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Abstract: In many applications, subgroups with different parameters may exist even after
accounting for the covariate effects, and it is important to identify the meaningful sub-
groups for better medical treatment or market segmentation. We propose a robust sub-
group identification method based on median regression with concave fusion penalizations.
The proposed method can simultaneously determine the number of subgroups, identify the
group membership for each subject, and estimate the regression coefficients. Without re-
quiring any parametric distributional assumptions, the proposed method is robust against
outliers in the response and heteroscedasticity in the regression error. We develop a con-
venient algorithm based on local linear approximation, and establish the oracle property
of the proposed penalized estimator and the model selection consistency for the modified
Bayesian information criteria. The numerical performance of the proposed method is as-

sessed through simulation and the analysis of a heart disease data.

Key words and phrases: Concave fusion penalization; Heterogeneous parameters; Median

regression; Model-based clustering; Robust.



Statistica Sinica: Newly accepted Paper
(accepted version subject to English editing)

1. INTRODUCTION 2

1. Introduction

Most statistical modeling relies on a common assumption that the same set of
model parameters apply to all subjects. However, in some applications, there
may exist different parameters in subgroups even after accounting for the co-
variate information. Mixture models have been widely used for identifying sub-
groups from a heterogeneous population; see for instance Banfield and Raftery
(1993), Hastie and Tibshirani (1996), McNicholas (2010), Wei and Kosorok
(2013), Shen and Huang (2012), Chaganty and Liang (2013) and Shen and He
(2015). One advantage of mixture models is that they provide a formal and con-
venient model framework, and thus can easily incorporate the covariate effects of
different forms. However, most mixture-model-based approaches require speci-
fying the number of components, and the underlying distribution for each com-
ponent, for which the most popular choice is normal distribution giving rise to
normal mixture models. It’s well known that testing for the number of compo-
nents in mixture models is technically challenging due to the nonidentifiability
of parameters under the null hypothesis; see Zhu and Zhang (2004), Chen and Li
(2009), Li and Chen (2010), Kasahara and Shimotsu (2015), Shen and He (2015)
for some related discussions. On the other hand, the normality assumption for
normal mixture models may be restrictive or susceptible to outliers.

In this paper, we develop a new robust approach that can automatically de-
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tect and identify subgroups through pairwise fused penalization. Let y; be the
scalar response variable and x; the p-dimensional covariate associated with sub-

jecti, where ¢ = 1,...,n. We consider the following median regression model,

yi:ozki—i—xiT,Bquz-,i:l,...,n, (1.1)

where 3 is the unknown slope coefficient vector, ¢; are independent random
errors such that P(e; < Olx;) = %, k; € {1,..., K} is the unknown group
membership of subject ¢, and «y, is the group-specific intercept fork = 1, ... K.
Throughout the paper, the number of groups, /K, is assumed to be unknown and
bounded, and p is allowed to increase with n but we suppress its dependence
on n for notational simplicity. In model (1.1), we assume that the population is
heterogeneous in terms of location after accounting for the covariate effect, but
the proposed method can also be easily extended to identify the heterogeneity in
slopes with some modification.

We propose a median-based penalization approach through penalizing the
pairwise differences of intercept coefficients across subjects. The proposed method
can identify subgroups, determine K, and estimate the parameters 3 and «y, si-
multaneously. The idea of using penalization for clustering has been consid-
ered in Hocking (2011), Pan and Shen (2013), Chi and Lange (2015), and Wu

and Shen (2016), to name a few. The closest literature with our model (1.1)
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is Ma and Huang (2017). Compared to Ma and Huang (2017), this paper has
the following major differences and advances. First, by considering the median
regression model (1.1), our method is based on L, loss and allows the errors
to be heavy-tailed or dependent of x;, and thus provides more flexibility and
robustness against outliers. The nice properties of L; distance for heavy-tailed
distributions have been studied in the classification setup in Hall et al. (2009).
Second, we develop a convenient algorithm through local linear approximation
(LLA, Zou and Li (2008)) to deal with L, loss and concave penalties. At each
step of the iteration, the optimization becomes a linear programming problem
and can be solved easily with existing software. As a result, this method en-
ables more efficient initial values and leads to much faster convergence than
the alternating direction method of multipliers (ADMM) algorithm in Ma and
Huang (2017). We also suggest a divide-and-conquer algorithm to further re-
duce the computational burden for data with large n. Third, we establish the
oracle property of the proposed estimator without the restrictive distributional or
moment conditions on the random errors as required in Ma and Huang (2017).
The oracle property shows that the oracle estimator (obtained with correct group
membership) is a local solution of the proposed median regression with fused
penalization, indicating that the method can identify the correct subgroups with

