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ROBUST SUBGROUP IDENTIFICATION

YINGYING ZHANG∗, HUIXIA JUDY WANG∗∗, ZHONGYI ZHU∗

Fudan University∗, The George Washington University∗∗

Abstract: In many applications, subgroups with different parameters may exist even after

accounting for the covariate effects, and it is important to identify the meaningful sub-

groups for better medical treatment or market segmentation. We propose a robust sub-

group identification method based on median regression with concave fusion penalizations.

The proposed method can simultaneously determine the number of subgroups, identify the

group membership for each subject, and estimate the regression coefficients. Without re-

quiring any parametric distributional assumptions, the proposed method is robust against

outliers in the response and heteroscedasticity in the regression error. We develop a con-

venient algorithm based on local linear approximation, and establish the oracle property

of the proposed penalized estimator and the model selection consistency for the modified

Bayesian information criteria. The numerical performance of the proposed method is as-

sessed through simulation and the analysis of a heart disease data.

Key words and phrases: Concave fusion penalization; Heterogeneous parameters; Median

regression; Model-based clustering; Robust.
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1. Introduction

Most statistical modeling relies on a common assumption that the same set of

model parameters apply to all subjects. However, in some applications, there

may exist different parameters in subgroups even after accounting for the co-

variate information. Mixture models have been widely used for identifying sub-

groups from a heterogeneous population; see for instance Banfield and Raftery

(1993), Hastie and Tibshirani (1996), McNicholas (2010), Wei and Kosorok

(2013), Shen and Huang (2012), Chaganty and Liang (2013) and Shen and He

(2015). One advantage of mixture models is that they provide a formal and con-

venient model framework, and thus can easily incorporate the covariate effects of

different forms. However, most mixture-model-based approaches require speci-

fying the number of components, and the underlying distribution for each com-

ponent, for which the most popular choice is normal distribution giving rise to

normal mixture models. It’s well known that testing for the number of compo-

nents in mixture models is technically challenging due to the nonidentifiability

of parameters under the null hypothesis; see Zhu and Zhang (2004), Chen and Li

(2009), Li and Chen (2010), Kasahara and Shimotsu (2015), Shen and He (2015)

for some related discussions. On the other hand, the normality assumption for

normal mixture models may be restrictive or susceptible to outliers.

In this paper, we develop a new robust approach that can automatically de-
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tect and identify subgroups through pairwise fused penalization. Let yi be the

scalar response variable and xi the p-dimensional covariate associated with sub-

ject i, where i = 1, . . . , n. We consider the following median regression model,

yi = αki + xT
i β + εi, i = 1, . . . , n, (1.1)

where β is the unknown slope coefficient vector, εi are independent random

errors such that P (εi < 0|xi) = 1
2
, ki ∈ {1, . . . , K} is the unknown group

membership of subject i, and αk is the group-specific intercept for k = 1, . . . , K.

Throughout the paper, the number of groups, K, is assumed to be unknown and

bounded, and p is allowed to increase with n but we suppress its dependence

on n for notational simplicity. In model (1.1), we assume that the population is

heterogeneous in terms of location after accounting for the covariate effect, but

the proposed method can also be easily extended to identify the heterogeneity in

slopes with some modification.

We propose a median-based penalization approach through penalizing the

pairwise differences of intercept coefficients across subjects. The proposed method

can identify subgroups, determine K, and estimate the parameters β and αk si-

multaneously. The idea of using penalization for clustering has been consid-

ered in Hocking (2011), Pan and Shen (2013), Chi and Lange (2015), and Wu

and Shen (2016), to name a few. The closest literature with our model (1.1)
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is Ma and Huang (2017). Compared to Ma and Huang (2017), this paper has

the following major differences and advances. First, by considering the median

regression model (1.1), our method is based on L1 loss and allows the errors

to be heavy-tailed or dependent of xi, and thus provides more flexibility and

robustness against outliers. The nice properties of L1 distance for heavy-tailed

distributions have been studied in the classification setup in Hall et al. (2009).

Second, we develop a convenient algorithm through local linear approximation

(LLA, Zou and Li (2008)) to deal with L1 loss and concave penalties. At each

step of the iteration, the optimization becomes a linear programming problem

and can be solved easily with existing software. As a result, this method en-

ables more efficient initial values and leads to much faster convergence than

the alternating direction method of multipliers (ADMM) algorithm in Ma and

Huang (2017). We also suggest a divide-and-conquer algorithm to further re-

duce the computational burden for data with large n. Third, we establish the

oracle property of the proposed estimator without the restrictive distributional or

moment conditions on the random errors as required in Ma and Huang (2017).

