consistently outperforms the state-of-the-art baselinemeth-
ods in face of data imbalance as well as noises and anomaly
pollution during the training phase.

The rest of the paper is organized as follows. In section 2, we
brie�y review the related work. In section 3, we present problem def-
inition and notations. Section 4 and 5 describe the proposed MTHL

approach and its algorithmic solution, respectively. Experimental
evaluation is reported in Section 6, with conclusion in section 7.

2 RELATEDWORK
Anomaly Detection in Dynamic Networks. Beyond traditional
anomaly detection, there has been an increasing interest in anomaly
detection in dynamic networks, particularly due to its ability to
describe objects and relationships with time-varying properties
[2, 14, 32].

In the realm of dynamic networks, what forms up an anomalous
object heavily relies on the applications. Detection tasks can span
from detecting abnormal vertices [15, 16, 18] and edges [1, 17, 24],
to identifying anomalous subgraphs [6, 7, 27, 29, 30, 36] and events
[20, 31]. Ji et al. [18] detect local evolutionary outliers (vertices) by
investigating the shifts in community involvement. Li et al. [24]
identify abnormal edges in vehicle tra�c networks by studying
edge weight evolution. In terms of anomalous subgraphs, Chen et al.
[7] focus on community behaviors and propose to detect six types of
community-based anomalies: grown, shrunken, merged, split, born,
and vanished communities. Mongiovi et al. [27] design a method,
called “NetSpot”, to �nd the signi�cant anomalous regions (i.e. a
set of adjacent, connected links) and time intervals. A series of scan
statistics based approaches [6, 29, 30] are also developed to detect
anomalous clusters though subset searching in the spatio-temporal
domain.

Many prior works deal with dynamic networks by partitioning
the stream data into discrete time windows and then construct ag-
gregated features as the “so-called” temporal properties. Instead, we
approach the problem by conducting a �ne investigation regarding
how the system evolves within each time window. Another di�er-
ence lies in that our approach is developed from the perspective of
multi-view learning, so that it can make use of the mutual-support
data sources to achieve better results.
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Multi-view Learning. The existence of multiple data sources
has inspired a lot of works conducted in the multi-view setting, such
as multi-view clustering [3, 11, 21], subspace learning [13, 38, 39],
multi-view classi�cation [19, 22] and multi-view outliers detection
[12, 23, 26, 28]. The most relevant work to our paper is multi-view
outlier detection.

Gao et al. [12] were the �rst to study horizontal anomalies by
exploring the inconsistent behaviors across di�erent views. In their
work, they proposed a clustered-based approach, called Horizontal
Anomaly Detection (HOAD). In speci�c, HOAD performs clustering
simultaneously with all views, and marks those objects belonging to
di�erent clusters as outliers. Alvarez et al. [26] approached the simi-
lar problem by an a�nity propagation (AP) based method. However,
both HOAD and AP are designed for one type of outliers. As Li et
al. [23] have pointed out, there are two types of anomalies under
the multi-view setting: Type I outlier is the so-called “horizontal
outlier” proposed in HOAD paper [12]; Type II outliers refer to the
ones that display anomalous patterns in each single view. They
develop a Multi-View Low-Rank Analysis (MLRA) approach to si-
multaneously detect both types of anomalies. Despite that, Type II
outlier detection still needs further exploration, so we restrict the
scope of this paper to the second category. Furthermore, none of
these introduced works are conducted in the realm of time-varying
network systems. Therefore, we will make a contribution from this
direction.

3 PROBLEM DEFINITION
In this section, we introduce de�nitions, notations and problem
formulation. Table 1 lists the notations used in this paper.

De�nition 3.1. Dynamic Network. A dynamic network is de-
�ned as a directed network G(t) = {V, E, z(t),w(t)}, where V
denotes the set of vertices, and E ✓ V ⇥ V refers to the set of
directed edges, z is a vertex mapping function:V ! Rdz that maps
vertex i to its dz -dimensional feature vector zi (t) at each time step
t , w is an edge mapping function: E ! R which associates each
edge ei j (from i to j) with a edge-speci�c valuewi j (t) at each time
step t .

Such representation of dynamic networks can be used to de-
scribe a variety of systems in the real world, such as an urban area
consisting of small regions, a �nancial system connecting banks,
and a social network composed of users and institutions. In those
networked systems, we are interested in detecting which units
(e.g., regions, banks and users) are anomalous compared to their
regular norms. Therefore, for each vertex i , we transform edge
attributes into a second view of “vertex attribute” by considering
all edges connected with it, i.e.wi = {w ;w!}T wherew and
w! are features for incoming and outgoing edges. While we focus
on two views capturing node and edge attributes in this work, it
can be generalized into a more generic framework with more views
involved.

