

1 **A BDDC ALGORITHM FOR THE STOKES PROBLEM WITH WEAK
2 GALERKIN DISCRETIZATIONS**

3 XUEMIN TU* AND BIN WANG†

4 **Abstract.** The BDDC (balancing domain decomposition by constraints) methods have been
5 applied successfully to solve the large sparse linear algebraic systems arising from conforming finite
6 element discretizations of second order elliptic and Stokes problems. In this paper, the Stokes
7 equations are discretized using the weak Galerkin method, a newly developed nonconforming finite
8 element method. A BDDC algorithm is designed to solve the linear system such obtained. Edge/face
9 velocity interface average and mean subdomain pressure are selected for the coarse problem. The
10 condition number bounds of the BDDC preconditioned operator are analyzed, and the same rate
11 of convergence is obtained as for conforming finite element methods. Numerical experiments are
12 conducted to verify the theoretical results.

13 **Key words.** Discontinuous Galerkin, HDG, weak Galerkin, domain decomposition, BDDC,
14 Stokes, Saddle point problems, benign subspace

15 **AMS subject classifications.** 65F10, 65N30, 65N55

16 **1. Introduction.** Numerical solution of saddle point problems using non over-
17 lapping domain decomposition methods have long been an active area of research; see,
18 e.g., [28, 15, 11, 10, 18, 29, 30, 16, 33, 17, 34, 27]. The Balancing Domain Decomposi-
19 tion by Constraints (BDDC) algorithm is an advanced variant of the non-overlapping
20 domain decomposition technique. It was first introduced by Dohrmann [5], and the
21 theoretical analysis was later given by Mandel and Dohrmann [20]. In this theoretical
22 development, optimal condition number bound was obtained for the BBDC opera-
23 tors proposed for symmetric positive definite systems. Nonetheless, the variational
24 form of the incompressible Stokes problem is a saddle point problem [3], and the dis-
25 cretization by finite element methods lead to symmetric indefinite matrices. Thus,
26 the conventional theory usually fails to apply. In the first attempt to apply BDDC to
27 the incompressible Stokes problem by Li and Widlund [18], the approach via benign
28 spaces was used to reduce the Stokes system to a symmetric positive definite problem,
29 and optimal convergence result was obtained as for the elliptic case. However, this
30 method was proposed and analyzed with discontinuous pressure approximation, and
31 there is a big class of mixed finite element spaces featuring continuous pressure, e.g.,
32 the Taylor-Hood finite elements. Later, Li and Tu proposed a class of non-overlapping
33 domain decomposition algorithms for continuous finite element pressure space, which
34 were proved and numerically verified to be scalable [16, 33, 17, 34]. Earlier, Šístek et
35 al. applied a parallel BDDC pre-conditioner based on the corner constraints to the
36 Stokes flow using Taylor-Hood finite element [41]. They numerically demonstrated the
37 promising speedup property of their BDDC pre-conditioner as applied to benchmark
38 test problems of real-life relevance, even though optimal scalability was not achieved.

39 As the property of the discretized system to be solved is dependent on the nu-
40 matical methods used, the BDDC algorithms have been extended to the second or-
41 der elliptic problem with mixed and hybrid formulations, hybridizable discontinuous

*Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045-
7594, U.S.A, E-mail: xtu@math.ku.edu This work was supported in part by the NSF under
Contracts DMS-1419069 and DMS-1723066.

†Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045-
7594, U.S.A, E-mail: binwang@math.ku.edu This work was supported in part by the NSF under
Contract DMS-1419069.

42 Galerkin (HDG) methods [29, 30, 35]. In this study, we design BDDC pre-conditioners
 43 for trending non-conforming finite element methods, in particular, the weak Galerkin
 44 (WG) methods. The WG methods are a class of nonconforming finite element meth-
 45 ods, which were first introduced for second order elliptic problems by Wang and Ye
 46 [36]. The idea of WG is to introduce weak functions and their weak derivatives as
 47 distributions, which can be approximated by polynomials of different degrees on dif-
 48 ferent support. For example, for second order elliptic problems, weak functions have
 49 the form of $v = \{v_0, v_b\}$, where v_0 is defined inside each element and v_b is defined on
 50 the boundary of the element. v_0 and v_b can both be approximated by polynomials.
 51 The gradient operator is approximated by a *weak gradient* operator, which is further
 52 approximated by polynomials. These weakly defined functions and derivatives make
 53 the WG methods highly flexible in terms of approximating functions and finite ele-
 54 ment partition of the domain. The same *weak* concepts have been extended to other
 55 differential operators such as *divergence* and *curl*, which appears in applications like
 56 Stokes [38] and Maxwell [25] equations respectively.

57 As most finite element methods, the WG methods result in a large number of
 58 degrees of freedom and therefore require solving large linear systems with condition
 59 number deteriorating with the refinement of the mesh. Efficient fast solvers for the
 60 resulting linear system are necessary. However, relatively few attempts on designing
 61 fast solvers for the WG methods can be found in the literature; see [4]. An effective
 62 implementation of WG methods is to reduce the unknown variables to those associated
 63 with element boundaries through a Schur-complement approach. It can be further
 64 reduced to the subdomain interface. The subdomain interface problem can then be
 65 solved using the conjugate gradient method preconditioned with a BDDC algorithm.
 66 It is necessary to impose edge or face average constraints across the interface. By
 67 a change of variable [19, 14], the primal constraint on edge or face average can be
 68 converted to an explicit variable. The reduced system for the primal variables will
 69 be the coarse problem to solve. The BDDC preconditioner can be built based on
 70 such designed coarse problem, and thus be used as a preconditioner for the conjugate
 71 gradient method.

