16

40

A BDDC ALGORITHM FOR THE STOKES PROBLEM WITH WEAK
GALERKIN DISCRETIZATIONS

XUEMIN TU* AND BIN WANG

Abstract. The BDDC (balancing domain decomposition by constraints) methods have been
applied successfully to solve the large sparse linear algebraic systems arising from conforming finite
element discretizations of second order elliptic and Stokes problems. In this paper, the Stokes
equations are discretized using the weak Galerkin method, a newly developed nonconforming finite
element method. A BDDC algorithm is designed to solve the linear system such obtained. Edge/face
velocity interface average and mean subdomain pressure are selected for the coarse problem. The
condition number bounds of the BDDC preconditioned operator are analyzed, and the same rate
of convergence is obtained as for conforming finite element methods. Numerical experiments are
conducted to verify the theoretical results.

Key words. Discontinuous Galerkin, HDG, weak Galerkin, domain decomposition, BDDC,
Stokes, Saddle point problems, benign subspace
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1. Introduction. Numerical solution of saddle point problems using non over-
lapping domain decomposition methods have long been an active area of research; see,
e.g., [28, 15, 11, 10, 18, 29, 30, 16, 33, 17, 34, 27]. The Balancing Domain Decomposi-
tion by Constraints (BDDC) algorithm is an advanced variant of the non-overlapping
domain decomposition technique. It was first introduced by Dohrmann [5], and the
theoretical analysis was later given by Mandel and Dohrmann [20]. In this theoretical
development, optimal condition number bound was obtained for the BBDC opera-
tors proposed for symmetric positive definite systems. Nonetheless, the variational
form of the incompressible Stokes problem is a saddle point problem [3], and the dis-
cretization by finite element methods lead to symmetric indefinite matrices. Thus,
the conventional theory usually fails to apply. In the first attempt to apply BDDC to
the incompressible Stokes problem by Li and Widlund [18], the approach via benign
spaces was used to reduce the Stokes system to a symmetric positive definite problem,
and optimal convergence result was obtained as for the elliptic case. However, this
method was proposed and analyzed with discontinuous pressure approximation, and
there is a big class of mixed finite element spaces featuring continuous pressure, e.g.,
the Taylor-Hood finite elements. Later, Li and Tu proposed a class of non-overlapping
domain decomposition algorithms for continuous finite element pressure space, which
were proved and numerically verified to be scalable [16, 33, 17, 34]. Earlier, Sistek et
al. applied a parallel BDDC pre-conditioner based on the corner constraints to the
Stokes flow using Taylor-Hood finite element [41]. They numerically demonstrated the
promising speedup property of their BDDC pre-conditioner as applied to benchmark
test problems of real-life relevance, even though optimal scalability was not achieved.

As the property of the discretized system to be solved is dependent on the nu-
merical methods used, the BDDC algorithms have been extended to the second or-
der elliptic problem with mixed and hybrid formulations, hybridizable discontinuous
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Galerkin (HDG) methods [29, 30, 35]. In this study, we design BDDC pre-conditioners
for trending non-conforming finite element methods, in particular, the weak Galerkin
(WG) methods. The WG methods are a class of nonconforming finite element meth-
ods, which were first introduced for second order elliptic problems by Wang and Ye
[36]. The idea of WG is to introduce weak functions and their weak derivatives as
distributions, which can be approximated by polynomials of different degrees on dif-
ferent support. For example, for second order elliptic problems, weak functions have
the form of v = {wg, vy}, where v is defined inside each element and vy, is defined on
the boundary of the element. vy and v, can both be approximated by polynomials.
The gradient operator is approximated by a weak gradient operator, which is further
approximated by polynomials. These weakly defined functions and derivatives make
the WG methods highly flexible in terms of approximating functions and finite ele-
ment partition of the domain. The same weak concepts have been extended to other
differential operators such as divergence and curl, which appears in applications like
Stokes [38] and Maxwell [25] equations respectively.

As most finite element methods, the WG methods result in a large number of
degrees of freedom and therefore require solving large linear systems with condition
number deteriorating with the refinement of the mesh. Efficient fast solvers for the
resulting linear system are necessary. However, relatively few attempts on designing
fast solvers for the WG methods can be found in the literature; see [4]. An effective
implementation of WG methods is to reduce the unknown variables to those associated
with element boundaries through a Schur-complement approach. It can be further
reduced to the subdomain interface. The subdomain interface problem can then be
solved using the conjugate gradient method preconditioned with a BDDC algorithm.
It is necessary to impose edge or face average constraints across the interface. By
a change of variable [19, 14], the primal constraint on edge or face average can be
converted to an explicit variable. The reduced system for the primal variables will
be the coarse problem to solve. The BDDC preconditioner can be built based on
such designed coarse problem, and thus be used as a preconditioner for the conjugate
gradient method.

In a recent study [35], the authors proved the condition number bound of the
BDDC preconditioned operator arising from elliptic problems with hybridizable dis-
continuous Galerkin (HDG) discretizations. In this paper, a BDDC algorithm is fur-
ther developed for weak Galerkin discretization with reduced polynomial basis func-
tions. As in [35], we first establish the connection between the hybridized Raviart-
Thomas(RT) method and the WG discretization and obtain the condition number
estimate of the BDDC algorithm applied to the elliptic problem with the WG dis-
cretization. We then consider the BDDC algorithms for the saddle point problem
arising from the WG discretization for the incompressible Stokes problem. In [26], a
similar saddle point problem is obtained by the HDG discretization for incompressible
Stokes flow, where the resulting system is solved by an augmented Lagrange approach.
An additional time dependent problem is introduced and solved by a backward-Euler
method. Here, we solve the saddle point problem from WG discretization directly us-
ing the BDDC methods. To the best of our knowledge, this is the first attempt for fast
solvers applied to the Stokes problems with this type nonconforming discretization.
There are many works on preconditioning the saddle point problems resulting from
mixed finite element discretizations, such as [1, 2]. In those works, the original saddle
point problems are reformulated to positive definite problems under specially defined
inner products. In this paper, a benign subspace idea is used as in [18, 29, 40]. In the
benign subspace approach, the positive definite system is obtained by carefully choos-
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ing the coarse components in the BDDC preconditioner. Therefore, the formulation,
implementation, and rate of convergence of the BDDC algorithm for Stokes are very
similar to those for the positive definite systems arising from the elliptic problems.