The oracle property shows that the oracle estimator (obtained with correct group

membership) is a local solution of the proposed median regression with fused

penalization, indicating that the method can identify the correct subgroups with

high probability. Lastly, we propose a modified Bayesian information criterion
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(BIC) to choose the penalization parameter, and establish its consistency.

The proposed method can be regarded as an unsupervised learning or a

model-based clustering method, which performs grouping pursuit of subject-

specific intercepts through penalization. Unlike supervised learning, the method

does not model the characteristics of subgroups, so the estimation cannot be di-

rectly used to predict the group membership of new subjects. On the other hand,

the method is more data adaptive and assumption-lean since it does not require

specifying a parametric model for the grouping probability as in e.g. Shen and

He (2015). In practice, we can apply the proposed method as a first step to

obtain some assumption-lean clustering, and then use the clustering results as

responses to perform binary or multinomial regression to characterize the sub-

groups by a given set of variables. Such two-step analysis has also been consid-

ered in Dusseldorp et al. (2010) for subgroup identification in clinical trials and

Müllensiefen et al. (2017) for marketing segmentation.

The rest of this paper is organized as follows. In Section 2, we present the

L1-based penalization estimator, and describe the proposed algorithm. In Sec-

tion 3, we state technical assumptions and establish the asymptotic property of

the proposed estimator as well as the modified BIC for tuning parameter selec-

tion. We assess the finite sample performance of the proposed method through

simulation in Section 4 and a real data analysis in Section 5. Technical proofs
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are given in the online supplementary file.

2. Proposed Method

2.1 Penalized Estimator

Throughout the paper, we denote µi
.
= αki as the intercept for subject i, where

ki is the unknown group membership, and let µ = (µ1, . . . , µn)
T . We define the

proposed penalized estimator of (µ,β) as

(µ̂, β̂) = argmin
µ,β

1

n

n∑
i=1

|yi − µi − xT
i β|+

∑
1≤i<j≤n

pλ(|µi − µj|), (2.1)

where the first term on the right is the L1 (least absolute deviation) loss function,

and pλ(·) is the penalty function associated with a positive tuning parameter λ.

With the L1 loss, one natural choice of the penalty function is the L1 penalty

pλ(β) = λ|β|, for which the optimization can be easily solved by using linear

programming. However, it is known that the L1 penalty does not lead to con-

sistent variable selection without proper assumptions; see Zhao and Yu (2006)

and Leng et al. (2006). Particularly, the L1 penalty tends to overshrink nonzero

pairwise differences |µi − µj|, leading to an overestimation of the number of

subgroups. On the other hand, adaptive weights can be incorporated in the L1

penalty to reduce the bias (Zou, 2006), but the weights are difficult to estimate
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in our setup. Therefore, we consider two commonly used concave penalties, the

smoothly clipped absolute deviations penalty (SCAD) of Fan and Li (2001), and

the minimax concave penalty (MCP) of Zhang et al. (2010), which can produce

unbiased estimates and thus are more suitable for identifying subgroups. For a

given λ > 0, the SCAD penalty is defined as

pλ(|β|) = λ|β|I(0 ≤ |β| ≤ λ) +
aλ|β| − (β2 + λ2)/2

a− 1
I(λ ≤ |β| ≤ aλ)

+
(a+ 1)λ2

2
I(|β| > aλ), for some fixed a > 2,

and the MCP penalty is defined as

pλ(|β|) = λ(|β| − β2

2aλ
)I(0 ≤ |β| ≤ aλ) +

aλ2

2
I(|β| > aλ),

for some fixed a > 1.

The penalty in (2.1) will shrink some of the pairs µi − µj to zero. We can

then partition the sample into subgroups based on the penalized estimator µ̂j .

Let {α̂1, . . . , α̂K̂} be the distinct values of µ̂i’s, where K̂ is the number of unique

µ̂i’s. Let Ĝk = {i : µ̂i = α̂k, 1 ≤ i ≤ n}, 1 ≤ k ≤ K̂. Then {Ĝ1, . . . , ĜK̂}

constitutes a partition of {1, . . . , n}.

At a first glance, the proposed method with fused penalty looks similar to
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the pursuit of homogeneous covariate effects in regression settings, such as the

fused Lasso in Tibshirani et al. (2005), the octagonal shrinkage in Bondell and

Reich (2008), and the grouping pursuit in Shen and Huang (2012), to name a few.

However, the aims are essentially different; we focus on identifying subgroups

of subjects with homogeneous intercept µi while these works used penalization

to group p coefficients (β1, . . . , βp) to identify predictors with common effects.

Our aim is also different from those in Raftery and Dean (2006), Gupta and

Ibrahim (2007), Khalili and Chen (2007), which focused on the selection of

variables for model-based clustering.