high probability. Lastly, we propose a modified Bayesian information criterion
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(BIC) to choose the penalization parameter, and establish its consistency.

The proposed method can be regarded as an unsupervised learning or a
model-based clustering method, which performs grouping pursuit of subject-
specific intercepts through penalization. Unlike supervised learning, the method
does not model the characteristics of subgroups, so the estimation cannot be di-
rectly used to predict the group membership of new subjects. On the other hand,
the method is more data adaptive and assumption-lean since it does not require
specifying a parametric model for the grouping probability as in e.g. Shen and
He (2015). In practice, we can apply the proposed method as a first step to
obtain some assumption-lean clustering, and then use the clustering results as
responses to perform binary or multinomial regression to characterize the sub-
groups by a given set of variables. Such two-step analysis has also been consid-
ered in Dusseldorp et al. (2010) for subgroup identification in clinical trials and
Miillensiefen et al. (2017) for marketing segmentation.

The rest of this paper is organized as follows. In Section 2, we present the
Ly-based penalization estimator, and describe the proposed algorithm. In Sec-
tion 3, we state technical assumptions and establish the asymptotic property of
the proposed estimator as well as the modified BIC for tuning parameter selec-
tion. We assess the finite sample performance of the proposed method through

simulation in Section 4 and a real data analysis in Section 5. Technical proofs
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are given in the online supplementary file.

2. Proposed Method

2.1 Penalized Estimator

Throughout the paper, we denote p1; = ay, as the intercept for subject 7, where
k; is the unknown group membership, and let gt = (i1, . - - , f1,)" . We define the

proposed penalized estimator of (u, 3) as

JPN 1l
(1. 8) = argmin— > |y —pi = 2B+ > pallwi—ml, @D
’ i=1

1<i<j<n

where the first term on the right is the L, (least absolute deviation) loss function,
and p, (+) is the penalty function associated with a positive tuning parameter \.
With the L loss, one natural choice of the penalty function is the L; penalty
pa(B) = A|B], for which the optimization can be easily solved by using linear
programming. However, it is known that the L; penalty does not lead to con-
sistent variable selection without proper assumptions; see Zhao and Yu (2006)
and Leng et al. (2006). Particularly, the L, penalty tends to overshrink nonzero
pairwise differences |;; — p;|, leading to an overestimation of the number of
subgroups. On the other hand, adaptive weights can be incorporated in the I,

penalty to reduce the bias (Zou, 2006), but the weights are difficult to estimate
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in our setup. Therefore, we consider two commonly used concave penalties, the
smoothly clipped absolute deviations penalty (SCAD) of Fan and Li (2001), and
the minimax concave penalty (MCP) of Zhang et al. (2010), which can produce
unbiased estimates and thus are more suitable for identifying subgroups. For a

given A > 0, the SCAD penalty is defined as

pallB) = Al < 18] < x) + LAZELXIR 1 < gy < a
—i—%[(w > a)), for some fixed a > 2,

and the MCP penalty is defined as

2 2

pallB) = MBI — 210 < 18] < aX) + L1(8] > a),

for some fixed a > 1.

The penalty in (2.1) will shrink some of the pairs y; — p; to zero. We can
then partition the sample into subgroups based on the penalized estimator fi;.
Let {&1, ..., Qz } be the distinct values of /1;’s, where K is the number of unique
fi’s. Let Gy = {i : fi; = 4,1 < i <n},1 <k <K. Then {G1,...,Gp}
constitutes a partition of {1,...,n}.