We prove that the condition number bound for the Stokes problem with the WG
discretization is as good as for the conforming discretization. We note that the WG
discretization has been extended to polytopal meshes, [37, 24, 23, 38]. With the
development of the domain decomposition methods for irregular subdomain shapes,
[6, 13, 7, 39, 8, 9], we believe that the BDDC algorithms proposed in this paper can
be extended to polytopal meshes as well. But we will restrict ourselves to the stan-
dard finite element triangulation here and leave the complete analysis and numerical
verification for more general polytopal meshes in the future study.

The rest of the paper is organized as follows. In Section 2, we introduce some
notations for relevant Hilbert spaces. In Section 3, we introduce the Stokes problem
and its weak Galerkin discretization. In Section 4, we reduce the linear system to
an interface problem. Then, we introduce the BDDC preconditioner for the interface
problem in Section 5, and give some auxiliary results in Section 6. In Section 7, we
provide an estimate for the condition number of the BDDC preconditioned system.
Finally, results from numerical experiments are presented and discussed in Section 8.

2. Notations for some relevant Spaces. Let Q € R? (d = 2, 3) be a bounded
open set with Lipschitz continuous boundary. The Sobolev space H* () for any
integer k > 1 is a Hilbert space with inner product

(u, U)Hk(n) = Z (D%, Da”)L?(Q)v
|| <k

where the multi-index notation for derivatives

olely

Y —
1 Tn o o3t Tq--- aanmn

with o = (e, , ) and |a| = a3 + -+ + a,. Correspondingly, we can define the
induced norm ||| i)

2 a, |2
oy = (o Wiy = 3 [ 107wl da,
o<k

and a semi-norm

2 2
ulie ey = Y /Q|Dau| dz.

lal=k

The space H° () coincides with L? (), which is the space of square integrable

functions on , i.e.,
L2 (Q) = {u : / |u|2da:<oo}.
Q

The inner product and induced norm of L? () are given by:

2 2
wwm@:éwm; MW®ZLMd%
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126 We define the subspace of L? (2) with zero mean to be

127 L(Q)(Q):{u:uELQ(Q),/QudzzO}.

128 Let Hq be the diameter of 2. We have the following scaled norm for the Sobolev
129 space H(Q):
130 ull vy = 7 022 + sy = 777 ulaqey + [ [Vl da
‘ Ulls, Hr(Q) = ng) L2(Q) H1(Q) = Hst L2(Q) o )
131 with
0 0
3 _ d= (= ... — ).
132 V =gra (3:171 , , 5'£L'n)
133 The subspace of H! () with vanishing boundary values is denoted by
134 Hy(Q)={veH'(Q): v=00n09}.

135 The spaces introduced above can be extended to spaces of vector-valued functions in
136 a straightforward way.

137 Also, we recall that the space H (div; ) is defined as the set of vector-valued
138 functions on €2 such that both the functions and their divergence are square integrable;
139 e,

140 H (div; Q):{v ve [L2(Q)]d,v~veL2(Q)}.
141 The scaled norm in H (div; ) is defined by
2 1 2 2
142 ||VH5,H(diV;Q) = F@ IVIz20) + IV - ¥l72q) -
143 3. A Stokes problem and its weak Galerkin Discretization. We con-

144 sider the primary velocity-pressure formulation for the Stokes problem on a bounded
145 polygonal domain €, in two dimensions (d = 2), or three dimensions (d = 3), with a
146 Dirichlet boundary condition:

—Au+Vp=f in Q
147 (3.1) V-u=0 in Q,
u=g¢g on O,

148 where f € [L? (Q)]d, and g € [H'/? (39)]d. Without loss of generality, we assume
149 that g = 0. The weak form in the primary velocity-pressure formulation for the Stokes
] =4

50 problem seeks u € [H} (Q)}d and p € L2 (Q2) such that

o G2 (Vu, Vo) = (V-0,p) = (f0) Yoe [H3 @),

‘ (Veu,q) = 0 Vg e L (Q).
152 The idea of weak Galerkin finite element scheme [38] is to substitute the standard
153

function and differential operators with the weakly defined counterparts. A weak
4
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function over the domain D is defined as v = {vg, vy} such that vy € L? (D) and
vy € L2 (0D). The vy part represents the value of v in the interior of D, while the
vp part represents the value of v on the boundary of D. Note that v, does not bind
itself with vy from the definition. In essence, weak functions relax the continuity
property of the standard functions, thus to offer more flexibility in terms of variable
representation. Following the notation in [38], we denote by V (D) the space of weak
functions over the domain D

V(D) = {v={vy, v} : vo € L* (D), v, € L* (8D)},
and the relevant vector-valued weak function space by
VD) = {v={vo, v} : vo € [L*(D)]", v € [12 (2D)]"},
and
d 2 d 2
[V (D) = {V ={vo, vo}: vo€ [L*(D)]", vy -n€L (8D)}.

The space of weak gradient or divergence operators will be defined as the dual
space of appropriate Hilbert space, in similar manner as the dual of [L2 (D)]d can
be identified with itself by using the L? inner product as the action of the linear
functionals. The following two definitions are [38, Definitions 2.1 and 2.3]:

DEFINITION 1. For any v € [V (D)]d, the weak gradient of v is defined as the

linear functional Vv in the dual space of [H'(D)]? whose action on each q €
[HY (D)) is given by

(va, q)D = - (V()v A\ q)D + <Vb7 q- n>8D )
where n is the outward normal direction to dD.

DEFINITION 2. For any v € [V (D)]d, the weak divergence of v is defined as the
linear functional V., - v in the dual space of H*(D) whose action on each ¢ € H' (D)
is given by

(vw ) QD)D = (V07v§0)D + <Vb : n750>BD7

where n is the outward normal direction to 9D.