2.2 Basic Computing Algorithm

Local linear approximation. We propose an algorithm based on local linear

approximation (LLA, Zou and Li (2008)) to minimize the objective function

involving both L1 loss and concave penalty. Specifically, we regard µi − µj as

an indivisible whole and approximate
∑

i<j pλ(|µi − µj|) by local linearization.

Let µt−1
i denote the estimates of µi obtained at the (t − 1)-th iteration. At the

t-th iteration, we update the coefficients by solving

argmin
µ,β

1

n

n∑
i=1

|yi − µi − xT
i β|+

∑
i<j

ω
(t−1)
ij |µi − µj|, (2.2)
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where ω
(t−1)
ij = p′λ(|µt−1

i − µt−1
j |) ≥ 0 denote the weights, and p′λ(·) is the

derivative of pλ(·) with p′λ(0+) set as λ. The LLA algorithm is claimed to con-

verge when the weights ω
(t)
ij stabilize, namely when

∑
1≤i<j≤n(w

(t−1)
ij − w

(t)
ij )

2

becomes sufficiently small.

With the LLA, at each iteration, the optimization in (2.2) is a standard linear

programming problem and thus can be easily solved with any existing linear

programming algorithm. In our implementation, we use data augmentation to

reformulate (2.2) as a simple weighted median regression problem.

Below we illustrate the idea of data augmentation to solve (2.2) with weights

ωij . Denoting all the parameters as δ = (µ1, · · ·, µn, β1, · · ·, βp)
T , we can rewrite

the objective function in (2.2) equivalently as

n∑
i=1

|yi − µi − xT
i β|+

∑
i<j

nωij|µi − µj|

=
n∑

i=1

|yi − (eT
i ,x

T
i )δ|+

∑
i<j

|0− (nwij(ei − ej)
T , 0T

p )δ|,

where ei denotes a n-dimensional vector with the i-th element one and else

zero. Let W̃ denote a n(n − 1)/2 × n matrix that consists of (wij(ei − ej)
T )

for 1 ≤ i < j ≤ n. That is, W̃ =
(
w12(e1 − e2), . . . , w1n(e1 − en), w23(e2 −

e3), . . . , wn−1,n(en−1 − en)
)T

. To minimize (2.2), we only need to fit median

regression using the augmented dataset {(ỹl, x̃l), l = 1, . . . , n + n(n − 1)/2}
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with (ỹl, x̃
T
l ) = (yl, (e

T
l ,x

T
l )) for l = 1, · · · , n, and (ỹl, x̃

T
l ) = (0, nw̃T

l−n, 0T
p )

for l = n+ 1, · · · , n+ n(n− 1)/2, where w̃j is the jth row of W̃.

The augmented design matrix is sparse with many zeros even though the di-

mension may appear daunting. Therefore, we can solve the minimization prob-

lem by using the sparse Frisch-Newton interior algorithm, implemented by the

“rq.fit.sfn” function in the R package quantreg, which reduces the computational

time to be proportional to the number of nonzero elements in the design matrix.

Our numerical investigation shows that the proposed LLA algorithm is much

faster than the ADMM algorithm considered in Ma and Huang (2017) especially

for models with heavy-tailed or covariate-dependent errors.

Choice of the tuning parameter. The tuning parameter λ controls the strength

of penalization. In practice, we can choose λ by minimizing the following mod-

ified Bayesian information criterion,

BIC{δ̂(λ)} = log

{
n−1

n∑
i=1

|yi − µ̂i(λ)− xT
i β̂(λ)|

}
+ |Ŝλ|φn, (2.3)

where δ̂(λ) = (µ̂1(λ), . . . , µ̂n(λ), β̂(λ)
T )T is the penalized estimator and Ŝλ is

the resulting model associated with the tuning parameter λ, |Ŝλ| = K̂(λ) + p

measures the size of the model with K̂(λ) as the estimated number of subgroups,

and φn is some positive sequence that goes to zero. Our numerical studies sug-
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gest that φn = c log log(n) log(n+ p)/n with c ∈ [1, 5] provides a good choice.

We shall establish the validity of this tuning parameter selector in Section 3.

Initial values. The optimization problem depends on the choice of initial values.

We propose to use the following Lasso estimator as initial values,

argmin
µ,β

1

n

n∑
i=1

|yi − µi − xT
i β|+

∑
i<j

λ∗|µi − µj|, (2.4)

where λ∗ is a small tuning parameter to avoid over shrinkage. As discussed

earlier, even though the Lasso estimator does not have nice properties of those

based on concave penalties, its computation is much simpler since the estimator

can be obtained directly by median regression through data augmentation with-

out any iteration. Our numerical studies show that this Lasso estimator provides

good initial values, which leads to quick convergence of the LLA algorithm.