At a first glance, the proposed method with fused penalty looks similar to
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the pursuit of homogeneous covariate effects in regression settings, such as the
fused Lasso in Tibshirani et al. (2005), the octagonal shrinkage in Bondell and
Reich (2008), and the grouping pursuit in Shen and Huang (2012), to name a few.
However, the aims are essentially different; we focus on identifying subgroups
of subjects with homogeneous intercept 1; while these works used penalization
to group p coefficients (3, ..., () to identify predictors with common effects.
Our aim is also different from those in Raftery and Dean (2006), Gupta and
Ibrahim (2007), Khalili and Chen (2007), which focused on the selection of

variables for model-based clustering.

2.2 Basic Computing Algorithm

Local linear approximation. We propose an algorithm based on local linear
approximation (LLA, Zou and Li (2008)) to minimize the objective function
involving both L; loss and concave penalty. Specifically, we regard p; — 1; as
an indivisible whole and approximate >, . pa(|u; — p;]) by local linearization.
Let ui " denote the estimates of j; obtained at the (+ — 1)-th iteration. At the

t-th iteration, we update the coefficients by solving

L1 _
argrgglﬁZIyi—m—wfﬁHZwS Yl — pyl, (2.2)
’ i=1

1<j



Statistica Sinica: Newly accepted Paper
(accepted version subject to English editing)

2. PROPOSED METHOD 9

where wg_l) = Ph(|ui™t — p57) > 0 denote the weights, and p)(-) is the

derivative of p,(-) with p, (0+) set as A. The LLA algorithm is claimed to con-

()
ij

stabilize, namely when 3, _, _ Sn(wgf_l) - wg))2

verge when the weights w
becomes sufficiently small.

With the LLA, at each iteration, the optimization in (2.2) is a standard linear
programming problem and thus can be easily solved with any existing linear
programming algorithm. In our implementation, we use data augmentation to
reformulate (2.2) as a simple weighted median regression problem.

Below we illustrate the idea of data augmentation to solve (2.2) with weights

w;;. Denoting all the parameters as & = (p1, - -, fn, B1, - -+, B)7 , We can rewrite

the objective function in (2.2) equivalently as

Z lyi — s — x Bl + anij|1ui — i
i=1

i<j

=D 1y — (e 28] + ) 10— (nwy(e; — e;)",0;)3],
i=1

1<J

where e; denotes a n-dimensional vector with the i-th element one and else
zero. Let W denote a n(n — 1)/2 x n matrix that consists of (w;;(e; — e;)7)
forl << 7 < n. That is, W = (wlg(el — 62), R ,wln(el — en), 'LU23(€2 —

€3), .., Wy 1n(€n_1 — en))T. To minimize (2.2), we only need to fit median

regression using the augmented dataset {(¢;,%;),l = 1,...,n + n(n — 1)/2}
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with (7, %7 ) = (u, (ef . a])) for I = 1,--- . n, and (§i, %) = (0,nw{,,07)
forl=n+41,---,n+4 n(n —1)/2, where W; is the jth row of W.

The augmented design matrix is sparse with many zeros even though the di-
mension may appear daunting. Therefore, we can solve the minimization prob-
lem by using the sparse Frisch-Newton interior algorithm, implemented by the
“rq.fit.sfn” function in the R package quantreg, which reduces the computational
time to be proportional to the number of nonzero elements in the design matrix.
Our numerical investigation shows that the proposed LLA algorithm is much
faster than the ADMM algorithm considered in Ma and Huang (2017) especially
for models with heavy-tailed or covariate-dependent errors.

Choice of the tuning parameter. The tuning parameter A\ controls the strength
of penalization. In practice, we can choose A by minimizing the following mod-

ified Bayesian information criterion,

BIC{d(\)} log{ Z|yz (N — 27 B(A )\}+IS}|¢m (2.3)

where (\) = (fu(), ..., in(N), B(A)T)T is the penalized estimator and S is

5 = K(\) +p

measures the size of the model with X (M) as the estimated number of subgroups,

and ¢,, is some positive sequence that goes to zero. Our numerical studies sug-
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gest that ¢, = cloglog(n)log(n + p)/n with ¢ € [1, 5] provides a good choice.
We shall establish the validity of this tuning parameter selector in Section 3.
Initial values. The optimization problem depends on the choice of initial values.