72 In a recent study [35], the authors proved the condition number bound of the
 73 BDDC preconditioned operator arising from elliptic problems with hybridizable dis-
 74 continuous Galerkin (HDG) discretizations. In this paper, a BDDC algorithm is fur-
 75 ther developed for weak Galerkin discretization with reduced polynomial basis func-
 76 tions. As in [35], we first establish the connection between the hybridized Raviart-
 77 Thomas(RT) method and the WG discretization and obtain the condition number
 78 estimate of the BDDC algorithm applied to the elliptic problem with the WG dis-
 79 cretization. We then consider the BDDC algorithms for the saddle point problem
 80 arising from the WG discretization for the incompressible Stokes problem. In [26], a
 81 similar saddle point problem is obtained by the HDG discretization for incompressible
 82 Stokes flow, where the resulting system is solved by an augmented Lagrange approach.
 83 An additional time dependent problem is introduced and solved by a backward-Euler
 84 method. Here, we solve the saddle point problem from WG discretization directly us-
 85 ing the BDDC methods. To the best of our knowledge, this is the first attempt for fast
 86 solvers applied to the Stokes problems with this type nonconforming discretization.
 87 There are many works on preconditioning the saddle point problems resulting from
 88 mixed finite element discretizations, such as [1, 2]. In those works, the original saddle
 89 point problems are reformulated to positive definite problems under specially defined
 90 inner products. In this paper, a *benign subspace* idea is used as in [18, 29, 40]. In the
 91 *benign subspace* approach, the positive definite system is obtained by carefully choos-

92 ing the coarse components in the BDDC preconditioner. Therefore, the formulation,
 93 implementation, and rate of convergence of the BDDC algorithm for Stokes are very
 94 similar to those for the positive definite systems arising from the elliptic problems.

95 We prove that the condition number bound for the Stokes problem with the WG
 96 discretization is as good as for the conforming discretization. We note that the WG
 97 discretization has been extended to polytopal meshes, [37, 24, 23, 38]. With the
 98 development of the domain decomposition methods for irregular subdomain shapes,
 99 [6, 13, 7, 39, 8, 9], we believe that the BDDC algorithms proposed in this paper can
 100 be extended to polytopal meshes as well. But we will restrict ourselves to the stan-
 101 dard finite element triangulation here and leave the complete analysis and numerical
 102 verification for more general polytopal meshes in the future study.

103 The rest of the paper is organized as follows. In Section 2, we introduce some
 104 notations for relevant Hilbert spaces. In Section 3, we introduce the Stokes problem
 105 and its weak Galerkin discretization. In Section 4, we reduce the linear system to
 106 an interface problem. Then, we introduce the BDDC preconditioner for the interface
 107 problem in Section 5, and give some auxiliary results in Section 6. In Section 7, we
 108 provide an estimate for the condition number of the BDDC preconditioned system.
 109 Finally, results from numerical experiments are presented and discussed in Section 8.

110 **2. Notations for some relevant Spaces.** Let $\Omega \in \mathbb{R}^d$ ($d = 2, 3$) be a bounded
 111 open set with Lipschitz continuous boundary. The Sobolev space $H^k(\Omega)$ for any
 112 integer $k \geq 1$ is a Hilbert space with inner product

$$113 \quad (u, v)_{H^k(\Omega)} = \sum_{|\alpha| \leq k} (D^\alpha u, D^\alpha v)_{L^2(\Omega)},$$

114 where the multi-index notation for derivatives

$$115 \quad D^\alpha u = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n} u = \frac{\partial^{|\alpha|} u}{\partial^{\alpha_1} x_1 \cdots \partial^{\alpha_n} x_n}$$

116 with $\alpha = (\alpha_1, \dots, \alpha_n)$ and $|\alpha| = \alpha_1 + \cdots + \alpha_n$. Correspondingly, we can define the
 117 induced norm $\|\cdot\|_{H^k(\Omega)}$

$$118 \quad \|u\|_{H^k(\Omega)}^2 = (u, u)_{H^k(\Omega)} = \sum_{|\alpha| \leq k} \int_{\Omega} |D^\alpha u|^2 dx,$$

119 and a semi-norm

$$120 \quad |u|_{H^k(\Omega)}^2 = \sum_{|\alpha|=k} \int_{\Omega} |D^\alpha u|^2 dx.$$

121 The space $H^0(\Omega)$ coincides with $L^2(\Omega)$, which is the space of square integrable
 122 functions on Ω , i.e.,

$$123 \quad L^2(\Omega) = \left\{ u : \int_{\Omega} |u|^2 dx < \infty \right\}.$$

124 The inner product and induced norm of $L^2(\Omega)$ are given by:

$$125 \quad (u, v)_{L^2(\Omega)} = \int_{\Omega} uv dx; \quad \|u\|_{L^2(\Omega)}^2 = \int_{\Omega} |u|^2 dx.$$

126 We define the subspace of $L^2(\Omega)$ with zero mean to be

$$127 \quad L_0^2(\Omega) = \left\{ u : u \in L^2(\Omega), \int_{\Omega} u dx = 0 \right\}.$$

128 Let H_Ω be the diameter of Ω . We have the following scaled norm for the Sobolev
129 space $H^1(\Omega)$:

$$130 \quad \|u\|_{s,H^1(\Omega)}^2 = \frac{1}{H_\Omega^2} \|u\|_{L^2(\Omega)}^2 + |u|_{H^1(\Omega)}^2 = \frac{1}{H_\Omega^2} \|u\|_{L^2(\Omega)}^2 + \int_{\Omega} |\nabla u|^2 dx,$$

131 with

$$132 \quad \nabla = \text{grad} = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right).$$

133 The subspace of $H^1(\Omega)$ with vanishing boundary values is denoted by

$$134 \quad H_0^1(\Omega) = \{v \in H^1(\Omega) : v = 0 \text{ on } \partial\Omega\}.$$

135 The spaces introduced above can be extended to spaces of vector-valued functions in
136 a straightforward way.

137 Also, we recall that the space $H(\text{div}; \Omega)$ is defined as the set of vector-valued
138 functions on Ω such that both the functions and their divergence are square integrable;
139 i.e.,

$$140 \quad H(\text{div}; \Omega) = \left\{ \mathbf{v} : \mathbf{v} \in [L^2(\Omega)]^d, \nabla \cdot \mathbf{v} \in L^2(\Omega) \right\}.$$

141 The scaled norm in $H(\text{div}; \Omega)$ is defined by

$$142 \quad \|\mathbf{v}\|_{s,H(\text{div}; \Omega)}^2 = \frac{1}{H_\Omega^2} \|\mathbf{v}\|_{L^2(\Omega)}^2 + \|\nabla \cdot \mathbf{v}\|_{L^2(\Omega)}^2.$$