Remark 1. This fused penalty term in the objective function (2.1) involves total

n(n − 1)/2 pairs of differences, so the basic algorithm can become computa-

tionally intensive for large samples. We suggest to modify it using a divide-and-

conquer idea for massive data analysis. In the first stage, we divide the data into

H subsamples randomly. For each subsample, we apply the pairwise penaliza-

tion algorithm with a small tuning parameter to cluster subjects into subgroups.

In the second stage, we perform another pairwise penalization to further merge
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these subgroups identified in the first stage.

3. Asymptotic Properties

In this section, we will first establish the theoretical properties of the proposed

pairwise penalized estimator. Under some regularity conditions, we show that

the set of local minimizers of the proposed penalized objective function (2.1)

covers the oracle estimator, obtained with known group membership as a priori,

with probability approaching one.

Let So = {Gk, k = 1, · · · , K0} denote the true group structure, where Gk

denotes the set of samples from group k and K0 is the true number of groups. In

the ideal case where So is known in advance, we can estimate (α1, . . . , αK0 ,β)

by the oracle estimator defined as

(α̃1(So), . . . , α̃K0(So), β̃(So)) = argmin
α1,...,αK0

,β

1

n

K0∑
k=1

∑
i∈Gk

|yi − αk − xT
i β|, (3.1)

where αk = µi for i ∈ Gk is the common intercept for the kth group. Denote

α = (α1, . . . , αK0)
T , Z = {zik} as a n×K0 matrix with zik = 1 for i ∈ Gk and

0 otherwise, and zi as the ith row of Z. Then we can rewrite (3.1) as

(α̃(So), β̃(So)) = argmin
α,β

1

n

n∑
i=1

|yi − zTi α− xT
i β|. (3.2)
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Consequently we can define the oracle estimator of µ = (µ1, . . . , µn)
T as µ̃(So) =

(µ̃1(So), . . . , µ̃n(So))
T with µ̃i(So) = α̃k(So) for i ∈ Gk. The oracle esti-

mator is denoted as δ̃(So) = (µ̃1(So), . . . , µ̃n(So), β̃(So)
T )T . In addition, let

Gmin = min1≤k≤K0 |Gk| and Gmax = max1≤k≤K0 |Gk|, where |Gk| denotes the

number of elements in group Gk, and X = (xT
1 , . . . ,x

T
n )

T . We assume the fol-

lowing regularity conditions.

C1. (i) There exists some positive constants M1,M2 such that |xij| ≤ M1, and

E(x4
ij) ≤ M2, ∀1 ≤ i ≤ n, 1 ≤ j ≤ p. (ii) There exists some positive constants

C1 and C2 such that C1 ≤ λmin[n
−1(Z,X)T (Z,X)] ≤ λmax[n

−1(Z,X)T (Z,X)] ≤

C2, where λmin(·) and λmax(·) denote the smallest and largest eigenvalues of a

matrix, respectively.

C2. The conditional distribution of εi given (zi,xi), denoted by Fi(·|zi,xi), has

a continuous density fi(·|zi,xi), which is uniformly bounded away from zero

and infinity in the neighborhood of zero across i.

C3. The number of parameters satisfies p = O(nc1) for some 0 ≤ c1 < 1/3.

C4. Let bn = mini∈G
k
′ ,j∈Gk,k

′ �=k |µ0i−µ0j| be the minimal difference of the com-

mon intercepts between two groups, where µ0i is the true value of µi. There exist

some positive constants c2 and M3 such that 2c1 < c2 ≤ 1 and n(1−c2)/2bn ≥ M3.

Assumption C1 poses some boundedness condition on the design. In our

model setup, ZTZ = diag(|G1|, . . . , |GK0 |). Note that λmin[(Z,X)T (Z,X)] ≤
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min{λmin(Z
TZ), λmin(X

TX)} and λmax[(Z,X)T (Z,X)] ≥ max{λmax(Z
TZ),

λmax(X
TX)}. Therefore, C1 (ii) indicates that Gmin/n ≥ C1 and Gmax/n ≤ C2,

which together with the fact that K0Gmin ≤ n ≤ K0Gmax implies that 1/C2 ≤

K0 ≤ 1/C1. Condition C2 is standard in median regression, and it is more

relaxed than the Gaussian and sub-Gaussian error condition assumed in Ma and

Huang (2017). In C3, we assume that p = O(nc1), allowing p to increase with

the sample size. Condition C4 requires the smallest signal not decay too fast, and

similar conditions are commonly assumed in high dimensional sparse regression.

The following Theorem shows that the oracle estimator is a local minimizer

of the proposed penalized objective function with probability approaching one.