Now, we introduce the weak Galerkin finite element discretization for (3.1) as in
[38]. First, we introduce the mesh of the domain, then we will define discontinuous
weak Galerkin finite element spaces over the mesh. Let 7 be a shape-regular and
quasi-uniform triangulation of 2, and the element in 7; denoted by K. For any
K € Tp, we denote by hy the diameter of K with h = maz ke, hix. Define Fj, be the
set of edges/faces of elements K € T,. Fj and ]-',? are subsets of Fj,, which consists of
domain interior and boundary edges, respectively. For any domain D, let Py (D) be
the space of polynomials of degree < k on D. Define the weak Galerkin finite element
spaces for the velocity variable associated with 7 as follows:

Vi, = {v = {vo, w0} : {vo, 0} [ € [P ()]% % [Pos ()], VK € Ty, € C aK} .

Note that a function v € Vi has a single value v, on each edge e € F;. The
subspace of Vj, with vanishing boundary values on 052 is denoted by

5

This manuscript is for review purposes only.



192

193

194

215
216

217

218

219

220

V= {v="{vo,vp} € Vi : v, =00on0N}.
We denote a relevant matrix polynomial function space by
Qi1 = {v : VK € [Py (K)) ™ VK € Th}
For the pressure variable, define the following finite element space

Wioi={q: ¢€ L{(Q), qdlx € Pe—1 (K)}.

Denote the discrete weak gradient operator by V., i_1, and the discrete weak
divergence operator by (V,, x—1-), respectively. On the finite element space Vj, they
are defined as follows: for v = {vo,vp} € Vi, on each element K € Tp, Vi k—10 |K€
[Pr—1 (K)]dXd and Vi, ,—1 v |k € Py_1 (K) are the unique solutions of the following
equations, respectively,

(Vwk—10 |k, Qe = — (v0,5, V- Q) g + (0p.5,9 - 1) 51 Vq € [P (K)]™Y,

(V’w,k—l v |K7 QD)K = - (UO,K;VQO)K + <Ub,K . n7@>8K7 VQO c Pk—l (K)a

where vg x and vy x are the restrictions of vy and v, to K, respectively, (u, w), =
S uwdz, and (u,w),, = [, uwds. To simplify the notation, we shall drop the
subscript k£ — 1 in the notation V, z—1 and (V ,x—1-) for the discrete weak gradi-
ent and the discrete weak divergence operators. We denote the L? inner product
over the triangulation as a summation over each element of the triangulation, for
example,(Vyu, Vyw) . = Z (Vwt, Vo) ey (Vi v, ) = Z (V- v, q) -
KeT KeT
Let Qo be the L? projection from [L? (K)]d onto [Py (K)]%, and Q, be the L2

projection from [L? (e)]d onto [Py_ (e)]?, for e € Fy. We write the corresponding
projection operator for the weak function as Qp, = {Qo, Q»}. Next, we define three
bilinear forms as below

(3.3) s(v,w) = ZKeTh hz}l (Qvvo — vp, Quwo — wb>aK )
a(v,w) = (Vyv, Vyw)y + s (v, w),
b (’U, Q) = (vw v, Q)Th :

The discrete problem resulting from the WG discretization can then be written
as: find up, = {ug, up} € V2 and pj, € Wy_1 such that

a(Uh, U) - b(U, ph) = (f7 UO) ) Yo = {,007 /Ub} € Vk07
b (ufu q) = 0, Vg € Wig_1.

We introduce the following operators: A : V2 = VP B : V0 — Wj_q, by
(3.4) (Aup, v) = a(up, v), (Bup, ¢) = —=b(up, q) .

Using these operators, the matrix form of the weak Galerkin scheme can be rep-
resented as

This manuscript is for review purposes only.
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At element level, for each K, given the edge component v, of the velocity and
the pressure p, the interior component vy of the velocity can be uniquely determined.
Namely, vg can be eliminated in each element independently. We thus obtain the
reduced system of v, and p only with considerable smaller size but different sparsity
pattern (denser than the full system) as below

iz lx)- 14
Bpu  Cpp] | Ph o

Throughout the rest of the paper, we will work with the reduced system such
obtained.

4. Reduced Subdomain Interface Problem. We decompose () into N non
overlapping subdomain §2; with diameters H;, ¢ = 1,..., N, and set H = max; H; .
We assume that each subdomain is a union of shape-regular coarse triangles and that
the number of such elements forming an individual sudomain is uniformly bounded.
We define edges/faces as open sets shared by two subdomains. Two nodes belong to
the same face when they are associated with the same pair of subdomains. Let I" be
the interface between the subdomains. The set of the interface nodes I}, is defined as
Iy o= (U005 , N O 1) \ O, where 09, 5, is the set of nodes on 0€; and 09, is
that of 0€2. We assume the triangulation of each subdomain is quasi-uniform.

We decompose the discrete velocity and pressure spaces Vi and Wj_1 into:

Ve=Vi® W, Wi—1 = Wi @& W.

Here, V; and W} are products of subdomain interior velocity spaces Vj(i) and subdo-

2 , respectively; i.e.,

N N
Vi = H‘/}(Z)a W = HWI(Z)'
i=1 i=1

The elements of Vl(i) are supported in the subdomain €); and vanishes on its

main interior pressure spaces WI(

interface I;, while the elements of Wl(i) are restrictions of the pressure variables to
Q; which satisfy fQ py) = 0. ‘71“ is the subspace of edge functions on I', and W
is the subspace of W with constant values p() in the subdomain €2; that satisfy
ZZ 1p(()l) (©;) = 0, where m (€;) is the measure of the subdomain ;.

We denote the space of interface edge velocity variables of the subdomain 2; by
Vlfi), and the associated product space by Vpr = Hfil Vr(i); generally edge functions
in V1 are discontinuous across the interface. We define the restriction operators Rfj ).
‘71" — V(i to be an operator which maps functions in the continuous global interface
edge variable space Vp to the subdomain component space VF Also, Rr : Vp —

is the direct sum of R . We denote the spaces of the right-hand-side interior load
vectors f; and 1nterface load vectors fp by F; and Fr, respectively. Similar notation
conventions apply to the spaces F[‘, Fp, Fn, Fé), Flsl , and Fp. We will use them
throughout this paper without further explanation.