We propose to use the following Lasso estimator as initial values,

1 !
argmin Z lyi — 1 — a2 B] + Z A s = wgl, (2.4)
’ i=1

i<j

where \* is a small tuning parameter to avoid over shrinkage. As discussed
earlier, even though the Lasso estimator does not have nice properties of those
based on concave penalties, its computation is much simpler since the estimator
can be obtained directly by median regression through data augmentation with-
out any iteration. Our numerical studies show that this Lasso estimator provides

good initial values, which leads to quick convergence of the LLA algorithm.

Remark 1. This fused penalty term in the objective function (2.1) involves total
n(n — 1)/2 pairs of differences, so the basic algorithm can become computa-
tionally intensive for large samples. We suggest to modify it using a divide-and-
conquer idea for massive data analysis. In the first stage, we divide the data into
H subsamples randomly. For each subsample, we apply the pairwise penaliza-
tion algorithm with a small tuning parameter to cluster subjects into subgroups.

In the second stage, we perform another pairwise penalization to further merge
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these subgroups identified in the first stage.

3. Asymptotic Properties

In this section, we will first establish the theoretical properties of the proposed
pairwise penalized estimator. Under some regularity conditions, we show that
the set of local minimizers of the proposed penalized objective function (2.1)
covers the oracle estimator, obtained with known group membership as a priori,
with probability approaching one.

Let S, = {Gy,k = 1,--- , Ky} denote the true group structure, where Gy,
denotes the set of samples from group k and K is the true number of groups. In
the ideal case where S, is known in advance, we can estimate (o, ..., ag,, 3)

by the oracle estimator defined as

1 o

(@1(So), -+ Ay (So), B(So)) = argmin —> "> " |y; — ap — x; B, (3.1)

a1, 0K B k=1 ieG}

where a, = p; for i € Gy is the common intercept for the kth group. Denote
a=(ay,...,ax,)", Z = {zy} as an x Ky matrix with z;;, = 1 fori € G}, and

0 otherwise, and z; as the ith row of Z. Then we can rewrite (3.1) as

(6(S0), B(S,)) = argmin = 3" |y, — 2T — 2T 3. (32)

aB T



Statistica Sinica: Newly accepted Paper
(accepted version subject to English editing)

3. ASYMPTOTIC PROPERTIES 13

Consequently we can define the oracle estimator of gt = (p1, . . ., pn) 7 as f1(S,) =

(f11(So); - - -, fin(So))T with ;(S,) = ai(S,) for i € Gy. The oracle esti-

mator is denoted as 6(S,) = (ji1(Ss), -, fin(Ss), B(S)T)T. In addition, let

Gmin = Minj<p<k, |G| and Gy = maxj<p<k, |G|, where |G| denotes the

number of elements in group G}, and X = (x7,...,x1)T. We assume the fol-
lowing regularity conditions.

C1. (i) There exists some positive constants My, M, such that |z;;| < M;, and
E(I;lj) < My, V1 <i<n,1 < j <p. (ii) There exists some positive constants
C and Cy such that Oy < Apin[n(Z, X)T(Z, X)] < Anax[n H(Z, X)T(Z,X)] <
Cy, where A\yin(+) and Apax(+) denote the smallest and largest eigenvalues of a
matrix, respectively.

C2. The conditional distribution of ¢; given (z;, x;), denoted by F;(-|z;, x;), has
a continuous density f;(+|z;,x;), which is uniformly bounded away from zero
and infinity in the neighborhood of zero across .