143 **3. A Stokes problem and its weak Galerkin Discretization.** We con-
144 sider the primary velocity-pressure formulation for the Stokes problem on a bounded
145 polygonal domain Ω , in two dimensions ($d = 2$), or three dimensions ($d = 3$), with a
146 Dirichlet boundary condition:

$$147 \quad (3.1) \quad \begin{cases} -\Delta u + \nabla p = f & \text{in } \Omega, \\ \nabla \cdot u = 0 & \text{in } \Omega, \\ u = g & \text{on } \partial\Omega, \end{cases}$$

148 where $f \in [L^2(\Omega)]^d$, and $g \in [H^{1/2}(\partial\Omega)]^d$. Without loss of generality, we assume
149 that $g = 0$. The weak form in the primary velocity-pressure formulation for the Stokes
150 problem seeks $u \in [H_0^1(\Omega)]^d$ and $p \in L_0^2(\Omega)$ such that

$$151 \quad (3.2) \quad \begin{cases} (\nabla u, \nabla v) - (\nabla \cdot v, p) = (f, v) & \forall v \in [H_0^1(\Omega)]^d, \\ (\nabla \cdot u, q) = 0 & \forall q \in L_0^2(\Omega). \end{cases}$$

152 The idea of weak Galerkin finite element scheme [38] is to substitute the standard
153 function and differential operators with the weakly defined counterparts. A weak

154 function over the domain D is defined as $v = \{v_0, v_b\}$ such that $v_0 \in L^2(D)$ and
 155 $v_b \in L^2(\partial D)$. The v_0 part represents the value of v in the interior of D , while the
 156 v_b part represents the value of v on the boundary of D . Note that v_b does not bind
 157 itself with v_0 from the definition. In essence, weak functions relax the continuity
 158 property of the standard functions, thus to offer more flexibility in terms of variable
 159 representation. Following the notation in [38], we denote by $\mathcal{V}(D)$ the space of weak
 160 functions over the domain D

$$161 \quad \mathcal{V}(D) = \{v = \{v_0, v_b\} : v_0 \in L^2(D), v_b \in L^2(\partial D)\},$$

162 and the relevant vector-valued weak function space by

$$163 \quad [\mathcal{V}(D)]^d = \left\{ \mathbf{v} = \{\mathbf{v}_0, \mathbf{v}_b\} : \mathbf{v}_0 \in [L^2(D)]^d, \mathbf{v}_b \in [L^2(\partial D)]^d \right\},$$

164 and

$$165 \quad [V(D)]^d = \left\{ \mathbf{v} = \{\mathbf{v}_0, \mathbf{v}_b\} : \mathbf{v}_0 \in [L^2(D)]^d, \mathbf{v}_b \cdot \mathbf{n} \in L^2(\partial D) \right\}.$$

166 The space of weak gradient or divergence operators will be defined as the dual
 167 space of appropriate Hilbert space, in similar manner as the dual of $[L^2(D)]^d$ can
 168 be identified with itself by using the L^2 inner product as the action of the linear
 169 functionals. The following two definitions are [38, Definitions 2.1 and 2.3]:

170 **DEFINITION 1.** For any $\mathbf{v} \in [\mathcal{V}(D)]^d$, the weak gradient of \mathbf{v} is defined as the
 171 linear functional $\nabla_w \mathbf{v}$ in the dual space of $[H^1(D)]^d$ whose action on each $\mathbf{q} \in$
 172 $[H^1(D)]^{d \times d}$ is given by

$$173 \quad (\nabla_w \mathbf{v}, \mathbf{q})_D = -(\mathbf{v}_0, \nabla \cdot \mathbf{q})_D + \langle \mathbf{v}_b, \mathbf{q} \cdot \mathbf{n} \rangle_{\partial D},$$

174 where \mathbf{n} is the outward normal direction to ∂D .

175 **DEFINITION 2.** For any $\mathbf{v} \in [V(D)]^d$, the weak divergence of \mathbf{v} is defined as the
 176 linear functional $\nabla_w \cdot \mathbf{v}$ in the dual space of $H^1(D)$ whose action on each $\varphi \in H^1(D)$
 177 is given by

$$178 \quad (\nabla_w \cdot \mathbf{v}, \varphi)_D = -(\mathbf{v}_0, \nabla \varphi)_D + \langle \mathbf{v}_b \cdot \mathbf{n}, \varphi \rangle_{\partial D},$$

179 where \mathbf{n} is the outward normal direction to ∂D .

180 Now, we introduce the weak Galerkin finite element discretization for (3.1) as in
 181 [38]. First, we introduce the mesh of the domain, then we will define discontinuous
 182 weak Galerkin finite element spaces over the mesh. Let \mathcal{T}_h be a shape-regular and
 183 quasi-uniform triangulation of Ω , and the element in \mathcal{T}_h denoted by K . For any
 184 $K \in \mathcal{T}_h$, we denote by h_K the diameter of K with $h = \max_{K \in \mathcal{T}_h} h_K$. Define \mathcal{F}_h be the
 185 set of edges/faces of elements $K \in \mathcal{T}_h$. \mathcal{F}_h^i and \mathcal{F}_h^{∂} are subsets of \mathcal{F}_h , which consists of
 186 domain interior and boundary edges, respectively. For any domain D , let $P_k(D)$ be
 187 the space of polynomials of degree $\leq k$ on D . Define the weak Galerkin finite element
 188 spaces for the velocity variable associated with \mathcal{T}_h as follows:

$$189 \quad V_k = \left\{ v = \{v_0, v_b\} : \{v_0, v_b\}|_K \in [P_k(K)]^d \times [P_{k-1}(e)]^d, \forall K \in \mathcal{T}_h, e \subset \partial K \right\}.$$

190 Note that a function $v \in V_k$ has a single value v_b on each edge $e \in \mathcal{F}_h$. The
 191 subspace of V_k with vanishing boundary values on $\partial\Omega$ is denoted by

192 $V_k^0 = \{v = \{v_0, v_b\} \in V_k : v_b = 0 \text{ on } \partial\Omega\}.$

193 We denote a relevant matrix polynomial function space by

194 $\mathbf{Q}_{k-1} = \left\{ \mathbf{v} : \mathbf{v}|_K \in [P_{k-1}(K)]^{d \times d}, \forall K \in \mathcal{T}_h \right\}.$