To account for the nonsmooth loss function and the nonsmooth and nonconvex

penalty function involved in (2.1), we apply Lemma 2.1 in Wang et al. (2012),

which gives a sufficient local optimization condition for the difference convex

program based on the subdifferential calculus.

Theorem 3.1. Let Bn(λ) be the set of local minimizers of (2.1) with either the

MCP or SCAD penalty with tuning parameter λ. Suppose that conditions C1-C4

hold, λ = o(n−(1−c2)/2) and nλ|Gmin| → ∞, then the oracle estimator δ̃(So)

satisfies P{δ̃(So) ∈ Bn(λ)} → 1 as n → ∞.

We next study the properties of the modified BIC for tuning parameter se-

lection by establishing its consistency for model selection. For any candidate
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model S with K groups, we define the modified BIC as

BIC{δ̃(S)} = log

{
n−1

n∑
i=1

|yi − µ̃i(S)− xT
i β̃(S)|

}
+ |S|φn, (3.3)

where δ̃(S) = (µ̃1(S), . . . , µ̃n(S), β̃(S)
T )T is the unpenalized estimator ob-

tained under model S. Here BIC{δ̃(S)} is based on the unpenalized estimator

obtained by minimizing the L1 loss function under the candidate model S, while

BIC{δ̂(λ)} in (2.3) is based on the penalized estimators obtained by minimiz-

ing (2.1) with the tuning parameter λ. Under conditions C1-C4, and additional

conditions C2+ and C5 in the supplement, we obtain the following theorem.

Theorem 3.2. Assume that C1-C4, and C2+ and C5 spelled in the online sup-

plement hold. For any sequence φn → 0 satisfying log(n + p)/n = o(φn), we

have

P
(

inf
S �=So,|S|<KU+p

BIC{δ̃(S)} > BIC{δ̃(So)}
)
→ 1,

where KU ∈ (K0,∞) is the upper bound for the number of groups.

Remark 2. At a given λ, let Ŝλ denote the model corresponding to the penal-

ized estimator δ̂(λ). By definitions, BIC{δ̂(λ)} ≥ BIC{δ̃(Ŝλ)} since the

penalized and unpenalized estimators correspond to the same model but the lat-

ter minimizes the L1 loss function. In addition, Theorem 3.1 implies that, with

high probability, the oracle estimator δ̃(So) can be produced by some λo on the
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solution path, so BIC{δ̂(λo)} = BIC{δ̃(So)}. Therefore, by Theorem 3.2, for

any λ not inducing the oracle model, we have BIC{δ̂(λ)} ≥ BIC{δ̃(Ŝλ)} >

BIC{δ̃(So)} = BIC{δ̂(λo)}. This suggests that the modified BIC in (2.3) is

consistent for tuning parameter selection.

4. Simulation

In this section, we use three examples to assess the finite-sample performance of

the proposed method based on the SCAD penalty with a = 3.7. The method with

MCP gives similar results and thus is omitted. For comparison, we also include

the mean-based penalization method from Ma and Huang (2017) based on the

SCAD penalty and ADMM algorithm. We consider four different metrics: (1)

MAEµ: the mean absolute error for the intercept estimate, defined by MAEµ =

n−1
∑n

i=1 |µ̂i − µi|; (2) MAEβ: the mean absolute error for the slope estimate,

defined by MAEβ =
∑p

j=1 |β̂j − βj|/p; (3) ¯̂
K and ˜̂

K: the average and median

number of identified subgroups across simulation, respectively; and (4) RI: the

rand index. The rand index is commonly used in clustering analysis to measure

the percentage of correct decisions of a clustering algorithm, and is defined as

RI =
TP + TN

TP + FP + FN + TN
,
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where TP (true positive) means the number of pairs of subjects in different sub-

groups that are assigned to different clusters, TN (true negative) denotes the

number of pairs from the same subgroup that are assigned to the same cluster,

FN (false negative) denotes the number of pairs from the same subgroup that are

assigned to different clusters, and FP (false positive) is the number of pairs from

different subgroups that are assigned to the same cluster. Higher values of the

rand index indicate better agreement of the identified clusters with the true group

allocation. For all examples, the simulation is repeated 100 times.

Example 1. The data are generated from yi = µi+xT
i β+εi, i = 1, . . . , n = 100,

where xi = (xi1, . . . , xi5)
T , µi = 1 with probability πi = exp(−0.5xi1−0.5xi6),

µi = −1 with probability 1 − πi, and βj = 1 for j = 1, . . . , 5. The covariates

xij are generated independently from the standard normal distribution as well as

xi6. We consider three cases for generating εi. Case 1 (homoscedastic normal):

εi = 0.5εi with εi
i.i.d.∼ N(0, 1). Case 2 (heavy-tailed): εi

i.i.d.∼ 0.5t(3). Case 3

(heteroscedastic normal): εi = Φ(xi1)εi with εi
i.i.d.∼ N(0, 1), where Φ(·) is the

distribution function of N(0, 1).