De�nition 3.2. Multi-viewMultivariate Time-Series.Amulti-
view multivariate time series can be denoted as {X� ,� = 1, ...,V },
whereV denotes the number of views, and X� 2 Rd�⇥T represents
the time series collected from �-th view. Here d� is the number of
attributes andT is the number of time steps in a time window. Each

Table 1: Notation De�nition.

Notation De�nition

G(t) Attributed dynamic network
X Reference data set
X� Multivariate time-series for view �
d� ,T Feature and temporal dimensions of X�

V Number of views
m Number of reference samples

P� ,Q� Bilinear projection matrices
Y�i Projection in latent space
(Y ⇤,R) Hypersphere (center and radius)
LC Temporal Laplacian matrix
f = � + � + � Objective function
p,q Reduced feature and temporal dimensions
� Slack variable
�1, �2 Penalty and trade-o� parameters in f
��i Weighting parameter in �
d�i j , d̄

�
i Pairwise and average distance

� , � Lagrangian multipliers
L Optimization goal derived by Lagrangian duality
� Kernel function

� Gaussian noise parameter
� Anomaly pollution parameter
� Data imbalance parameter

row of X� records the temporal variation for each attribute, and
each column represents the observation of all attributes at each
time step.

In our case of dynamic networks, the view X 1 corresponds to
the node attribute {z(1), ..., z(T )} 2 Rdz⇥T , and the view X 2 corre-
sponds to {w(1), ...,w(T )} 2 Rdw⇥T . The multi-view multivariate
time-series data captures temporal information for all measure-
ments during each time window T , allowing for discovering anom-
alies that involve temporal irregularities. We formally formulate
our problem as follows.

De�nition 3.3. DynamicMulti-viewAnomalyDetection. For
each vertex in a dynamic network, let X = {X�

i |i = 1, ...,m,� =
1, ...,V } denote a set of historical observations, also called “refer-
ence set”. Herem is the number of samples in each view, so that
there are mV elements in X. Given a new observation {X� |� =
1, ...,V } for this vertex, our goal is to determine whether it is normal
or abnormal in comparison with the reference set X.

4 MULTI-VIEW TIME-SERIES HYPERSPHERE
LEARNING (MTHL)

4.1 Motivation
To approach the above de�ned problem, we �rst need to learn a
good representation of normal patterns from reference data set;
based on the learned representation, we can identify anomalous
cases or measure the strength of anomalousness. Here we note that
several critical points should be carefully considered:
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(1) How to extract the intrinsic patterns for both feature and
temporal information from high dimensional time-series
data;

(2) How to integrate time-series samples from di�erent views
to promote anomaly detection;

(3) How to discriminate normal and anomalous cases accord-
ing to the reference set.

To deal with the �rst challenge, we leverage a bilinear dimen-
sionality reduction approach [22]. Dimensionality reduction has
been widely used in data mining to extract important properties
by �ltering out redundancy and noise. Here we seek to preserve
both feature and temporal structures that are useful for anomaly
detection. Therefore, we learn a pair of bilinear projections to re-
duce feature and temporal dimensionality, respectively. The second
problem requires mitigating the gap between di�erent views and
coordinating information across views. For this purpose, we employ
a strategy in the multi-view learning �eld [9, 13, 22]: assuming that
multi-view data share the same low-dimensional latent subspace.
Finally, for the third question, we leverage support vector data de-
scription (SVDD) [37] with latent space projection to distinguish
abnormal observations from normal ones.

4.2 Objective function
We introduce the objective function, which contains three compo-
nents: reconstruction error from bilinear projection, hypersphere
learning and temporal smoothing regularization.

Reconstruction error.Given a reference set of time-series sam-
ples X = {X�

i |i = 1, ...,m,� = 1, ...,V }, for each view � we seek to
learn a pair of bilinear projections, P� 2 Rd�⇥p and Q� 2 Rd�⇥q ,
to reduce both feature and time dimensionality, where p and q are
the reduced dimensions. For an arbitrary sample X�

i in view � , we
map it into Y�i = P�TX�

i Q
� , where Yi 2 Rp⇥q is the correspond-

ing low-dimensional representation. To force normal samples to
be as close as possible, we impose a strict constraint: all reference
samples share the same low-dimensional representation Y ⇤. To
minimize average reconstruction errors, we have the �rst part in
the loss function:

�(P� ,Q� ,Y ⇤) = �
’
�

’
i

���P�TX�
i Q

� � Y ⇤
���2
F
, (1)

with the constraints:

P�T P� = Ip ,Q�TQ� = Iq ,� = 1, ...,V . (2)

where � is a normalization parameter equal to 1/mV , and the bilin-
ear projections are semi-orthogonal matrices.