195 For the pressure variable, define the following finite element space

196 $W_{k-1} = \{q : q \in L_0^2(\Omega), q|_K \in P_{k-1}(K)\}.$

197 Denote the discrete weak gradient operator by $\nabla_{w,k-1}$, and the discrete weak
198 divergence operator by $(\nabla_{w,k-1} \cdot \cdot)$, respectively. On the finite element space V_k , they
199 are defined as follows: for $v = \{v_0, v_b\} \in V_k$, on each element $K \in \mathcal{T}_h$, $\nabla_{w,k-1} v|_K \in$
200 $[P_{k-1}(K)]^{d \times d}$ and $\nabla_{w,k-1} \cdot v|_K \in P_{k-1}(K)$ are the unique solutions of the following
201 equations, respectively,

202 $(\nabla_{w,k-1} v|_K, \mathbf{q})_K = -(v_{0,K}, \nabla \cdot \mathbf{q})_K + \langle v_{b,K}, \mathbf{q} \cdot \mathbf{n} \rangle_{\partial K}, \quad \forall \mathbf{q} \in [P_{k-1}(K)]^{d \times d},$

203 $(\nabla_{w,k-1} \cdot v|_K, \varphi)_K = -(v_{0,K}, \nabla \varphi)_K + \langle v_{b,K} \cdot \mathbf{n}, \varphi \rangle_{\partial K}, \quad \forall \varphi \in P_{k-1}(K),$

204 where $v_{0,K}$ and $v_{b,K}$ are the restrictions of v_0 and v_b to K , respectively, $(u, w)_K =$
205 $\int_K u w dx$, and $\langle u, w \rangle_{\partial K} = \int_{\partial K} u w ds$. To simplify the notation, we shall drop the
206 subscript $k-1$ in the notation $\nabla_{w,k-1}$ and $(\nabla_{w,k-1} \cdot \cdot)$ for the discrete weak gradient
207 and the discrete weak divergence operators. We denote the L^2 inner product
208 over the triangulation as a summation over each element of the triangulation, for
209 example, $(\nabla_w u, \nabla_w w)_{\mathcal{T}_h} = \sum_{K \in \mathcal{T}_h} (\nabla_w u, \nabla_w w)_K$, $(\nabla_w \cdot v, q)_{\mathcal{T}_h} = \sum_{K \in \mathcal{T}_h} (\nabla_w \cdot v, q)_K$.

210 Let Q_0 be the L^2 projection from $[L^2(K)]^d$ onto $[P_k(K)]^d$, and Q_b be the L^2
211 projection from $[L^2(e)]^d$ onto $[P_{k-1}(e)]^d$, for $e \in \mathcal{F}_h$. We write the corresponding
212 projection operator for the weak function as $Q_h = \{Q_0, Q_b\}$. Next, we define three
213 bilinear forms as below

214 (3.3)
$$\begin{aligned} s(v, w) &= \sum_{K \in \mathcal{T}_h} h_K^{-1} \langle Q_b v_0 - v_b, Q_b w_0 - w_b \rangle_{\partial K}, \\ a(v, w) &= (\nabla_w v, \nabla_w w)_{\mathcal{T}_h} + s(v, w), \\ b(v, q) &= (\nabla_w \cdot v, q)_{\mathcal{T}_h}. \end{aligned}$$

215 The discrete problem resulting from the WG discretization can then be written
216 as: find $u_h = \{u_0, u_b\} \in V_k^0$ and $p_h \in W_{k-1}$ such that

217
$$\begin{cases} a(u_h, v) - b(v, p_h) = (f, v_0), & \forall v = \{v_0, v_b\} \in V_k^0, \\ b(u_h, q) = 0, & \forall q \in W_{k-1}. \end{cases}$$

218 We introduce the following operators: $A : V_k^0 \rightarrow V_k^0$, $B : V_k^0 \rightarrow W_{k-1}$, by

219 (3.4)
$$(Au_h, v) = a(u_h, v), (Bu_h, q) = -b(u_h, q).$$

220 Using these operators, the matrix form of the weak Galerkin scheme can be rep-
221 resented as

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} u_h \\ p_h \end{bmatrix} = \begin{bmatrix} f \\ 0 \end{bmatrix}.$$

223 At element level, for each K , given the edge component v_b of the velocity and
 224 the pressure p , the interior component v_0 of the velocity can be uniquely determined.
 225 Namely, v_0 can be eliminated in each element independently. We thus obtain the
 226 reduced system of v_b and p only with considerable smaller size but different sparsity
 227 pattern (denser than the full system) as below

$$\begin{bmatrix} A_{uu} & B_{pu}^T \\ B_{pu} & C_{pp} \end{bmatrix} \begin{bmatrix} u_{h,b} \\ p_h \end{bmatrix} = \begin{bmatrix} f_{ub} \\ f_p \end{bmatrix}.$$

229 Throughout the rest of the paper, we will work with the reduced system such
 230 obtained.

231 **4. Reduced Subdomain Interface Problem.** We decompose Ω into N non
 232 overlapping subdomain Ω_i with diameters H_i , $i = 1, \dots, N$, and set $H = \max_i H_i$.
 233 We assume that each subdomain is a union of shape-regular coarse triangles and that
 234 the number of such elements forming an individual subdomain is uniformly bounded.
 235 We define edges/faces as open sets shared by two subdomains. Two nodes belong to
 236 the same face when they are associated with the same pair of subdomains. Let Γ be
 237 the interface between the subdomains. The set of the interface nodes Γ_h is defined as
 238 $\Gamma_h := (\cup_{i \neq j} \partial\Omega_{i,h} \cap \partial\Omega_{j,h}) \setminus \partial\Omega_h$, where $\partial\Omega_{i,h}$ is the set of nodes on $\partial\Omega_i$ and $\partial\Omega_h$ is
 239 that of $\partial\Omega$. We assume the triangulation of each subdomain is quasi-uniform.