Table 1 summarizes the simulation results of the proposed median method

and the mean method in Ma and Huang (2017) in Cases 1–3 from Example 1.

For the median regression, we use λ∗ = O(n−3/2) to obtain the initial values,

and choose the penalization parameter λ by minimizing the BIC in (2.3) with
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(heteroscedastic normal): εi = Φ(

N(0

= 0
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distribution function of

Table 1 summarizes the simulation results of the proposed median method

and the mean method in Ma and Huang (2017) in Cases 1–3 from Example 1.

(heteroscedastic normal):
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φn = c log log(n) log(n + p)/n. We report the results for the median method

based on c = 1, 5 and 10. The last two columns of Table 1 give the average com-

puting time (in seconds) of different methods with the chosen λ, using R (ver-

sion 3.3.2) on a 2.70GHz laptop, and the average number of iterations needed

for convergence. Quantities in parentheses denote the standard errors and those

in square brackets denote the ranges. For Case 1 with homoscedastic normal er-

rors, the mean method performs slightly better than the median method in terms

of RI and MAE. However, for models with heavy-tailed errors (Case 2) and het-

eroscedastic errors (Case 3), the median-based method shows clear advantages;

it gives competitive RI and K̂ closer to the truth, while the mean method often

leads to larger models. In addition, the proposed algorithm is computationally

much more efficient than the ADMM algorithm in Ma and Huang (2017). Our

numerical study shows that in general the median method with c ∈ [1, 5] gives

quite consistent results, while c = 10 tends to underestimate K leading to lower

RI. Therefore, we focus on c = 5 in the following analyses.

Example 2. We consider a setting with three subgroups. The data is generated

from yi = µi + xT
i β + εi, i = 1, . . . , n = 150, where xi = (xi1, . . . , xi5)

T

and β are the same as in Example 1. Let µi = −2 with probability πi1 =

exp(−0.5xi1 − xi6), µi = 0 with probability πi2 = exp(−0.5xi2 − xi7) and

µi = 2 with probability πi3 = 1 − πi1 − πi2, where xi6 and xi7 are independent
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Table 1: Estimation results of the median and mean methods for Cases 1–3 in
Example 1 with different choices of c used in BIC for determining the penaliza-
tion parameter.

Case Method RI ¯̂
K

˜̂
K MAEµ MAEβ Time (s) Iteration

1

Median 0.83 2.09 2 0.29 0.10 1.38 3.64
(c = 1) (0.07) (0.32) (0.11) (0.04) [0.98,3.00] [3,8]
Median 0.83 2.00 2 0.29 0.10 1.36 3.53
(c = 5) (0.07) (0.14) (0.11) (0.04) [1.03,1.92] [3,4]
Median 0.75 1.77 2 0.47 0.12 1.42 3.67
(c = 10) (0.17) (0.48) (0.34) (0.06) [1.02,2.01] [3,5]

Mean 0.87 2.49 2 0.25 0.09 13.67 60.59
(c = 5) (0.07) (0.75) (0.13) (0.04) [7.81,22.84] [36,100]

2

Median 0.78 2.12 2 0.35 0.11 1.42 3.79
(c = 1) (0.07) (0.43) (0.12) (0.05) [1.01,2.53] [3,7]
Median 0.78 2.00 2 0.35 0.11 1.36 3.66
(c = 5) (0.07) (0.14) (0.12) (0.05) [1.02,2.35] [3,6]
Median 0.66 1.51 1.50 0.64 0.14 1.49 3.88
(c = 10) (0.16) (0.52) (0.36) (0.07) [1.03,2.25] [3,6]

Mean 0.77 4.79 5 0.43 0.10 18.02 80.19
(c = 5) (0.07) (1.35) (0.15) (0.04) [8.41,23.33] [38,100]

3

Median 0.83 2.08 2 0.28 0.07 1.40 3.62
(c = 1) (0.07) (0.39) (0.11) (0.04) [1.04,2.92] [3,8]
Median 0.83 2.02 2 0.28 0.07 1.39 3.59
(c = 5) (0.07) (0.20) (0.11) (0.04) [1.03,2.98] [3,8]
Median 0.81 1.91 2 0.34 0.08 1.39 3.62
(c = 10) (0.12) (0.38) (0.25) (0.06) [1.04,3.06] [3,8]

Mean 0.85 3.21 3 0.30 0.09 14.07 62.76
(c = 5) (0.07) (1.11) (0.11) (0.03) [8.43,23.11] [37,100]

RI: rand index; ¯̂
K and ˜̄K: the average and median number of identified subgroups; MAEµ and MAEβ : the mean

absolute error for the intercept and slope estimates; Time: the average computing time in seconds; Iteration: the average
of number iterations needed for convergence. Quantities in parentheses denote the standard errors and those in square

brackets denote the ranges.
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standard normal random variables. We consider three cases as in Example 1.