Hypersphere learning. Analogous to SVDD [37], after pro-
jecting data into a latent subspace, we try to obtain a compact
hypersphere (Y ⇤,R) via minimizing the radius R:

�(P� ,Q� ,Y ⇤,R) = R2, (3)

with the constraints:
���P�TX�

i Q
� � Y ⇤

���2
F
 R2, i = 1, ...,m. (4)

To deal with the cases where the given reference set includes a
small fraction of anomalies, we revise � as follows:

�(P� ,Q� ,Y ⇤,R, � ) = R2 + �1
’
�

’
i
��i , (5)

with the constraints:

���P�TX�
i Q

� � Y ⇤
���2
F
 R2 + ��i , i = 1, ...,m,� = 1, ...,V , (6)

��i � 0, i = 1, ...,m,� = 1, ...,V . (7)

where the additional slack variables ��i � 0 are added to account
for data outside the boundary, and the positive parameter �1 is to
penalize large distance.

Temporal smoothing regularization. In practice, many sys-
tems that can be described by dynamic networks, tend to slightly
change over time. In fact, temporal �uctuations in many situations
can be considered as an indicator of anomalies. To ensure the local
smoothness, we incorporate a temporal smoothing regularization.
For P�TX� , the t-th column P�TX� (·, t) represents the feature
vector at time step t , and the discrepancy between consecutive time
steps is minimized.

�(P� ) = 1
2

’
t 0,t 00

Ct 0t 00
���P�TX� (·, t 0) � P�TX� (·, t 00)

���2
F

=
’
t 0

P�TX� (·, t 0)Dt 0t 0X
� (·, t 0)T P�

�
’
t 0,t 00

P�TX� (·, t 0)Ct 0t 00X� (·, t 00)T P�

= Tr
⇣
P�TX� (D �C)X�T P�

⌘

= Tr
⇣
P�TX�LCX

�T P�
⌘
,

(8)

where C is a prede�ned matrix with each entry Ct 0t 00 indicating
how much weight is given to penalize the discrepancy between
the t 0-th and t 00-th columns, D is a diagonal matrix with entries
Dt 0t 0 =

Õ
t 00 Ct 0t 00 , LC is the Laplacian matrix associated with C ,

and Tr(·) means the trace of a matrix. Here we de�ne the prior
weighting matrix C in a simple way:

Ct 0t 00 =

(
1, |t 0 � t 00 |  s,

0, otherwise.

In this case, the successive columns in P�X� within s steps are
forced to be similar. In this paper, s is empirically chosen to be 2.
Other more sophisticatedly designed weight matrices can also be
employed.

MTHL Objective function. By putting Eq. (1), (5), (8) together,
we have the following MTHL objective function:
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min
P

f (P) = min
P

�
� + � + �

 

= min
P

(
�
’
�

’
i

���P�TX�
i Q

� � Y ⇤
���2
F

+ R2 + �1
’
�

’
i
��i

+ �2
’
�

’
i
Tr

⇣
P�TX�

i LpX
�
i
T P�

⌘)
,

(9)

subject to Eq. (2),(6) and (7). The set P = {P� ,Q� ,Y ⇤,R, � } is
our optimization goal. In summary, the �rst term is normalized
reconstruction error which encourages samples close to the centroid
Y ⇤, the second term minimizes the volume of hypersphere (Y ⇤,R),
and the third term is a temporal smoothing regularization to prevent
dramatic �uctuations. �2 is the trade-o� parameter that balances
the in�uence of the third term.

4.3 Weighted reconstruction error.
In Eq. (9), the reconstruction error uses a uniform normalization
parameter � , without considering the di�erence among the time-
series in the reference set. However, it is possible that the reference
set might contain a small number of anomalous instances, which we
refer as “anomaly pollution”. To augment the robustness towards
anomaly pollution, we extend the objective function in Eq. (9) by
rewrite � as a weighted reconstruction error:

min
P

f (P) = min
P

(’
�

’
i
��i

���P�TX�
i Q

� � Y ⇤
���2
F

+ R2 + �1
’
�

’
i
��i

+ �2
’
�

’
i
Tr

⇣
P�TX�

i LpX
�
i
T P�

⌘)
,

(10)

where
Õ
�
Õ
i �

�
i = 1.