240 We decompose the discrete velocity and pressure spaces V_k and W_{k-1} into:

$$V_k = V_I \oplus \widehat{V}_\Gamma, \quad W_{k-1} = W_I \oplus W_0.$$

241 Here, V_I and W_I are products of subdomain interior velocity spaces $V_I^{(i)}$ and subdo-
 242 main interior pressure spaces $W_I^{(i)}$, respectively; i.e.,

$$V_I = \prod_{i=1}^N V_I^{(i)}, \quad W_I = \prod_{i=1}^N W_I^{(i)}.$$

243 The elements of $V_I^{(i)}$ are supported in the subdomain Ω_i and vanishes on its
 244 interface Γ_i , while the elements of $W_I^{(i)}$ are restrictions of the pressure variables to
 245 Ω_i which satisfy $\int_{\Omega_i} p_I^{(i)} = 0$. \widehat{V}_Γ is the subspace of edge functions on Γ , and W_0
 246 is the subspace of W with constant values $p_0^{(i)}$ in the subdomain Ω_i that satisfy
 247 $\sum_{i=1}^N p_0^{(i)} m(\Omega_i) = 0$, where $m(\Omega_i)$ is the measure of the subdomain Ω_i .

248 We denote the space of interface edge velocity variables of the subdomain Ω_i by
 249 $V_\Gamma^{(i)}$, and the associated product space by $V_\Gamma = \prod_{i=1}^N V_\Gamma^{(i)}$; generally edge functions
 250 in V_Γ are discontinuous across the interface. We define the restriction operators $R_\Gamma^{(i)} :
 251 \widehat{V}_\Gamma \rightarrow V_\Gamma^{(i)}$ to be an operator which maps functions in the continuous global interface
 252 edge variable space \widehat{V}_Γ to the subdomain component space $V_\Gamma^{(i)}$. Also, $R_\Gamma : \widehat{V}_\Gamma \rightarrow V_\Gamma$
 253 is the direct sum of $R_\Gamma^{(i)}$. We denote the spaces of the right-hand-side interior load
 254 vectors f_I and interface load vectors f_Γ by F_I and F_Γ , respectively. Similar notation
 255 conventions apply to the spaces \widehat{F}_Γ , \widehat{F}_Γ , \widehat{F}_Π , $F_\Delta^{(i)}$, $F_\Gamma^{(i)}$, and F_0 . We will use them
 256 throughout this paper without further explanation.

259 With the decomposition of the solution space, the global Stokes problem can be
 260 written as follows: find $(u_I, p_I, u_\Gamma, p_0) \in (V_I, W_I, \widehat{V}_\Gamma, W_0)$ such that

261 (4.1)
$$\begin{bmatrix} A_{II} & B_{II}^T & \widehat{A}_{\Gamma I}^T & 0 \\ B_{II} & C_{II} & \widehat{B}_{\Gamma I}^T & 0 \\ \widehat{A}_{\Gamma I} & \widehat{B}_{\Gamma I} & \widehat{A}_{\Gamma\Gamma} & \widehat{B}_{0\Gamma}^T \\ 0 & 0 & \widehat{B}_{0\Gamma} & 0 \end{bmatrix} \begin{bmatrix} u_I \\ p_I \\ u_\Gamma \\ p_0 \end{bmatrix} = \begin{bmatrix} f_I \\ f_{p_I} \\ f_\Gamma \\ 0 \end{bmatrix}.$$

262 The lower left block in (4.1) is zero, because the bilinear form $b(u_h, \varphi)$ does not
 263 explicitly relate to u_I and p_I for any $u_h \in V_k^0$ and $\varphi \in W_0$. The leading two-by-two
 264 block of the matrix above can be rewritten into a block diagonal form with each block
 265 corresponding to an independent subdomain problem. And the global problem can
 266 be assembled from the subdomain problems, defined as below

267 (4.2)
$$\begin{bmatrix} A_{II}^{(i)} & B_{II}^{(i)T} & \widehat{A}_{\Gamma I}^{(i)T} & 0 \\ B_{II}^{(i)} & C_{II}^{(i)} & \widehat{B}_{\Gamma I}^{(i)T} & 0 \\ \widehat{A}_{\Gamma I}^{(i)} & \widehat{B}_{\Gamma I}^{(i)} & \widehat{A}_{\Gamma\Gamma}^{(i)} & \widehat{B}_{0\Gamma}^{(i)T} \\ 0 & 0 & \widehat{B}_{0\Gamma}^{(i)} & 0 \end{bmatrix} \begin{bmatrix} u_I^{(i)} \\ p_I^{(i)} \\ u_\Gamma^{(i)} \\ p_0^{(i)} \end{bmatrix} = \begin{bmatrix} f_I^{(i)} \\ f_{p_I}^{(i)} \\ f_\Gamma^{(i)} \\ 0 \end{bmatrix}.$$

268 We can eliminate the subdomain interior variables $u_I^{(i)}$ and $p_I^{(i)}$ in each subdo-
 269 main independently, and assemble the global interface problem from the subdomain
 270 interface problems.

271 **DEFINITION 3.** (*Schur complement of the Stokes problem*) Define the subdomain
 272 *Schur complement* $S_\Gamma^{(i)}$ for the Stokes problem as follows: given $u_\Gamma^{(i)} \in V_\Gamma^{(i)}$, determine
 273 $S_\Gamma^{(i)} u_\Gamma^{(i)} \in F_\Gamma^{(i)}$ such that

274 (4.3)
$$\begin{bmatrix} A_{II}^{(i)} & B_{II}^{(i)T} & A_{\Gamma I}^{(i)T} \\ B_{II}^{(i)} & C_{II}^{(i)} & B_{\Gamma I}^{(i)T} \\ A_{\Gamma I}^{(i)} & B_{\Gamma I}^{(i)} & A_{\Gamma\Gamma}^{(i)} \end{bmatrix} \begin{bmatrix} u_I^{(i)} \\ p_I^{(i)} \\ u_\Gamma^{(i)} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ 0 \\ S_\Gamma^{(i)} u_\Gamma^{(i)} \end{bmatrix}.$$

275 The global interface problem can then be written as: to find $(u_\Gamma, p_0) \in (\widehat{V}_\Gamma, W_0)$,
 276 such that