C3. The number of parameters satisfies p = O(n") for some 0 < ¢; < 1/3.
C4. Let b, = miniegk, jeGy k'K |H0i— Hoj| be the minimal difference of the com-
mon intercepts between two groups, where (i, s the true value of p;. There exist
some positive constants ¢y and M such that 2¢; < ¢y < 1and n(1=¢2)/2p, > M,

Assumption C1 poses some boundedness condition on the design. In our

model setup, Z7Z = diag(|G4|, ..., |Gxk,|). Note that \,in[(Z, X)T(Z,X)] <
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min{ Auin(Z7Z), Muin(XTX)} and Aok [(Z, X)T(Z, X)] > max{Anax(Z1Z),
Amax (XTX)}. Therefore, C1 (ii) indicates that G /n > C) and G e /1 < C,
which together with the fact that KoGin < n < KoGnax implies that 1/Cy <
Ky < 1/C. Condition C2 is standard in median regression, and it is more
relaxed than the Gaussian and sub-Gaussian error condition assumed in Ma and
Huang (2017). In C3, we assume that p = O(n°'), allowing p to increase with
the sample size. Condition C4 requires the smallest signal not decay too fast, and
similar conditions are commonly assumed in high dimensional sparse regression.

The following Theorem shows that the oracle estimator is a local minimizer
of the proposed penalized objective function with probability approaching one.
To account for the nonsmooth loss function and the nonsmooth and nonconvex
penalty function involved in (2.1), we apply Lemma 2.1 in Wang et al. (2012),
which gives a sufficient local optimization condition for the difference convex

program based on the subdifferential calculus.

Theorem 3.1. Let B,,()\) be the set of local minimizers of (2.1) with either the
MCP or SCAD penalty with tuning parameter \. Suppose that conditions C1-C4
hold, A\ = o(n~1=%)/2) and n\|Gun| — oo, then the oracle estimator &(S,)

satisfies P{8(S,) € Bu(A\)} — 1 asn — oo.

We next study the properties of the modified BIC for tuning parameter se-

lection by establishing its consistency for model selection. For any candidate
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model S with K groups, we define the modified BIC as

BIC{3(S)} 1og{ sz fi(S) — 2l B(s >|}+|S|¢n, (33)

where 8(S) = (f11(S), ..., fin(S),B(S)T)T is the unpenalized estimator ob-
tained under model S. Here BIC{4(S)} is based on the unpenalized estimator
obtained by minimizing the L loss function under the candidate model S, while
BIC{&(\)} in (2.3) is based on the penalized estimators obtained by minimiz-
ing (2.1) with the tuning parameter A. Under conditions C1-C4, and additional

conditions C2+ and CS5 in the supplement, we obtain the following theorem.

Theorem 3.2. Assume that C1-C4, and C2+ and C5 spelled in the online sup-
plement hold. For any sequence ¢,, — 0 satisfying log(n + p)/n = o(¢,), we
have

P(Sséswﬁeﬂlixmp BIC{3(S)} > BIC{4(S,)}) = 1,

where Ky € (Ko, 00) is the upper bound for the number of groups.

Remark 2. At a given A, let S, denote the model corresponding to the penal-
ized estimator 8()\). By definitions, BIC{8(\)} > BIC{d(Sy)} since the
penalized and unpenalized estimators correspond to the same model but the lat-
ter minimizes the L; loss function. In addition, Theorem 3.1 implies that, with

high probability, the oracle estimator 5(50) can be produced by some A, on the
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solution path, so BIC{8()\,)} = BIC{5(S,)}. Therefore, by Theorem 3.2, for
any A not inducing the oracle model, we have BIC{d(\)} > BIC{d(S))} >
BIC{d(S,)} = BIC{d()\,)}. This suggests that the modified BIC in (2.3) is

consistent for tuning parameter selection.

4. Simulation

In this section, we use three examples to assess the finite-sample performance of
the proposed method based on the SCAD penalty with a = 3.7. The method with
MCP gives similar results and thus is omitted. For comparison, we also include
the mean-based penalization method from Ma and Huang (2017) based on the
SCAD penalty and ADMM algorithm. We consider four different metrics: (1)
MAE,,: the mean absolute error for the intercept estimate, defined by MAE,, =
n~t S i — wail; (2) MAEg: the mean absolute error for the slope estimate,
defined by MAEs = > 7, |B\] — Bil/ps 3) K and K: the average and median
number of identified subgroups across simulation, respectively; and (4) RI: the
rand index. The rand index is commonly used in clustering analysis to measure