We assign such ��i by exploiting pairwise distance between sam-
ples in reference data set. We assume that the true normal samples
tend to locate closely to each other, whereas the anomalous ones
tend to be far away from normal clusters. Therefore, we calculate
the pairwise distance (dissimilarity) for each view � via:

d�i j =
���X�

i � X
�
j

���2
F
. (11)

Given an arbitrary vertex i , we can obtain its average distance to
all other samples:

d̄�i =
1

m � 1
’
j,i

���X�
i � X

�
j

���2
F
. (12)

Based on d̄�i , we further de�ne the weighting parameter ��i by the
following exponential function:

��i = �e
� ¯d�i , (13)

where � is a normalization parameter.

5 SOLUTION: TWO-STAGE ALTERNATIVE
OPTIMIZATION ALGORITHM

Eq. (10) is not a jointly convex optimization problem for all variables
P, but if the bilinear projections {P� ,Q� } are �xed, it will become
a traditional convex optimization in terms of {Y ⇤,R, � }. Therefore,
we determine to divide the problem into two alternating stages.
In stage I, we use gradient descent to update {P� ,Q� }; In stage II,
we keep {P� ,Q� } �xed, and employ Lagrange duality theory to
optimize {Y ⇤,R, � }.

Stage I. Gradient descent. We alternately update P� and Q�

by following the rules:

P�  P� � � @ f
@P�
, (14)

Q�  Q� � � @ f
@Q� , (15)

where � is the learning rate. The partial derivatives can be repre-
sented as:

@ f

@P�
= 2

’
i
��i X

�
i Q

� (Q�TX�
i
T P� � Y ⇤T ) + 2�2

’
i
X�
i LpX

�
i
T P� ,

(16)

@ f

@Q� = 2
’
i
��i X

�
i
T P� (P�TX�

i Q
� � Y ⇤). (17)

Stage II. Lagrangian duality. Given a �xed pair of bilinear
projections {P� ,Q� }, we can obtain a set of low-dimensional repre-
sentations Y = {Y�i 2 R

p⇥q |i = 1, ...,m,� = 1, ...,V }. In the shared
space, we do not distinguish views, hence we remove superscript �
and rewrite Y�i ,�

�
i , �

�
i as Y = {Yi |i = 1, ...,mV }, {�i |i = 1, ...,mV }

and {�i |i = 1, ...,mV }. The temporal smoothing regularization �
only depends on P� , it will not be included in this stage. In light of
Lagrangian duality theory, the constraints can be incorporated into
Eq. (10) via Lagrangian multipliers:

L(R,Y ⇤, � ,� , �) =
’
i
�i
��Yi � Y ⇤��2F + R2 + �1

’
i
�i

�
’
i
�i

⇣
R2 + �i �

��Yi � Y ⇤��2F
⌘
�
’
i

�i�i ,
(18)

where �i � 0 and �i � 0 are Lagrangian multipliers. The dual prob-
lem suggests that L should be minimized with respect to {R,Y ⇤, � }
and then maximized with respect to {� , �}:

max
�,�

min
R,Y ⇤,�

L(R,Y ⇤, � ;� , �). (19)

Setting partial derivatives to zeros gives the constraints:
@L
@R
= 0)

’
i
�i = 1, (20)

@L
@Y ⇤

= 0) Y ⇤ =
1
2

’
i
(�i + �i )Yi , (21)

@L
@�i
= 0) �1 � �i � �i = 0. (22)

Re-substituting Eq. (20), (21), (22) into Eq. (18) can result in:
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max
�

L(�) = max
�

(’
i
(�i + �i )�(Yi ,Yi )

� 1
2

’
i, j

(�i + �i )(�j + � j )�(Yi ,Yj )
)
,

(23)

where �(Yi ,Yj ) = Tr(YiYjT ) is our kernel function. To resolve the
quadratic optimization problem in Eq. (23) in terms of � , we apply
the Sequential Minimal Optimization (SMO)-type decomposition
method proposed by Fan et al. [10] that achieves linear convergence.