7
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With the decomposition of the solution space, the global Stokes problem can be
written as follows: find (uy, pr, ur, po) € (VI, Wr, IA/F, WO) such that

Ay BY, AL 0] u fr
41 B Cir BE, 0 pr| _ | fo:
(@) B G Biy 0 ) \er)
Ar; Brr Arr Bgp| |ur Ir
0 0 Bor 0 | LPo 0

The lower left block in (4.1) is zero, because the bilinear form b(uy,, ¢) does not
explicitly relate to u; and p; for any up € V2 and ¢ € Wy. The leading two-by-two
block of the matrix above can be rewritten into a block diagonal form with each block
corresponding to an independent subdomain problem. And the global problem can
be assembled from the subdomain problems, defined as below

i )T ()T % i
O A N I
(12 Booan a0 || = |
Ar; Brg 4FI‘ By up fl(ﬂz)
o 0o BY o {0 0

We can eliminate the subdomain interior variables ugi) and py) in each subdo-
main independently, and assemble the global interface problem from the subdomain

interface problems.

DEFINITION 3. (Schur complement of the Stokes problem) Define the subdomain
Schur complement Sl(j) for the Stokes problem as follows: given ug) € Vr(i), determine
Sl(j)uij) € Flgi) such that

7 )T )T 7
VR ATLA
(4.3) By o) BT P | = (i)o "
aly sl Al L] st

The global interface problem can then be written as: to find (ur, pg) € (1713 W0>,
such that

g |ur gr
4.4 S = .
4 [po] { 0 }
Here the global interface matrix S is defined as

o~

N

Bor 0

)

where Sp = SN ROTSWRD Bor =N BORY  and
7 )T
AY) BY

N )T i % i
gr =L BT A - { Ay B! } B )
11 1T

[ 7 ]
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Fic. 1. Left: ‘7p for the subdomains Q1 and Qa2; Right: ‘71“ for the subdomains Q1 and Q2,
where the midpoint of each edge is chosen as the primal unknown. The red dots are the primal
variable Vi and the black dots are the dual variable V.

‘7F VP

* VA )
Ql Qg * VH e

The operator §p is symmetric positive definite but S is symmetric indefinite. In
what follows, we will propose a BDDC preconditioner, and show that the precondi-
tioned operator is positive definite when restricted to a proper subspace. A precon-
ditioned conjugate gradient method can then be used to solve the global interface
problem.

5. The BDDC Preconditioner. The BDDC (Balancing Domain Decomposi-
tion by Constraints) algorithm is a variant of the two-level Neumann-Neumann type
preconditioner. It was introduced and analyzed by Dohrmann, Mandel, and Tezaur
[5, 20, 21] for standard finite element discretization of elliptic problems. The BBDC
preconditioner consists of local solvers for the subdomain problems and the artisti-
cally designed global coarse-level problem. The coarse level problem is assembled
from primal variables, such as edge/face averages across the subdomain interface on
which the continuity constraints are enforced. In contrast to earlier versions of balanc-
ing Neumann-Neumann methods, the BDDC methods do not need to solve singular
systems and the algorithms demonstrate good scalability for parallel computation.

In order to introduce the BDDC preconditioner, we first introduce a partially
assembled interface space Vr by

N
VFZ?H@VA:‘/}H@ (HVA(Z)>

i=1

Here, XA/H is the continuous, coarse level, primal interface edge velocity space. The
variables in this space are called the primal unknowns, and each primal unknown is
shared by the adjacent subdomains. The remaining interface velocity variables live
in the complimentary dual space Va . This space is the direct sum of the VA@, which
are spanned by basis functions with vanishing value at the primal degrees of freedom.
The functions in VA are generally discontinuous, see Figure 1. Thus, in the space
Vr, we relax the continuity constraints across the interface at the dual variables but
retain the continuity at the primal variables, which makes all the component linear
systems in the preconditioner nonsingular.

We need to introduce several restriction, extension, and scaling operators between
different spaces. Eij ) : ‘71« — V(Z) restricts functions in the space ‘71“ to the components
Vlﬂ(i) of the subdomain ;. Rr : Y~/p — Vr is the direct sum of El(j). R( D V — V(Z)
maps the functions from Vr‘ to VA( , its dual subdomain components Ry Vp — Vn
is a restriction operator from Vp to its subspace VH Rp Vp — Vp is the direct sum

9
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of Rrr1 and RX). We define the positive scaling factor 53 (z) as follows:

n 1

51 (‘T) card (Iw)v S 0 i,h N hs

where Z, is the set of indices of the subdomains that have = on their boundaries, and
card (Z,) counts the number of the subdomain boundaries to which x belongs. It is
61 (x) =1, for any = € Iy,

clear that 6] (z)’s provide a partition of unity, i.e., > ieT,

We note that 5; (x) is constant on each edge. Multiplying each row of RX) with the
scaling factor gives us R(D’% A- The scaled operators Rp r is the direct sum of Rryy and
(@)
RY,. i
The partially assembled Schur complement Sr, defined on the interface velocity
space VT, can be represented as follows: given ur € Vi, Srur € FT satisfies

1 HNT )T ()T i 0 T
gy o e [
1
O - 4 s M DR T
u
AAI BAI AAA AHA U(A) = FFA
Ay 5y AL - Al L] | (5, |
Here, Ay = X2, 1) AR, Af) = R AR A = RETARL, ova B =
R(Z)TB(Z)
I -

Based on this definition, we can also obtain Sr from subdomain Schur comple-
ments Sl(f) by assembling with respect to the global degrees of freedom of the primal
interface velocities, i.e.,

(5.1) Sr = R} SrRr.

Here, we denote the direct sum of Sl(f) by St. The global interface Schur operator Sr
on the continuous interface velocity space Vr can be obtained by further assembling
with respect to the dual interface variables, i.e.,

(5.2) Sr = RLSpRr = RL SpRy.

We note that, for any zp € YN/F with x%gpxp = 0, zr has to be a constant on each
subdomain. Due to the continuity of the primal components of zr and the Dirichlet
boundary condtion of (3.1), zr has to be zero and therefore Sr is symmetric positive
definite. B

Correspondingly, we define an operator Bor, which maps the partially assembled
interface velocity space V- into Fy, the space of right-hand sides corresponding to Wj.
Eop can be obtained from the subdomain operators B(();) by assembling with respect to
the primal interface velocity part, i.e., EOF = Zil Bé?ﬁg ). Similarly, the operator
Eop can be obtained from the partially assembled operator Eop by further assembling
with respect to the dual interface velocity variables on the subdomain interfaces, i.e.,
Bor = Bor Rr. By the definition, we have that the Byr has a full row rank since Byr
does.