the percentage of correct decisions of a clustering algorithm, and is defined as

TP +TN

I =
R TP+ FP+FN+TN’
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where TP (true positive) means the number of pairs of subjects in different sub-
groups that are assigned to different clusters, TN (true negative) denotes the
number of pairs from the same subgroup that are assigned to the same cluster,
FN (false negative) denotes the number of pairs from the same subgroup that are
assigned to different clusters, and FP (false positive) is the number of pairs from
different subgroups that are assigned to the same cluster. Higher values of the
rand index indicate better agreement of the identified clusters with the true group
allocation. For all examples, the simulation is repeated 100 times.
Example 1. The data are generated from y; = p;+x! B+e5,i = 1,...,n = 100,
where x; = (21, ..., 2;5)7, p; = 1 with probability 7; = exp(—0.52; —0.526),
it; = —1 with probability 1 — 7;, and 3; = 1 for j = 1,...,5. The covariates
x;; are generated independently from the standard normal distribution as well as
x;6. We consider three cases for generating ¢;. Case 1 (homoscedastic normal):
g; = 0.5¢; with ¢; g N(0,1). Case 2 (heavy-tailed): ¢; ES 0.5t(3). Case 3
(heteroscedastic normal): &; = ®(x;)e; with ¢; "N (0,1), where ®(-) is the
distribution function of N (0, 1).

Table 1 summarizes the simulation results of the proposed median method
and the mean method in Ma and Huang (2017) in Cases 1-3 from Example 1.
For the median regression, we use A* = O(n~%/?) to obtain the initial values,

and choose the penalization parameter A by minimizing the BIC in (2.3) with
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¢n = cloglog(n)log(n + p)/n. We report the results for the median method
based on ¢ = 1,5 and 10. The last two columns of Table 1 give the average com-
puting time (in seconds) of different methods with the chosen A, using R (ver-
sion 3.3.2) on a 2.70GHz laptop, and the average number of iterations needed
for convergence. Quantities in parentheses denote the standard errors and those
in square brackets denote the ranges. For Case 1 with homoscedastic normal er-
rors, the mean method performs slightly better than the median method in terms
of RI and MAE. However, for models with heavy-tailed errors (Case 2) and het-
eroscedastic errors (Case 3), the median-based method shows clear advantages;
it gives competitive RI and K closer to the truth, while the mean method often
leads to larger models. In addition, the proposed algorithm is computationally
much more efficient than the ADMM algorithm in Ma and Huang (2017). Our
numerical study shows that in general the median method with ¢ € [1,5] gives
quite consistent results, while ¢ = 10 tends to underestimate /K leading to lower
RI. Therefore, we focus on ¢ = 5 in the following analyses.

Example 2. We consider a setting with three subgroups. The data is generated
fromy, = u; +x' 8+ ¢,i = 1,...,n = 150, where x; = (z;1,...,5)"
and 3 are the same as in Example 1. Let y; = —2 with probability m;; =
exp(—0.5x;1 — x6), i = 0 with probability m;y = exp(—0.5x; — x;7) and

1; = 2 with probability ;3 = 1 — m;; — 72, where x5 and z;7 are independent
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Table 1: Estimation results of the median and mean methods for Cases 1-3 in
Example 1 with different choices of c used in BIC for determining the penaliza-
tion parameter.

Case | Method RI K K | MAE, | MAEs | Time(s) | Iteration
Median | 083 | 209 |, 0.29 0.10 1.38 3.64
(c=1) | (0.07) | (0.32) 0.11) | (0.04) | [0.983.00] [3.8]
Median | 083 [ 200 | , 0.29 0.10 1.36 353

| (c=35) | (0.07) | (0.14) .11 | (0.04) | [1.03,1.92] [3.4]
Median | 075 | 177 | , 0.47 0.12 1.42 3.67
(c=10) | (0.17) | (048) 0.34) | (0.06) | [1.022.01] [3,5]