According to the Kuhn-Tucker conditions for optimality, we have
the following equations:

�i (R2 + �i �
��Yi � Y ⇤��2F ) = 0, (24)

�i�i = 0. (25)
which are equivalent to:

�i = 0, �i = �1 ()
��Yi � Y ⇤��2F  R2, �i = 0, (26)

0 < �i < �1, 0 < �i < �1 ()
��Yi � Y ⇤��2F = R2, �i = 0, (27)

�i = �1, �i = 0 ()
��Yi � Y ⇤��2F � R2, �i � 0. (28)

From the above three scenarios we can see that: most data are
located inside the hypersphere with �i = 0, they make no contribu-
tion. Only those samples with �i > 0 play a role in determining the
hypersphere (so-called “support vectors”). With the solution of � ,
we can calculate Y ⇤ based on Eq. (21), and obtain the radius R by:

R2 = �(Yk ,Yk )�
’
i
(�i+�i )�(Yk ,Yi )+

1
4

’
i j
(�i+�i )(�j+� j )�(Yi ,Yj ),

(29)
for any Yk on the boundary with 0 < �k < �1.

Computational complexity. The whole process for MTHL al-
gorithm is summarized in Table 2. In particular, steps 6-7 describe
Stage I, and steps 10-11 describe Stage II. The loop will continue
until the objective function converges. Inside the loop, the com-
putational cost can be divided into two parts. In stage I, time is
mainly spent on steps 6 and 7, which costsO

�
m · (d�Tq + d�pq +

d�T 2)
�
and O

�
m · (d�Tp + Tpq)

�
for each view � , respectively.

As max(p,q) ⌧ min(d� ,T ), the time for each view � reduces to
O

�
m · (d�T 2 +d�T )

�
. When the sample size is way larger than data

dimensionsm � max(d� ,T ), stage I (steps 6-9) is approximately
linear to the total sample sizeO(mV ) with all views. Similarly, the
mapping process (step 8) also costsO(mV ).

In stage II, the most expensive calculation is step 10, resolving
the quadratic optimization problem. As we employ the SMO-type
decompositionmethod thatmodi�es two elements in� per iteration,
its time complexity heavily depends on the selection of those two
elements, referred to as Working Set Selection (WSS). Fan et al. [10]
propose a WSS technique using second order information, which
has time complexityO(l) where l is sample size (l =mV ). And the
WSS also guarantees linear convergence. To summarize, stage II
does not cost a lot more thanO(mV ).

Provided the estimated linear time complexity in each loop, along
with the fact that our algorithm always converges after several iter-
ations, we come to the conclusion that our method can be applied
in large-scale datasets.

Table 2: MTHL Algorithm.

MTHL Algorithm: Optimize Eq. (10)
Input: Multi-view time-series X� , parameters � , �1, �2, s,p,q,

and maximum iteration maxIter;
Output: Bilinear projections {P� ,Q� }, hypersphere {Y ⇤,R};

1: Normalize time-series samples X� for each view � ;
2: Compute the Laplacian matrix LC using s;
3: Initialize P� , Q� , Y ⇤;
4: For loop iter from 1 to maxIter do
5: /* Stage I: gradient descent */
6: Compute new P� for each � via Eq. (16), orthogonalize it;
7: Compute new Q� for each � via Eq. (17), orthogonalize it;
8: Mapping all X� into the latent space by P�TX�Q� ;
9: /*Stage II: Lagrangian duality*/
10: Optimize Eq. (23) to obtain � ;
11: Calculate objective function f based on Eq. (10);
12: If f converges, do
13: Compute Y ⇤ according to Eq. (21);
14: Compute R according to Eq. (29);
15: return P� ,Q� ,Y ⇤,R;
16: else
17: Continue;
18: end if
19: end for

6 EXPERIMENTS
In this section, we �rst introduce the datasets, performance evalua-
tion, and then report our experimental results.

6.1 Dataset
Synthetic data. We simulate a dynamic network G(t) to produce
synthetic multi-view time-series data. For example, G(t) can be
considered as a city that consists of a set of zones denoted by V ,
and E are edges re�ecting the tra�c, z(t) can represent any location-
speci�c feature, such as a location’s functionalities or topics,w(t)
can be taken as temporal tra�c �ows, and T denotes one day (24
hours). Based on De�nition 3.2, we have {z(1), ..., z(T )} 2 Rdz⇥T
in which each column is snapshot of topic distribution at time t ,
as well as {w(1), ...,w(T )} 2 Rdw⇥T in which each column is the
snapshot of transportations at time t . From z andw , we can form
up two aggregated features: one is aggregated topic vector Z 2 Rdz
by summing up z’s rows, and the other one is aggregated tra�c
vectorW 2 Rdw by summing upw’s rows.