10
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SF EOTF

- EDF -
(5.3) » [ I], oo

Due to the positive definiteness of Sr and the full row rank of Eor, S is invertible and
we can define the preconditioner for solving the global interface Stokes problem as

M~'=RLS™'Rp.

Note that ]TBD,F is of full rank and that the preconditioner is nonsingular. The pre-
conditioned BDDC algorithm is then of the form: to find (ur, po) € (‘71", Wo), such
that

(5.4) M1§[ ur } =M! [ QOF ] .

Po

We require that faQ. UX) -n; = 0, for all the dual interface velocity variables

u(AZ) € VA@)7 with n; the unit outward normal of 98;; see [18, 29]. We will refer to this
assumption as the divergence free constraint for the dual velocity variables. When the
Conjugate Gradient (CG) method is used to solve the preconditioned system (5.4), the
divergence free constraint can ensure the CG iterations will be in a special subspace
where the preconditioned operator is positive definite and therefore the CG method
can be applied. In order to satisfy this constraint, we choose the primal variables
which are spanned by subdomain interface edge/face basis functions with constant
values on these edges/faces for two/three dimensions. We change the variables so
that the degree of freedom of each primal constraint is explicit; see [19, 14]. The
dual space is correspondingly spanned by the remaining interface degrees of freedom
with zero average values over the interface edge/face. This constraint is critical to the
design of the preconditioner, as we will see more details in Section 6.

At the end of this section, we discuss the implementation of the preconditioner.
The main operation is the product of S~! with a vector, which requires solving a
coarse problem related to the primal variables we choose and independent subdomain
Stokes problems with Neumann type boundary conditions. The size of the coarse
problem will increase with the increasing of the number of the subdomains and it can
be a bottleneck of the algorithm. The multilevel extension of the algorithms can be
explored as in [32, 31, 22].

6. Some Auxiliary Results. We adopt the convention that C' denotes a generic
constant independent of the mesh size h and subdomain size H. In general, its value
may vary at different instances.

First, we list two useful results. For shape regular partition 7y, as detailed in [38],
the following trace and inverse inequalities hold; see[37].

LEMMA 4. (Trace Inequality) There exists a constant C such that
2 - 2 2
(6.1) lall2 < € (i gl + b 99115 )

where g € HY(K), and K is an element of T, with e as an edge/face.
11
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391
392
393
394
395
396
397
398
399

400
401
402
403

412
413
414
415
116
417

LEMMA 5. (Inverse Inequality) There exists a constant C = C(k) such that
(6.2) Vgl < CR)hE gl s VK €Th
for any piecewise polynomial g of degree k on Ty,.

We collect a few results of the weak Galerkin finite element scheme, which will
be used in our analysis of the BDDC preconditioner. Note that the discrete weak
velocity function space Vk0 is a normed linear space with a triple-bar norm given by
38, (4.1)]

(6.3) Ioll* = ke, IVurllk + Xxer b 1Qovo — vollpx-

LEMMA 6. For the weak Galerkin scheme described in Section 3, the following
results hold:

2 2
Voollp < Clfoll™;

1. For any v = {vg, vp} € V, we have > .

2. For any v € V2, a (v, v) = lloll%;

3. For any v, w € Vi, la (v, w)| < [|[v]] {[wl];

4. For any v = {vo, v} € Vi, p € Wiy, [b(v, p)| < Cl[vll [lpll 23

5. For any p € Wy_1, supvevlglﬁl(;’—mi? > Blpll 2, where § is positive constant

independent of the mesh size h.

Proof. The first result is in [38, Lemma A.2]; the second and third results give the
coercivity and boundedness property of the bilinear form a (-, -), which are proved in
[38, Lemma 4.1]. The fourth result is the boundedness property of the bilinear form
b (-, -). This can be proved as follows.

b, )l =Y (V- v, p)g
KeThn
= Z (_ (U07 Vp)K + <Ub - n, p>8K)
KeTy
= Z ((V * Vo, p)K - <(QbUO - Ub) - n, p>3K)
KeTn
1/2 1/2
<cC ( > ”v’l)O”i?(K)) ( > |P||iz(K)>
KeTy, KeTy
1/2 1/2
+C ( Z h;{l [lop — va0||i2(8K)> < Z hy, |P||i2(31{)>
KeTh KeTh

< Cllollliel 2

where we use the definition of weak divergence for the second equality, and integration
by parts for the third equality. We use the Cauchy-Schwarz inequality for the fourth
inequality. Part (1) of Lemma 6, the definition of the triple-bar norm (6.3), and the
trace inequality (6.1) and the inverse inequality (6.2) for the last inequality.

The last result is the discrete inf-sup condition, which is proved in [38, Lemma
4.3]. These results also hold for the subdomain ;. If follows that the weak Galerkin
scheme is well-posed for the global interface problem and local subdomain problems.O

12
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438
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441
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443
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We introduce several conceptual tools which will be useful in our analysis of the
BDDC preconditioner.

DEFINITION 7. (Schur complement of the subdomain elliptic problem) The sub-

domain Schur complement for the elliptic problem, denoted by Sl(f’)E, is defined as

ollows: gwen u ) eyt , determine Dol € B such that
foll wen ul) € Vi, d S pul € FY such th
Ay Ay

() 0
D) st |
Al

Since the subdomain elliptic problem A® is symmetric positive definite [36], the

AW U

where A®) =

Schur complement Sl(ﬂ 'p is also symmetric positive definite by the inertia of Schur
complements [19]. Thus, we can define the norm

‘u(’) = uDT AG ) = ¢ (u(l)7 u(’)) , for all u € V),
and
’ug) s = ug)TSI(f)Eug), for all ui«z) € VF(Z).
I E

Similarly, the subdomain Schur complements for the Stokes problems, defined in
(4.3), are symmetric, positive semi-definite [18]. They are singular for any floating
subdomains, by which we mean the boundary of the subdomain does not intersect
with the global domain boundary 9. Thus, we can define the Sl(f)— seminorms by

u

)TS(I Ur , for all ul(j) € Vlfi).

so
It follows that
|Ur|s = uf Srur = Z‘ o

s

The fully and partially assembled global interface velocity operators §1“ and §1",
given in (5.2) and (5.1), are both symmetric, positive definite because of the Dirichlet
boundary conditions on 9 and the adequacy of the primal continuity constraints
for the divergence free condition. In similar way as before, we define the Spr— and
Sr—norms on the spaces Vp and Vr, respectively, as below.