Results in Table 2 also suggest that the median method outperforms the mean

method for both heavy-tailed and heteroscedastic cases.

Table 2: Estimation results of the mean and median methods for three cases in
Example 2.

Case Method RI ¯̂
K

˜̂
K MAEµ MAEβ Time (s) Iteration

1
Median 0.87 3.14 3 0.33 0.10 7.12 4.45

(0.06) (0.51) (0.16) (0.05) [4.61,11.03] [3,7]

Mean 0.88 3.71 3 0.33 0.10 29.48 82.52
(0.06) (1.10) (0.16) (0.05) [20.87,36.46] [59,100]

2
Median 0.81 3.19 3 0.49 0.13 7.16 4.64

(0.06) (0.63) (0.18) (0.06) [4.50,12.57] [3,7]

Mean 0.80 6.26 6 0.53 0.13 32.64 92.51
(0.06) (1.94) (0.18) (0.06) [22.74,36.32] [64,100]

3
Median 0.86 3.17 3 0.34 0.08 6.76 4.59

(0.06) (0.47) (0.16) (0.06) [4.24,10.99] [3,7]

Mean 0.86 4.57 4 0.37 0.10 30.56 86.43
(0.05) (1.44) (0.14) (0.05) [20.72,36.29] [58,100]

The notations follow Table 1.

5. Empirical Study

In this section, we compare the performance of the proposed median method

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

Disease Dataset from the UCI machine learning repository. The dataset contains

13 clinical measurements on 297 individuals. The outcome of interest is thalach,

the maximum heart rate achieved. As in Ma and Huang (2017), we use the

fitted value of thalach as the response variable y, obtained by projecting thalach

onto the linear space spanned by the variables including Chestpt (chest pain

type), Exeriai (exercise induced angina indicator), STd (ST depression induced

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

Disease Dataset from the UCI machine learning repository. The dataset containsDisease Dataset from the UCI machine learning repository. The dataset contains

13 clinical measurements on 297 individuals. The outcome of interest is thalach,

the maximum heart rate achieved. As in Ma and Huang (2017), we use thethe maximum heart rate achieved. As in Ma and Huang (2017), we use the

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

Disease Dataset from the UCI machine learning repository. The dataset contains

13 clinical measurements on 297 individuals. The outcome of interest is thalach,

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heartand the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

Disease Dataset from the UCI machine learning repository. The dataset contains

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

Disease Dataset from the UCI machine learning repository. The dataset contains

In this section, we compare the performance of the proposed median methodIn this section, we compare the performance of the proposed median method

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heartand the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

In this section, we compare the performance of the proposed median methodIn this section, we compare the performance of the proposed median methodIn this section, we compare the performance of the proposed median methodIn this section, we compare the performance of the proposed median method

4.57
(1.44)

The notations follow Table 1.
[20.72,36.29](0.05)

7.12
[3,7]

[64,100]

Table 2: Estimation results of the mean and median methods for three cases inTable 2: Estimation results of the mean and median methods for three cases in

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

Disease Dataset from the UCI machine learning repository. The dataset contains

13 clinical measurements on 297 individuals. The outcome of interest is thalach,

the maximum heart rate achieved. As in Ma and Huang (2017), we use the

13 clinical measurements on 297 individuals. The outcome of interest is thalach,

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

Disease Dataset from the UCI machine learning repository. The dataset contains

13 clinical measurements on 297 individuals. The outcome of interest is thalach,

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

Disease Dataset from the UCI machine learning repository. The dataset contains

In this section, we compare the performance of the proposed median method

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

In this section, we compare the performance of the proposed median methodIn this section, we compare the performance of the proposed median method

4.57
(1.44)

The notations follow Table 1.

0.08
(0.06)
0.10

(0.05) [20.72,36.29]

7.12
[4.61,11.03] [3,7]

29.48 82.52
[59,100]

[3,7]
92.51

[64,100]

Table 2: Estimation results of the mean and median methods for three cases in

Iteration

Table 2: Estimation results of the mean and median methods for three cases inTable 2: Estimation results of the mean and median methods for three cases inTable 2: Estimation results of the mean and median methods for three cases in

Iteration
7.12

[3,7]
29.48

[59,100]

[4.50,12.57] [3,7]
92.51

[64,100]
0.08

(0.06)
0.10

(0.05) [20.72,36.29]
4.57

(1.44)
The notations follow Table 1.