We generate data in three steps: (1) build a network, (2) assign
normal attributes, and (3) insert anomalies. In step (1), we apply a
random graph generator to construct an underlying network struc-
ture; For step (2), we assign normal attributes for each edge and each
vertex. Given an arbitrary vertex, we generate a dz -dimensional
aggregated topic distribution Z from a prede�ned Dirichelet distri-
bution Dir(�z ) and then divide each topic share into T time steps
according to another Dirichelet distribution Dir(�T ). Here Dir(�z )
determines topic distribution while Dir(�T ) determines temporal
separation. Tra�c data are generated by �rst assigning daily �ow
to each edge from a uniform distribution with range [0, 1], and then
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Figure 2: Performances versus anomaly pollution � for three types of anomalies. There are 50 samples in the reference dataset.
Parameters are �1 = 0.1, �2 = 1.0,� = 0.1,� = 20%.
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Figure 3: Performance versus noise strength � for three types of anomalies. There are 50 samples in the reference dataset.
Parameters are �1 = 0.1, �2 = 1.0,� = 8%,� = 20%.

MTHL

EventTree+

LOF

One-Class SVM

NPHGS

50

25

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20
Imbalance (%)

Ka
pp

a

50

25

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20
Imbalance (%)

Ka
pp

a

50

25

0

0.2

0.4

0.6

0.8

1

1 5 10 15 20
Imbalance (%)

Ka
pp

a

(a) AGR=True,TPR=False (b) AGR=False,TPR=True (c) AGR=True,TPR=True

−

−

−

−

−

−

Figure 4: Performances versus data imbalance � for three types of anomalies. There are 50 samples in the reference dataset.
Parameters are �1 = 0.1, �2 = 1.0,� = 8%,� = 0.1.

segmenting the �ow amount into T time steps based on the tem-
poral Dirichelet Dir(�T ). For step (3), we randomly select a subset
of vertices and override the assigned attributes in order to inject
anomalies.

NYC taxi trips and social media data.We obtain a set of New
York City (NYC) taxi trip data from July 2016 to December 2016 1.
Each trip records the detailed information like pick up time, pick
up location, drop o� time and drop o� location etc. In addition, we
also collect Twitter streaming data during the same period of time
(from July 2016 to December 2016).

Due to data sparsity, we limit our analysis to the Manhattan area.
We extract all trips that are relevant to Manhattan (pick up or drop
o� in Manhattan), and �lter out all geo-tagged tweets posted in

1www.nyc.gov/html/tlc/html/about/tri_record_data.shtml

this area. In total, there are more than 41 million trips, and about
11 million tweets. Based on administrative boundaries, Manhattan
borough can be partitioned into 69 zones (taken as vertices), and
the taxi trips are used to construct directed edges. Tweets are al-
located into corresponding zones by coordinate information (i.e.,
longitude and latitude), so that zone-speci�c topic distribution can
be obtained. Topic distribution and taxi trip constitute two di�erent
views for mining normal patterns and detecting anomalous phe-
nomena. Finally, we divide a day into 6 slices (4 hours per slice),
and obtain two types of multivariate time-series samples.

6.2 Performance Evaluation
Baselinemethods.We compare our MTHL algorithm with the fol-
lowing approaches: One-Class Support Vector Machines (One-Class

www.nyc.gov/html/tlc/html/about/tri_record_data.shtml
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SVM) [34], the Local Outlier Factor (LOF) [4], Non-Parametric Het-
erogeneous Graph Scan (NPHGS) [6] and EventTree+ [33]. Among
them, One-Class SVMand LOF are two domain-independentmethod-
ologies as they take common feature vectors as inputs. In our case,
we construct the feature vectors by combining both vertex and edge
attributes. NPHGS and EventTree+ are two existing state-of-the-
art event detection algorithms that operate on dynamic networks.
Both of them de�ne events as subgraphs. NPHGS detects events
by �nding a connected subgraph that optimizes a nonparametric
scan statistic. Although NPHGS is designed for heterogeneous net-
works, the algorithm can also be employed in homogeneous ones
[6]. Besides, EventTree+ detects events through �nding a compact
subset of vertices that have short distances but high activity level.
To apply this algorithm to our synthetic data, we set the distances
between all pairs of vertices as 1, and compute the dissimilarity of
the current feature vector with the average vector of reference data
as node activity level.