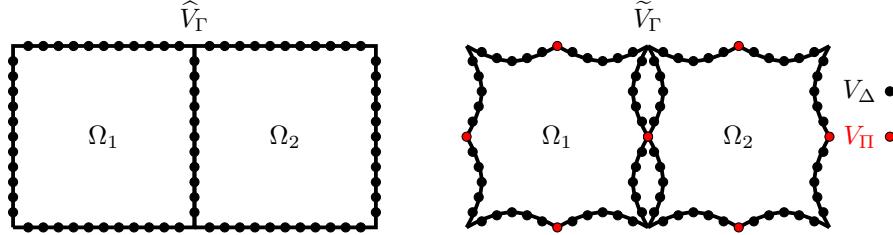
277 (4.4)
$$\widehat{S} \begin{bmatrix} u_\Gamma \\ p_0 \end{bmatrix} = \begin{bmatrix} g_\Gamma \\ 0 \end{bmatrix}.$$

Here the global interface matrix \widehat{S} is defined as

$$\widehat{S} = \begin{bmatrix} \widehat{S}_\Gamma & \widehat{B}_{0\Gamma}^T \\ \widehat{B}_{0\Gamma} & 0 \end{bmatrix},$$

278 where $\widehat{S}_\Gamma = \sum_{i=1}^N R_\Gamma^{(i)T} S_\Gamma^{(i)} R_\Gamma^{(i)}$, $\widehat{B}_{0\Gamma} = \sum_{i=1}^N B_{0\Gamma}^{(i)} R_\Gamma^{(i)}$, and
 279 $g_\Gamma = \sum_{i=1}^N R_\Gamma^{(i)T} \left\{ f_\Gamma^{(i)} - \left[\begin{bmatrix} A_{\Gamma I}^{(i)} & B_{\Gamma I}^{(i)T} \end{bmatrix} \left[\begin{bmatrix} A_{II}^{(i)} & B_{II}^{(i)T} \\ B_{II}^{(i)} & C_{II}^{(i)} \end{bmatrix}^{-1} \begin{bmatrix} f_I^{(i)} \\ f_{p_I}^{(i)} \end{bmatrix} \right] \right\}.$

FIG. 1. Left: \widehat{V}_Γ for the subdomains Ω_1 and Ω_2 ; Right: \widetilde{V}_Γ for the subdomains Ω_1 and Ω_2 , where the midpoint of each edge is chosen as the primal unknown. The red dots are the primal variable V_Π and the black dots are the dual variable V_Δ .



280 The operator \widehat{S}_Γ is symmetric positive definite but \widehat{S} is symmetric indefinite. In
281 what follows, we will propose a BDDC preconditioner, and show that the precondi-
282 tioned operator is positive definite when restricted to a proper subspace. A precon-
283 ditioned conjugate gradient method can then be used to solve the global interface
284 problem.

285 **5. The BDDC Preconditioner.** The BDDC (Balancing Domain Decomposi-
286 tion by Constraints) algorithm is a variant of the two-level Neumann-Neumann type
287 preconditioner. It was introduced and analyzed by Dohrmann, Mandel, and Tezaur
288 [5, 20, 21] for standard finite element discretization of elliptic problems. The BBDC
289 preconditioner consists of local solvers for the subdomain problems and the artisti-
290 cally designed global coarse-level problem. The coarse level problem is assembled
291 from primal variables, such as edge/face averages across the subdomain interface on
292 which the continuity constraints are enforced. In contrast to earlier versions of balanc-
293 ing Neumann-Neumann methods, the BDDC methods do not need to solve singular
294 systems and the algorithms demonstrate good scalability for parallel computation.

295 In order to introduce the BDDC preconditioner, we first introduce a partially
296 assembled interface space \widetilde{V}_Γ by

$$297 \quad \widetilde{V}_\Gamma = \widehat{V}_\Pi \oplus V_\Delta = \widehat{V}_\Pi \oplus \left(\prod_{i=1}^N V_\Delta^{(i)} \right).$$

298 Here, \widehat{V}_Π is the continuous, coarse level, primal interface edge velocity space. The
299 variables in this space are called the primal unknowns, and each primal unknown is
300 shared by the adjacent subdomains. The remaining interface velocity variables live
301 in the complimentary dual space V_Δ . This space is the direct sum of the $V_\Delta^{(i)}$, which
302 are spanned by basis functions with vanishing value at the primal degrees of freedom.
303 The functions in V_Δ are generally discontinuous, see Figure 1. Thus, in the space
304 \widetilde{V}_Γ , we relax the continuity constraints across the interface at the dual variables but
305 retain the continuity at the primal variables, which makes all the component linear
306 systems in the preconditioner nonsingular.

307 We need to introduce several restriction, extension, and scaling operators between
308 different spaces. $\overline{R}_\Gamma^{(i)} : \widetilde{V}_\Gamma \rightarrow V_\Gamma^{(i)}$ restricts functions in the space \widetilde{V}_Γ to the components
309 $V_\Gamma^{(i)}$ of the subdomain Ω_i . $\overline{R}_\Gamma : \widetilde{V}_\Gamma \rightarrow V_\Gamma$ is the direct sum of $\overline{R}_\Gamma^{(i)}$. $R_\Delta^{(i)} : \widehat{V}_\Gamma \rightarrow V_\Delta^{(i)}$
310 maps the functions from \widehat{V}_Γ to $V_\Delta^{(i)}$, its dual subdomain components. $R_{\Gamma\Pi} : \widehat{V}_\Gamma \rightarrow \widehat{V}_\Pi$
311 is a restriction operator from \widehat{V}_Γ to its subspace \widehat{V}_Π . $\widetilde{R}_\Gamma : \widetilde{V}_\Gamma \rightarrow \widetilde{V}_\Gamma$ is the direct sum

313 of $R_{\Gamma\Pi}$ and $R_{\Delta}^{(i)}$. We define the positive scaling factor $\delta_i^{\dagger}(x)$ as follows:

314

$$\delta_i^{\dagger}(x) = \frac{1}{\text{card}(\mathcal{I}_x)}, \quad x \in \partial\Omega_{i,h} \cap \Gamma_h,$$

315 where \mathcal{I}_x is the set of indices of the subdomains that have x on their boundaries, and
316 $\text{card}(\mathcal{I}_x)$ counts the number of the subdomain boundaries to which x belongs. It is
317 clear that $\delta_i^{\dagger}(x)$'s provide a partition of unity, i.e., $\sum_{i \in \mathcal{I}_x} \delta_i^{\dagger}(x) = 1$, for any $x \in \Gamma_h$.
318 We note that $\delta_i^{\dagger}(x)$ is constant on each edge. Multiplying each row of $R_{\Delta}^{(i)}$ with the
319 scaling factor gives us $R_{D,\Delta}^{(i)}$. The scaled operators $\tilde{R}_{D,\Gamma}$ is the direct sum of $R_{\Gamma\Pi}$ and
320 $R_{D,\Delta}^{(i)}$.