Mean 087 [ 249 [, 0.25 0.09 13.67 60.59
(c=5) | 007 | 075 (0.13) | (0.04) | [7.81,22.84] | [36,100]
Median | 078 [ 212 |, 035 0.11 142 3.79
(c=1) | 007 | (043) 0.12) | (0.05) | [1.01,2.53] [3,7]
Median | 078 [ 200 | , 035 0.11 1.36 3.66

5 (c=5) | (0.07) | (0.14) 0.12) | (0.05) | [1.02,2.35] [3,6]
Median | 0.66 | 151 | [ 064 0.14 1.49 3.88
(c=10) | (0.16) | (0.52) | 036) | (0.07) | [1.03,2.25] [3,6]

Mean 077 [ 479 0.43 0.10 18.02 80.19
(c=5) | 007 | (135) 0.15 | (0.04) | [8.41,23.33] | [38,100]
Median | 083 [ 208 | 0.28 0.07 1.40 3.62
(c=1) | .07 | (039 0.11) | (0.04) | [1.042.92] [3,8]
Median | 083 [ 202 | , 0.28 0.07 1.39 359

3 (c=5) | 007 | 020 0.11) | (0.04) | [1.032.98] [3.8]
Median | 081 | 191 ) 0.34 0.08 1.39 3.62
(c=10) | (0.12) | (0.38) 025 | (0.06) | [1.043.06] [3.8]

Mean 085 | 3.21 3 0.30 0.09 14.07 62.76
(c=5) | (0.07) | (.11 O.11) | (0.03) | [843,23.11] | [37,100]

RI: rand index; K and K: the average and median number of identified subgroups; MAE,, and MAEg: the mean
absolute error for the intercept and slope estimates; Time: the average computing time in seconds; Iteration: the average
of number iterations needed for convergence. Quantities in parentheses denote the standard errors and those in square
brackets denote the ranges.
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standard normal random variables. We consider three cases as in Example 1.
Results in Table 2 also suggest that the median method outperforms the mean

method for both heavy-tailed and heteroscedastic cases.

Table 2: Estimation results of the mean and median methods for three cases in

Example 2.
Case | Method | RI K | K | MAE, | MAEg Time (s) Iteration
Median | 087 [ 314 [ 7033 0.10 7.12 445
| (0.06) | (0.51) (0.16) | (0.05) | [4.61,11.03] [3.7]
Mean | 088 [ 371 | [ 033 0.10 29.48 8252
(0.06) | (1.10) (0.16) | (0.05) | [20.87.36.46] | [59,100]
Median | 08T [ 319 [ 7 049 0.13 7.16 464
5 (0.06) | (0.63) (0.18) | (0.06) | [4.50,12.57] [3,7]
Mean | 080 | 7626 | [ 053 0.13 32.64 9251
(0.06) | (1.94) 0.18) | (0.06) | [22.74,36.32] | [64,100]
Median | 086 | 317 | 7] 034 0.08 6.76 459
3 (0.06) | (0.47) (0.16) | (0.06) | [4.24,10.99] [3.7]
Mean | 086 | 457 [, [ 037 0.10 30.56 86.43
(0.05) | (1.44) (0.14) | (0.05) | [20.72,36.29] | [58,100]

The notations follow Table 1.

S. Empirical Study

In this section, we compare the performance of the proposed median method
and the mean method in Ma and Huang (2017) by analyzing the Cleveland Heart
Disease Dataset from the UCI machine learning repository. The dataset contains
13 clinical measurements on 297 individuals. The outcome of interest is thalach,
the maximum heart rate achieved. As in Ma and Huang (2017), we use the
fitted value of thalach as the response variable ¥, obtained by projecting thalach
onto the linear space spanned by the variables including Chestpt (chest pain

type), Exeriai (exercise induced angina indicator), STd (ST depression induced
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by exercise relative to rest), SlopeST (slope of the peak exercise ST segment),
Numvess (the number of major vessels colored by fluoroscopy) and Hrtstat (the
heart status). We aim to identify subgroups in the response distribution after
adjusting for the effect of the remaining six covariates x: Sex (0 for female),
age 1n years, Restbps (resting blood pressure), Chol (serum cholesterol), Fbs
(fasting blood sugar indicator) and Restecg (resting electrocardiographic results
with O for normal). Prior to the data analysis, we centralize the four continuous
covariates to have mean zero so that the intercept in model (1.1) corresponds to
the median of a female with normal Restecg and average age, Restbps, Chol and
Fbs.