Evaluation matrics. The study focuses on detection of three
types of anomalies: Type I anomaly only involves changes in ag-
gregated attributes while temporal feature is normal (AGR=True,
TPR=False), Type II anomaly only involves changes in temporal at-
tributes but aggregated features are constant (AGR=False, TPR=True),
and Type III anomaly involves changes in both types of attributes
(AGR=True, TPR=True). In the �eld of anomaly detection, data is
usually highly imbalanced (a small number of outliers). Therefore,
in this paper we choose to use Kappa statistic as evaluation ma-
tric. Kappa statistic is a comparison of the overall accuracy to the
expected random chance accuracy:

Kappa =
(accuracy � expected accuracy)

1 � expected accuracy
. (30)

Positive value implies that the proposed algorithm performs better
than random guessing, while negative value shows the other way
around.

6.3 Experimental Results
We study MTHL’s performance from three aspects: performance
versus anomaly pollution, performance versus noise, and perfor-
mance versus data imbalance. The degree of anomaly pollution is
denoted as � to indicate the percentage of abnormal samples in
the reference data. The strength of noise is denoted by � which
is the Gaussian deviation. Data imbalance � is measured by the
percentage of anomalies we have injected in the networks.

Performance versus anomaly pollution. We �rst examine
the performance of MTHL and baselines in terms of anomaly pol-
lution. Figure 2(a-c) show the comparison results for three types
of anomalies. Bar chart represents average value and error bars
represent standard deviation. Each result is obtained from 100 trials
(10 networks and 10 trials per network). Generally, MTHL algo-
rithm has the highest Kappa statistic (nearly 1 when �  8%) over
all baseline methods across all types of anomalies. In particular,
the baselines have limited capabilities in terms of Type II anomaly
detection, in contrast, our proposed MTHL algorithm can give very
promising results. Among all methods, NPHGS obtains negative
Kappa statistic (worse than random guessing). The reason is that,
NPHGS needs a large number of historical records to obtain good
results, but in our case only 50 instances are provided. Additional
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Figure 5: Parameter sensitivity of �1 (a) and �2 (b). The re-
sults are obtained under the Type II case with a balanced
dataset. The other parameter are set as � = 4.0,� = 6%,� =
50%.

experiments show that if we increase the volume of the reference
dataset, NPHGS will exhibit better performance. This observation
highlights another advantage of our method, i.e., it only requires a
small number of historical records to give satisfactory results.

Performance versus noise.We also examine the robustness of
di�erent methods towards noise. The comparison result is shown in
Figure 3. Similarly, MTHL outperforms all other baselines under all
cases. In particular, its superiority is more prominent under Type
II situation. When � becomes larger than 0.9, EventTree+, LOF
and One-Class SVM become nearly equivalent to random guessing,
whereas our MTHL approach still shows great advantage with
approximately 0.75 Kappa value.

Performance versus data imbalance. As in many applica-
tions, anomalies tend to exist for only a small fraction. Hence, we
seek to examine MTHL’s performance in dealing with imbalanced
data. Figure 4 provides the comparison results in terms of di�erent
imbalance levels. It reveals that it is more di�cult for MTHL and
baselines to cope with highly imbalanced data (for the case of 1%
anomalies). But in general, MTHL still obtains better detection accu-
racy than all other baselines, and such superiority is more evident
in Type II case.

Parameter sensitivity. In our model, there are two major pa-
rameters �1 and �2. The �rst one �1 controls the strength of penalty
we impose on anomalies in the reference data; the second parame-
ter �2 controls the in�uence of temporal smoothing regularization.
Figure 5 shows the sensitivity of two parameters under Type II case
with balanced data. We jointly present precision and recall. From
the �gure, we can observe that decreasing �1 induces signi�cant
decline in precision, while increasing �1 results in signi�cant drop
in recall. This phenomenon can be well explained. If the �1 is set
too large, the samples would to be forced to be inside the hyper-
sphere and the radius R would be very large. In this way, MTHL
is more likely to take true anomalies as normal samples and thus
obtains a low recall value. One the other hand, if �1 is set too small,
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Table 3: Runtime Results.

Method Train Time (sec) Test Time (sec)

MTHL 78.60 (±8.33) 0.007 (±6 ⇥ 10�4)
EventTree+ 0.32 (±0.08) 238.18 (±22.87)
NPHGS 150.17 (±33.37) 3.05 (±0.68)

One-Class SVM 0.016 (±1 ⇥ 10�3) 0.067 (±5 ⇥ 10�4)
LOF 0.14 (±4 ⇥ 10�3)

there is nearly no penalty e�ect on samples located outside the
hypersphere and a small radius R is learned. With a small radius R,
MTHL would probably take true normal samples as abnormal ones,
and thus obtains a low precision. To balance the e�ect of precision
and recall, we choose �1 = 0.1 in our algorithm. In terms of �2,
we also observe mixed results. In a similar way, we select a value
�2 = 1.0 by jointly considering precision and recall performance.
In addition, we �nd that if �2 is less than 1.0, the convergence time
would signi�cantly increase to a higher level. This observation also
validates our choice of �2 = 1.0.