321 The partially assembled Schur complement \tilde{S}_{Γ} , defined on the interface velocity
322 space \tilde{V}_{Γ} , can be represented as follows: given $u_{\Gamma} \in \tilde{V}_{\Gamma}$, $\tilde{S}_{\Gamma}u_{\Gamma} \in \tilde{F}_{\Gamma}$ satisfies

323

$$\begin{bmatrix} A_{II}^{(1)} & B_{II}^{(1)T} & A_{\Delta I}^{(1)T} & \cdots & \tilde{A}_{\Pi I}^{(1)T} \\ B_{II}^{(1)} & C_{II}^{(1)} & B_{\Delta I}^{(1)T} & \cdots & \tilde{B}_{\Pi I}^{(1)T} \\ A_{\Delta I}^{(1)} & B_{\Delta I}^{(1)} & A_{\Delta\Delta}^{(1)} & \cdots & \tilde{A}_{\Pi\Delta}^{(1)T} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \tilde{A}_{\Pi I}^{(1)} & \tilde{B}_{\Pi I}^{(1)} & \tilde{A}_{\Pi\Delta}^{(1)} & \cdots & \tilde{A}_{\Pi\Pi}^{(1)} \end{bmatrix} \begin{bmatrix} u_I^{(1)} \\ p_I^{(1)} \\ u_{\Delta}^{(1)} \\ \vdots \\ u_{\Pi}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ 0 \\ (\tilde{S}_{\Gamma}u_{\Gamma})_{\Delta}^{(1)} \\ \vdots \\ (\tilde{S}_{\Gamma}u_{\Gamma})_{\Pi} \end{bmatrix}.$$

324 Here, $\tilde{A}_{\Pi\Pi} = \sum_{i=1}^N R_{\Pi}^{(i)T} A_{\Pi\Pi}^{(i)} R_{\Pi}^{(i)}$, $\tilde{A}_{\Pi I}^{(i)} = R_{\Pi}^{(i)T} A_{\Pi I}^{(i)}$, $\tilde{A}_{\Pi\Delta}^{(i)} = R_{\Pi}^{(i)T} A_{\Pi\Delta}^{(i)}$, and $\tilde{B}_{\Pi I}^{(i)} =$
325 $R_{\Pi}^{(i)T} B_{\Pi I}^{(i)}$.

326 Based on this definition, we can also obtain \tilde{S}_{Γ} from subdomain Schur complements
327 $S_{\Gamma}^{(i)}$ by assembling with respect to the global degrees of freedom of the primal
328 interface velocities, i.e.,

329 (5.1)
$$\tilde{S}_{\Gamma} = \bar{R}_{\Gamma}^T S_{\Gamma} \bar{R}_{\Gamma}.$$

330 Here, we denote the direct sum of $S_{\Gamma}^{(i)}$ by S_{Γ} . The global interface Schur operator \hat{S}_{Γ}
331 on the continuous interface velocity space \hat{V}_{Γ} can be obtained by further assembling
332 with respect to the dual interface variables, i.e.,

333 (5.2)
$$\hat{S}_{\Gamma} = \tilde{R}_{\Gamma}^T \tilde{S}_{\Gamma} \tilde{R}_{\Gamma} = R_{\Gamma}^T S_{\Gamma} R_{\Gamma}.$$

334 We note that, for any $x_{\Gamma} \in \tilde{V}_{\Gamma}$ with $x_{\Gamma}^T \tilde{S}_{\Gamma} x_{\Gamma} = 0$, x_{Γ} has to be a constant on each
335 subdomain. Due to the continuity of the primal components of x_{Γ} and the Dirichlet
336 boundary condition of (3.1), x_{Γ} has to be zero and therefore \tilde{S}_{Γ} is symmetric positive
337 definite.

338 Correspondingly, we define an operator $\tilde{B}_{0\Gamma}$, which maps the partially assembled
339 interface velocity space \tilde{V}_{Γ} into F_0 , the space of right-hand sides corresponding to W_0 .
340 $\tilde{B}_{0\Gamma}$ can be obtained from the subdomain operators $B_{0\Gamma}^{(i)}$ by assembling with respect to
341 the primal interface velocity part, i.e., $\tilde{B}_{0\Gamma} = \sum_{i=1}^N B_{0\Gamma}^{(i)} \bar{R}_{\Gamma}^{(i)}$. Similarly, the operator
342 $\hat{B}_{0\Gamma}$ can be obtained from the partially assembled operator $\tilde{B}_{0\Gamma}$ by further assembling
343 with respect to the dual interface velocity variables on the subdomain interfaces, i.e.,
344 $\hat{B}_{0\Gamma} = \tilde{B}_{0\Gamma} \bar{R}_{\Gamma}$. By the definition, we have that the $\tilde{B}_{0\Gamma}$ has a full row rank since $\hat{B}_{0\Gamma}$
345 does.