HUFH%F = u?é\rup = U%R%SFRFUF = |RFUF|2SF R Yur € "/}’
||UF||?§F = U%SFUF = U%RF SrRrup = |RFUF‘SF s Yur € Vr.

The global interface operator S and S, introduced in (4.4) and (5.3), are sym-
metric indefinite on the space Vp x Wy and V]“ x Wy, respectively. However, when
restricted to the proper subspaces, these operators can be positive semldeﬁmte and
we can thus define a S— and S—seminorms on these subspaces. We call such subspaces
as the benign subspaces, and denote them by Vp B X Wy and Vr‘ B X Wy, respectively.
Specifically, they can be defined as follows.

13
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478
479
480

481

482
483

DEFINITION 8. (Benign subspaces)

‘71“,]3 = {UF S ‘A/r|§0qu = 0} and ‘71“,3 = {UI‘ S VFIEOFU/F = 0} .

If follows that we can define

|u|2§ = UT§U7 Yu = (UF, po) c ‘71‘73 X Wo,
|U|§ =u" Su, Vu = (ur, po) € ‘N/F,B x Wo.

We can show by direct computation that the following facts hold.

ulf =llurl3..  Yu=(ur, po) € Vi x Wo,
uf3 =llurl%..  Yu=(ur, po) € Vr.p x Wo.

We denote the null space of the S—seminorm operator on the space ‘71" B X Wy by

7. Tt is easy to see that this space is comprised of elements v = (0, pg) € ‘A/RB x Wo.
The following lemma is crucial to the analysis of the preconditioned BDDC op-
erator. The proof can be found in [18, 29].

LEMMA 9. Under the divergence free constraint for the dual interface velocities,
introduced in Section 5, we have Rhu € Vi g x Wy for any u € Vp g x Wy.

With the choice of the primal velocity continuity constraints of the BDDC algorithm,
the preconditioned BDDC operator M 1S5 is positive definite on the quotient space,
and correspondingly, we can use the preconditioned conjugate gradient method when
the iterations are restricted to the quotient space. The design of the BDDC precondi-
tioner and the result from Lemma 9 guarantee that the iterations of the preconditioned
conjugate gradient method will stay in the quotient subspace if the initialization lies
in the quotient subspace [18].

Next we introduce two important extension operators for the trace over the sub-

domain boundary.

DEFINITION 10. (Discrete harmonic extension) The discrete harmonic extension
of v € VF(Z) over the subdomain Q;, denoted by H (7) : VF(Z) — VO satisfies the

following:

{

a (H (7) y U) =0, Yo = {U07 Ub} € Vko (Qz) y
H(7) loc,= -

The bilinear form a (-, -) is defined in (3.3).
DEFINITION 11. (Discrete Stokes extension) The discrete Stokes extension of vy €
VF(Z) over the subdomain §2;, denoted by S () : VF(Z) — VO satisfies the following:

a(S(H),v)=>bv,P(y)) =0, Vo = {vg, vp} € V2 (%),
b(8(7)7 q) :Oa VQE Wk—l (Qz)a
S(’Y) |89i: e

where P () is the corresponding pressure extension with zero mean value living in the
space Wi_1 (£2;).

The bilinear forms a (-,-) and b(-,-) are defined in (3.3).
14
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485

486

488

489

190

191

492

493

494

495
496

497

498

The connection between the discrete harmonic/Stokes extensions and the Schur
complements of the corresponding linear systems can be revealed as follows.

REMARK 1. By definition, it is clear that

12 N (2 12
‘“1@ I ‘H (“1(“1))’ N inf N
52 AD D eV @, u® | 5g, =uld

AW

and that
2 . 2 ]2
=|S ’u,(l) = inf u(l)
S(i) T A®D) . . . (i) X .
r ’U‘<Z)ev(l)7u(1)|8§2i:ur , B0y (i) =0

g

AW

For the same edge velocities ug) over the subdomain boundary 0€;, we have

‘H (u¥)> ’i(i) = ’S (u¥)> ’i(i) ’

since the infimum over a larger set is smaller. It follows that
12 12

(@) (@)

g 50, = g

s

Next, we prove the connection between the edge velocity seminorms defined by the
Schur complements of the elliptic and Stokes problems for the same subdomain. Sim-
ilar proof for the conforming discretizations can be found in [2].

LEMMA 12. For any u%i) € Vp(i), we have

2

2 )
(2)
51@ S )UF

(1)
) < ‘UF
E

C 762 ‘u(i) ’
1+ 1" st EICK
where B is the inf-sup stability constant defined in Lemma 6.

Proof. The second inequality directly follow from the Remark.
We prove the first inequality as follows. Denote the discrete harmonic and Stokes

extension of ul(j) € Vr(i) by H <u¥)) and § <u¥)), respectively. Using v =38 (ug)) —

H (ul(f )> as the test function in Definition 11, we have

() () () (5 ) (). ) =0,
where p is the corresponding pressure extension with zero mean value living in the

space Wi_1(€;).
Since b (5 (u(;)) , p) — 0, it follows that

o(s (1) 5 (7)) = s () % () 0 (3 () ).