Runtime results. Table 3 shows the runtime comparison be-
tween our MTHL and baseline methods. In particular, we report
training and test runtime separately for each method (except for
LOF). For MTHL, training time refers to the time spent on hyper-
sphere learning using the reference dataset, and test time refers to
the time used to decide whether a new observation is abnormal or
not. It reveals that MTHL can make a very fast decision within one
millisecond. This observation is crucial because many applications
require timely and fast decision making. In contrast, EventTree+
spends much more time (nearly 4 minutes) in test stage. Although
NPHGS costs little time to test new observations, it costs twice as
much time as MTHL in the training stage. Actually, in the training
stage, NPHGS needs to calculate empirical p-values by compar-
ing the current observation to each historical record. That means
NPHGS runtime is highly dependent on the size of the reference
dataset. One-Class SVM and LOF are two fast approaches, taking
the least total time in the anomaly detection process. To summa-
rize, our proposed algorithm can obtain the best performance by
spending the comparable least time like One-Class SVM and LOF.

Case study in real-world data. In Figure 6, we show two im-
portant events occurred in Manhattan: (a) Post-Election Day on
November 10, 2016 and (b) New Year’s Eve on December 31, 2016.
In each example, we shows the anomalous zones detected by our
proposed algorithm MTHL (left panel) and by EventTree+ (right
panel). As MTHL can output anomaly scores, we use dark color
to indicate a large value. For EventTree+ algorithm, we integrate
tra�c and topic features into one single vector, and consider each
zone’s dissimilarity to its regular norm as the so-called attribute
“activity level”. Unlike MTHL, it outputs binary labels. For both
methods, we take the preceding 30 days as a basis to construct
reference dataset.

Figure 6(a) shows the anomalous regions detected for the post-
election day (November 10, 2016). Donald Trump was elected to
be the 45th president of the United States on November 9, 2016.
Trump’s victory sparked nationwide Anti-Trump protests during

the following days 2. Trump’s opponents either took the street
or turned to social media to express their opposition to Trump’s
policies. By comparison, we can see that MTHL obtains more mean-
ingful detection results. In speci�cally, MTHL (left panel) suggests
that Midtown Center, Midtown East, Upper Manhattan and Green-
wich Village exhibit anomalous activities. Considering that those
zones are either near to Trump real estate or the places where uni-
versities and colleges are located (marked on maps), anomalous
behaviors are more likely to emerge. However, EventTree+ (right
panel) fails to detect those critical zones.

Figure 6(b) shows the anomalous regions detected for the New
Year’s Eve (December 31, 2016). MTHL (left panel) tells that Times
Square and the nearby zones seem to be anomalous. This observa-
tion is probably related to the traditional event “Ball Drop” held at
Times Square (marked on map) every year. It is reported that an
estimated one million people gather in Times Square to celebrate
the festival and watch musical performances at that night 3. This
large-scale gathering of people would in�uence the tra�cs in neigh-
boring areas; therefore, we can observe anomalous phenomena in
Midtown Manhattan and Upper East Side. In contrast, EventTree+
(right panel) considers half of Manhattan area as anomalous zones,
which provides less practical value.

To summarize, the two events in New York City have demon-
strated that our proposed MTHL can obtain reliable and meaningful
detection results, which suggests its potential application in a real-
world domain.

7 CONCLUSIONS
In this paper, we develop a novel MTHL framework for anomaly de-
tection in dynamic networks. Compared to traditional techniques,
our proposed MTHL has prominent superiority in detecting events
that involves anomalous temporal dynamics. Our work highlights
the necessity of the extraction of temporal patterns, and the ex-
ploitation of multiple data sources. As part of future work, we plan
to relax the assumption that the streaming data can be partitioned
into short, periodic and well-aligned temporal segments having
similar patterns. Instead, we seek to mine the evolution pattern in
the in�nite time span in order to detect more potential anomalies.
In addition, we plan to incorporate the interplay among individual
objects (e.g., vertices or edges) into analysis, so as to detect large-
scale anomalies across regions or to predict anomaly spreading in
networks.
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