(0.05)

In this section, we compare the performance of the proposed median method

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

In this section, we compare the performance of the proposed median method

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

Disease Dataset from the UCI machine learning repository. The dataset contains

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

Disease Dataset from the UCI machine learning repository. The dataset contains

13 clinical measurements on 297 individuals. The outcome of interest is thalach,

the maximum heart rate achieved. As in Ma and Huang (2017), we use the

and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart

Disease Dataset from the UCI machine learning repository. The dataset contains



5. EMPIRICAL STUDY 21

by exercise relative to rest), SlopeST (slope of the peak exercise ST segment),

Numvess (the number of major vessels colored by fluoroscopy) and Hrtstat (the

heart status). We aim to identify subgroups in the response distribution after

adjusting for the effect of the remaining six covariates x: Sex (0 for female),

age in years, Restbps (resting blood pressure), Chol (serum cholesterol), Fbs

(fasting blood sugar indicator) and Restecg (resting electrocardiographic results

with 0 for normal). Prior to the data analysis, we centralize the four continuous

covariates to have mean zero so that the intercept in model (1.1) corresponds to

the median of a female with normal Restecg and average age, Restbps, Chol and

Fbs.

Figure 1 shows the grouping results of the median and mean methods with

varying penalization parameter λ for 297 subjects. Different color represents

different subgroup membership. The mean regression identifies five subgroups

with λ = 0.04. When λ increases, the mean method leads to subgroups with one

dominating subgroup and other subgroups consisting of a few individuals, which

are likely to be superficial and make the results hard to interpret. In contrast, the

median regression identifies four subgroups with λ = 0.1. When λ is increased

to 0.15, the median regression leads to two subgroups of sizes 165 and 132.

We further assess the heteroscedasticity based on the subgroup identification

results from the median regression with λ = 0.15 that leads to two subgroups.
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Figure 1: Grouping results of the 297 subjects in the Cleveland heart disease
study obtained by the median and the mean methods with varying penalization
parameter λ. Different color represents different subgroup membership.
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Letting the group indicator di = 0 for group 1 and di = 1 for group 2, we fit the

following regression model,

yi = α1 + θdi + xT
i β + ei, (5.1)

and assess the error heteroscedasticity by applying the Breusch-Pagan test. The

Breusch-Pagan test is a chi-squared-type test based on regressing the squared

residuals from fitting model (5.1) against covariates (di,xi). The resulting Breusch-

Pagan test statistic is 19.29 with a p-value of 0.01, suggesting a strong evidence

of error heteroscedasticity. More specifically, Figure 2 shows that the error vari-

ance tends to depend on the rest blood pressure, and it varies between two identi-

fied subgroups. As shown in our simulation study, the mean penalization method

often overestimates the number of subgroups for heteroscedastic models, and

this agrees with the observation in this empirical study.

By fitting model (5.1) at median, we obtain the estimated subgroup effect

as θ̂ = 20.72, and the 95% score-type confidence interval as (19.40, 23.08),

suggesting that the first subgroup has a significantly smaller median than the

second subgroup after accounting for the covariate effects.

Finally, to characterize the two identified subgroups, we fit a logistic regres-

sion by regressing di against the 12 available variables. We apply the SCAD
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Figure 2: Plots of the estimated residuals from model (5.1) against covariates.

penalized logistic regression method from the R package ”ncvreg” with tuning

parameter selected by cross-validation, and report the coefficient estimations and

standard errors for the selected variables in Table 3. Results suggest that sub-

jects with nonanginal and asymptomatic chest pain, exercise-induced angina and

more major vessels colored by fluoroscopy are more likely assigned to group 1

(with lower thalach), while older males with normal or ST-T wave abnormality

in the resting electrocardiographic results and up-slope of the peak exercise ST

segment are more likely assigned to group 2.
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Table 3: Characterization of the two clusters identified by the median method:
the estimated coefficients of selected variables and standard errors in the logistic
regression.

Variable SlopeSTup Chestpt3 Chestpt4 Restecg1 Restecg2 Sex Exeriai Numvess Age
Coef 20.60 -4.34 -13.37 26.21 2.24 4.61 -11.64 -3.95 6.44
SE 4.91 1.54 3.38 6.54 0.96 1.40 2.88 0.99 1.62

SlopeSTup: the slope of the peak exercise ST segment is upsloping; Chestpt3: nonanginal chest pain type; Chestpt4:
asymptomatic chest pain type; Restecg1: normal resting electrocardiographic results; Restecg2: having ST-T wave
abnormality; Sex: 1 for male; Exeriai: exercise induced angina indicator; Numvess: the number of major vessels

colored by fluoroscopy.
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