By the part (4) in Lemma 6, we have

2

(@) (@) @ (@ ‘ ’ (4) ‘
©4) |5 ()|, <[5 ()], [0 ()], F ()] 1o,
By the inf-sup condition (the part (5) in Lemma 6) ,

15
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b(v, p)°
2
vev(e) vl

o (5 () o)’

512 211220 <p

513 (6.5) =47 sup 2
veVo () [l
) 2 I\ [2
514 <67|s ()" =872 ()] ., -

515 where we have used Definition 11 for the second equality and the parts (2) and (3) in
516 Lemma 6 for the last inequality.
517 Substituting (6.5) into (6.4), we have

518 ‘ (4) - (%) (@)
8 () = I8 () o [ (o) o+ 072 (o) o (),

<P s ()|, 1 () .,

521 It follows that )
2 2 - .
522 c-L2, uF *C’ B (u{ﬁ)’ ’7—[(())‘ *’ug) . d
(1+8) SO (1+8)* A A@) 59,
523 In order to prove the condition number bounds for the BDDC preconditioner,
524 we define an averaging operator for the Stokes problem, denoted by Ep, which
525 maps Vr X Wy, with generally discontinuous interface velocities, to the same space
526 with continuous interface velocities. Specifically, for any u = (ur, po) € Vr x W,
527  Ep [ur, po]T € Vr x Wy, where
~~ D nT E

528 = T = RF RD7F = DT
28 ED RR 7 7 I 5
520 and Epr = ﬁpﬁgr is the interface averaging operator for the velocities across the
530 interface I'. The operator Ep r computes a weighted average for the edge velocity
531 across the subdomain interface I'; and then distributes the average back to the original
532 degree of freedoms on the interface.
533 To facilitate further analysis, we introduce a useful norm as defined in [12]:

1/2

1 2
534 (6.6) A, = > 7 A =meMNlek |
KeTn,KCD
535 where )
536 mrg(A\) = ——= Ads
0K Jox

537 Denote [[A[l}, = [IAll} -
538 Define the local lifting operators Q(-) and U(-) for the weak Galerkin (WQG)
539  method as below: given A on 0K,

510 (6.7a) (N Tk + U,V - 1) = (N7 -n)sx for all ¥ € [Pp_; (K)]¥*4,
543 (6.7b) —(w, V- QN k + (A (QuUA — \), Quu)ox =0 for all w € [Py (K)]%.

16
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Let uw = (ug,up) = (UAX, ). We have QA = V,,u and can obtain a reduced norm of
A using the norm from the WG bilinear form as given in (6.3) as

2 2 — 2
(6.8) M = ZKeTh,Kgﬁ [Vwullz + ZKeTh,KgB hKl |Qbro — w5 -

Denote [[A[l = [[All,

We will show the equivalence between the triple-bar norm defined above in (6.6)
and (6.8). To denote the triple-bar norm defined over an element K, we add a sub-
script K to it. Note that similar strategy was used to prove the equivalence between
the norm generated by the bilinear form from a hybridized mixed method and triple-
bar norm (6.6) in [12].

LEMMA 13. The function ||A||x is zero on K € Ty, if and only if X is constant on
0K.

Proof. Assume that |||, =0 on K. It follows that
0= (Vawu, Vot) + h (QuUA — X, QuUA — Nox,

where u = {UA, A}, and V,,u = Q. This implies that V,,u = 0 on element K and
QuUN = X on OK. Further, we have from the definition of the discrete weak gradient
operator or the lifting operator Q given in (6.7b) that for any 7 € [Py_1(K)]",

0= (ku7 T)K
=—UNV - T)k + (N T nor
= (VUA,T)K — <Z/{)\ — )\77' . ’I’L>3K
= (VU)\,T)K — <Qbu>\ — )\,7‘ . n>3K
= (VUA, T)K
Let 7 = VUA. Then we have VU)X = 0 on K. It follows that U\ = const. on K.
Thus, QpUU\ = const. on OK. Since QplU\ = X on OK, we have A = const. Note that
similar argument as above was provided in [38] to prove that (6.3) gives a norm.
Conversely, assume A is a constant on 0K. Substituting the ordered pair (r, w)
in (6.7) with (@A, U\) and adding up, we obtain
X% = (A @A m)arc = hi {QuUA = A, Nax
Let w = X be the test function in (6.7b). Since A is constant, A\ = QpA. It follows
from (6.7b) that
—(\, @A Yok + g (QuUA — A, Nox = 0. 0
Therefore, |||, = 0.
LEMMA 14. Let My, = {vp : v = {vo, v} € V}. For all X € My,

)2 2 2
eI < AT < CHAIE

Proof. First, we prove the lower bound. By Lemma 13, [|A[| = 0 implies that A
is constant on OK. Similarly as in [12], by a scaling argument, it can be shown that

C

Az = |aK|1/2 inf [[A =l = [OK[2 1A =mi Mok = el -
17
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for some constant ¢ independent of A.
Next, we prove the upper bound. Let r = Q\, and w = U\. Plugging the ordered
pair (r, w) into (6.7), and adding up, we obtain

M = (0 @A - m)ar — hi (QuUA = A, Nax
= (A, QA+ n — A (QuUA — \)ox
= (A =mr(A), QX-n —hi (QUA = N)ox

C
< W A =mr(Mllox M &
= Ol & M g+

where we have used (6.7b) for the third equality, the trace inequality (6.1) and inverse
inequality (6.2) for the second-to-last inequality. It follows that

clIMIA T < WA < CHMI % -

Summing up over all elements in 7}, we obtain

P2 <IN < ClAl 2. O

Based on the equivalence of norms in Lemma 14, similar to the proof of [35,
Lemma 5], we can obtain that the interface averaging operator Ep r satisfies the
following bound:

LEMMA 15. For any wr € ‘71‘,

7\ 2
|ED,F1UF|%FYE <C (1 + log h> |U/F|?§F,E;

where C' is a positive constant independent of the domain size H, and mesh size h.

Now, we are in a position to prove the bound of the averaging operator Ep for
the Stokes problem.

LEMMA 16. There ezists a positive constant C, which is independent of H and h,
such that

2 2
1+ H ~
|[Epw|% <C (ﬂﬁ) (1 + log h) lw|%  VYw=(wr, ) € Vo, 5 x Wo,

where B is the inf-sup stability constant.

Proof. For any vector w = (wr, qo) € VF B X Wy, by Lemma 9, RDw IS Vp B X Wp.
Thus, Epw = RRD’LU € VF B X Wo

From the definition of the S-seminorm, we have \Epw% = ||Ep7rwp||2§F
|Rr (Eprwr) [, -

Noting that Sp = diag(Sl(j)), and applying Lemma 12 to each subdomain, we
have

_ 2
|Rr (Ep,rur) 3. < C (%) |Rr (Ep,rwr) 3. ,
18
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Further, we have

_ H\?
|RF (ED,FwF> |A291",E = |ED’FwF|2§F,E <C <1 + log h) ‘wF|2§F‘E

N\ ?
<C (1 + log h) |'lU1"|2§F.