Figure 1 shows the grouping results of the median and mean methods with
varying penalization parameter A for 297 subjects. Different color represents
different subgroup membership. The mean regression identifies five subgroups
with A = 0.04. When ) increases, the mean method leads to subgroups with one
dominating subgroup and other subgroups consisting of a few individuals, which
are likely to be superficial and make the results hard to interpret. In contrast, the
median regression identifies four subgroups with A = 0.1. When A\ is increased
to 0.15, the median regression leads to two subgroups of sizes 165 and 132.

We further assess the heteroscedasticity based on the subgroup identification

results from the median regression with A = (.15 that leads to two subgroups.
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Figure 1: Grouping results of the 297 subjects in the Cleveland heart disease
study obtained by the median and the mean methods with varying penalization
parameter \. Different color represents different subgroup membership.
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Letting the group indicator d; = 0 for group 1 and d; = 1 for group 2, we fit the

following regression model,

Yi = q +9di+X¢TB+€ia (5.1

and assess the error heteroscedasticity by applying the Breusch-Pagan test. The
Breusch-Pagan test is a chi-squared-type test based on regressing the squared
residuals from fitting model (5.1) against covariates (d;, x;). The resulting Breusch-
Pagan test statistic is 19.29 with a p-value of 0.01, suggesting a strong evidence
of error heteroscedasticity. More specifically, Figure 2 shows that the error vari-
ance tends to depend on the rest blood pressure, and it varies between two identi-
fied subgroups. As shown in our simulation study, the mean penalization method
often overestimates the number of subgroups for heteroscedastic models, and
this agrees with the observation in this empirical study.

By fitting model (5.1) at median, we obtain the estimated subgroup effect
as § = 20.72, and the 95% score-type confidence interval as (19.40,23.08),
suggesting that the first subgroup has a significantly smaller median than the
second subgroup after accounting for the covariate effects.

Finally, to characterize the two identified subgroups, we fit a logistic regres-

sion by regressing d; against the 12 available variables. We apply the SCAD



Statistica Sinica: Newly accepted Paper
(accepted version subject to English editing)

5. EMPIRICAL STUDY 24

Residual

Restops

(a) Age (b) Resting blood pressure (c) Serum cmflolesterol

(d) Ss:xex (e) Fasting bl()?)d sugar ind. ) Ré:ilecg

Figure 2: Plots of the estimated residuals from model (5.1) against covariates.

penalized logistic regression method from the R package “ncvreg” with tuning
parameter selected by cross-validation, and report the coefficient estimations and
standard errors for the selected variables in Table 3. Results suggest that sub-
jects with nonanginal and asymptomatic chest pain, exercise-induced angina and
more major vessels colored by fluoroscopy are more likely assigned to group 1
(with lower thalach), while older males with normal or ST-T wave abnormality
in the resting electrocardiographic results and up-slope of the peak exercise ST

segment are more likely assigned to group 2.

Supplementary Materials

Proofs for Theorems 3.1 and 3.2 are provided in the online supplementary file.
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Table 3: Characterization of the two clusters identified by the median method:
the estimated coefficients of selected variables and standard errors in the logistic

regression.
Variable | SlopeSTup | Chestpt3 | Chestptd | Restecgl | Restecg2 | Sex | Exeriai | Numvess | Age
Coef 20.60 -4.34 -13.37 26.21 2.24 4.61 | -11.64 -3.95 6.44
SE 491 1.54 3.38 6.54 0.96 1.40 2.88 0.99 1.62

SlopeSTup: the slope of the peak exercise ST segment is upsloping; Chestpt3: nonanginal chest pain type; Chestpt4:
asymptomatic chest pain type; Restecgl: normal resting electrocardiographic results; Restecg2: having ST-T wave
abnormality; Sex: 1 for male; Exeriai: exercise induced angina indicator; Numvess: the number of major vessels
colored by fluoroscopy.
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