Combining these inequalities, we have
2 2
1 1 2
|EDw|2§ <C (%) (1+1log ) |wr|k2§F =C (%) (141log ) |w|?§ 0

7. Condition number estimate for the BDDC preconditioner. We are
now ready to formulate and prove our main results. It follows by proving the lower
and upper bound for u”' M ~!Su. See similar proof in [18].

THEOREM 17. Assume the divergence free constraint holds for the interface veloc-
ities. The preconditioned operator M _1§ 18 symmetric, positive definite with respect
to the bilinear form (-,-)g on the space Vr p x Wy. Its eigenvalues are bounded from

below by 1 and from above by 0(1’;75)2 (1 + log %)2, where C is a constant which is
independent of the domain size H, and the mesh size h, and B is the inf-sup stability
constant.

Proof. It is sufficient to prove that for any v = (ur, pg) € 17113 x Wo, with ur # 0,
. 2
(u, uyg < <u, M*15u>§ <C (%) (1+log (%))2 (u, u)g.
In what follows, we prove the lower and upper bound for <u, M *1§u>§ respec-
tively. R _
Let w = S~'RpSu. Obviously, u € Vr g x Wp.

Note that R Rp = RL R = I. The details for the proof of the lower bound go as
follows:

(u, u)g = uTSRERu = uTSRES'SRu = <ﬂ, ]A%'u>~

S

-~ \1/2
(a,) <Ru, Ru>§ = (@, @)Y (u,u) ¥

IN

Thus, we obtain (u, u)g < (@, u)g by canceling a common factor and squaring on
both sides.

Since o o R

(i, i) = uT SEES 'S5 RpSu = (u, RpS— RpSu)_= (u, M~'Su)

we have (u, u)g < <u, M‘1§u>§.

Next, we prove the upper bound. R

Since M~ = RES™1Rp, we have REw = M~1Su.

By using Lemma 16 and the fact that S = RT SR, we obtain

)

5

<M_1§u7 M_1§u>§ = <}~%£ﬂ7 §£ﬂ>§

2 H\?
<C’<1+ﬁﬂ> (1+logh> |u\2§

2 7\ 2 R
<C (1—;ﬁ) (1 + log h> <u, M_lSu>§

19

= <RR§5, RRE&>§ = |Epul%
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TABLE 1

Condition number estimates and iteration counts for the BDDC preconditioned operator with

changing subdomains numbers. % =8, and k= 1.

Number of Subdomains \ Iterations \ Condition number ‘

4x4 11 4.12

8% 8 13 5.01

16x16 13 4.90

24x24 13 5.05

32x32 12 4.94
TABLE 2

Condition number estimates and iteration counts for the BDDC' preconditioned operator with

changing subdomains numbers. % =8, and k = 2.

’ Number of Subdomains \ Iterations \ Condition number ‘

4x4 13 7.37
8x8 17 9.24
16x16 20 9.89
24x24 20 10.29
32x32 19 10.26
652 Using the Cauchy-Schwarz inequality, we have
-13 1/2 -13 -14 1/2
653 <u, M Su>A < (u, u){ <M Su, M Su>A
s S 5
1+8 H 1/2 _1g \/?
654 <C——(1+1log— RETAB <,M S>A .
<5 (1) g (0750,
~ 2
656 This gives <u, M‘lSu>§ <C (%) (1 + log %)2 (u, u)g. The upper bound of
657 the eigenvalues thus follows. 0
658 8. Numerical Experiments. In this section, we will report some numerical

659 results for the BDDC algorithm proposed for the weak Galerkin discretization of the
660 Stokes problem. We used the BDDC algorithm to solve the model problem (3.1) on
661  the square domain 2 = [0, 1]2 with zero Dirichlet boundary condition. The analytical
662 solution of the test problem is given by

sin® (7x) sin? (7y) cos (7y)

663 = . . d =22 — o2

0 u —sin? (z) sin® (7y) cos (1) an p=w =Y

664 We decompose the unit square into N x N subdomains with side length H = 1/N.
665 Each subdomain has a characteristic mesh size h. Both the first order (k = 1)

666 and second order (k = 2) weak Galerkin methods are used to discretize the model
667 equations. The BDDC preconditioned conjugate gradient iterations are stopped when
665 the l;—norm of the residual has been reduced by a factor of 10°.

669 In the first set of experiments, we fix the size of the subdomain problem to be
670 % = 8. Table 1 and 2 show the iteration counts and the estimates of the condition
671 numbers for the BDDC preconditioned operator with changing subdomain numbers
672 for k =1 and k = 2, respectively. The condition numbers are found to be independent

673 of the number of subdomains. As the second set of experiment, instead of fixing the
20
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700
701

TABLE 3
Condition number estimates and iteration counts for the BDDC preconditioned operator with
changing subdomain problem size. 8 X 8 subdomains, and k = 1.

| ] Tterations | Condition number |
4 9 2.49
8 13 5.01
16 15 7.48
24 18 9.12
32 19 10.37
TABLE 4

Condition number estimates and iteration counts for the BDDC' preconditioned operator with
changing subdomain problem size. 8 X 8 subdomains, and k = 2.

’ % \ Iterations \ Condition number
4 14 5.87
8 17 9.24
16 21 12.47
24 23 15.33
32 23 16.09

size of the subdomain problems, we fix the subdomain partition to be 8 x 8, and
allow the subdomain problem size to vary. The condition number is found to increase
logarithmically with the subdomain problem size. Table 3 and 4 demonstrate results
for the second set of experiments for k = 1 and k = 2, respectively.

To conclude, we have carried out a series of experiments to obtain iteration counts
and condition number estimates. The experimental results prove to be consistent
with the theory. That is the condition number bound of the BDDC preconditioned

system is of the form 0(125)2 (1 + log %)2, where H and h are the diameters of the
subdomains and elements, respectively. Possible future work will be to explore the
order of the basis functions effects on C.
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