346 Let

347 (5.3)
$$\tilde{R}_D = \begin{bmatrix} \tilde{R}_{D,\Gamma} & I \end{bmatrix}, \quad \tilde{S} = \begin{bmatrix} \tilde{S}_\Gamma & \tilde{B}_{0\Gamma}^T \\ \tilde{B}_{0\Gamma} & 0 \end{bmatrix}.$$

348 Due to the positive definiteness of \tilde{S}_Γ and the full row rank of $\tilde{B}_{0\Gamma}$, \tilde{S} is invertible and
349 we can define the preconditioner for solving the global interface Stokes problem as

350
$$M^{-1} = \tilde{R}_D^T \tilde{S}^{-1} \tilde{R}_D.$$

351 Note that $\tilde{R}_{D,\Gamma}$ is of full rank and that the preconditioner is nonsingular. The pre-
352 conditioned BDDC algorithm is then of the form: to find $(u_\Gamma, p_0) \in (\hat{V}_\Gamma, W_0)$, such
353 that

354 (5.4)
$$M^{-1} \hat{S} \begin{bmatrix} u_\Gamma \\ p_0 \end{bmatrix} = M^{-1} \begin{bmatrix} g_\Gamma \\ 0 \end{bmatrix}.$$

355 We require that $\int_{\partial\Omega_i} u_\Delta^{(i)} \cdot \mathbf{n}_i = 0$, for all the dual interface velocity variables
356 $u_\Delta^{(i)} \in V_\Delta^{(i)}$, with \mathbf{n}_i the unit outward normal of $\partial\Omega_i$; see [18, 29]. We will refer to this
357 assumption as the divergence free constraint for the dual velocity variables. When the
358 Conjugate Gradient (CG) method is used to solve the preconditioned system (5.4), the
359 divergence free constraint can ensure the CG iterations will be in a special subspace
360 where the preconditioned operator is positive definite and therefore the CG method
361 can be applied. In order to satisfy this constraint, we choose the primal variables
362 which are spanned by subdomain interface edge/face basis functions with constant
363 values on these edges/faces for two/three dimensions. We change the variables so
364 that the degree of freedom of each primal constraint is explicit; see [19, 14]. The
365 dual space is correspondingly spanned by the remaining interface degrees of freedom
366 with zero average values over the interface edge/face. This constraint is critical to the
367 design of the preconditioner, as we will see more details in Section 6.

368 At the end of this section, we discuss the implementation of the preconditioner.
369 The main operation is the product of \tilde{S}^{-1} with a vector, which requires solving a
370 coarse problem related to the primal variables we choose and independent subdomain
371 Stokes problems with Neumann type boundary conditions. The size of the coarse
372 problem will increase with the increasing of the number of the subdomains and it can
373 be a bottleneck of the algorithm. The multilevel extension of the algorithms can be
374 explored as in [32, 31, 22].

375 **6. Some Auxiliary Results.** We adopt the convention that C denotes a generic
376 constant independent of the mesh size h and subdomain size H . In general, its value
377 may vary at different instances.

378 First, we list two useful results. For shape regular partition \mathcal{T}_h as detailed in [38],
379 the following trace and inverse inequalities hold; see [37].

380 **LEMMA 4. (Trace Inequality)** *There exists a constant C such that*

381 (6.1)
$$\|g\|_e^2 \leq C \left(h_K^{-1} \|g\|_K^2 + h_K \|\nabla g\|_K^2 \right),$$

382 where $g \in H^1(K)$, and K is an element of \mathcal{T}_h with e as an edge/face.

383 LEMMA 5. (*Inverse Inequality*) There exists a constant $C = C(k)$ such that

384 (6.2) $\|\nabla g\|_K \leq C(k)h_K^{-1}\|g\|_K, \quad \forall K \in \mathcal{T}_h$

385 for any piecewise polynomial g of degree k on \mathcal{T}_h .

386 We collect a few results of the weak Galerkin finite element scheme, which will
387 be used in our analysis of the BDDC preconditioner. Note that the discrete weak
388 velocity function space V_k^0 is a normed linear space with a triple-bar norm given by
389 [38, (4.1)]

390 (6.3) $\|v\|^2 = \sum_{K \in \mathcal{T}_h} \|\nabla_w v\|_K^2 + \sum_{K \in \mathcal{T}_h} h_K^{-1} \|Q_b v_0 - v_b\|_{\partial K}^2.$

391

392 LEMMA 6. For the weak Galerkin scheme described in Section 3, the following
393 results hold:

- 394 1. For any $v = \{v_0, v_b\} \in V_k$, we have $\sum_{T \in \mathcal{T}_h} \|\nabla v_0\|_T^2 \leq C\|v\|^2$;
395 2. For any $v \in V_k^0$, $a(v, v) = \|v\|^2$;
396 3. For any $v, w \in V_k^0$, $|a(v, w)| \leq \|v\| \|w\|$;
397 4. For any $v = \{v_0, v_b\} \in V_k^0$, $\rho \in W_{k-1}$, $|b(v, \rho)| \leq C\|v\| \|\rho\|_{L^2}$;
398 5. For any $\rho \in W_{k-1}$, $\sup_{v \in V_k^0} \frac{b(v, \rho)}{\|v\|_w} \geq \beta \|\rho\|_{L^2}$, where β is positive constant
399 independent of the mesh size h .

400 *Proof.* The first result is in [38, Lemma A.2]; the second and third results give the
401 coercivity and boundedness property of the bilinear form $a(\cdot, \cdot)$, which are proved in
402 [38, Lemma 4.1]. The fourth result is the boundedness property of the bilinear form
403 $b(\cdot, \cdot)$. This can be proved as follows.

404 $|b(v, \rho)| = \left| \sum_{K \in \mathcal{T}_h} (\nabla_w \cdot v, \rho)_K \right|$
405 $= \left| \sum_{K \in \mathcal{T}_h} (-(v_0, \nabla \rho)_K + (v_b \cdot n, \rho)_{\partial K}) \right|$
406 $= \left| \sum_{K \in \mathcal{T}_h} ((\nabla \cdot v_0, \rho)_K - ((Q_b v_0 - v_b) \cdot n, \rho)_{\partial K}) \right|$
407 $\leq C \left(\sum_{K \in \mathcal{T}_h} \|\nabla v_0\|_{L^2(K)}^2 \right)^{1/2} \left(\sum_{K \in \mathcal{T}_h} \|\rho\|_{L^2(K)}^2 \right)^{1/2}$
408 $+ C \left(\sum_{K \in \mathcal{T}_h} h_K^{-1} \|v_b - Q_b v_0\|_{L^2(\partial K)}^2 \right)^{1/2} \left(\sum_{K \in \mathcal{T}_h} h_k \|\rho\|_{L^2(\partial K)}^2 \right)^{1/2}$
409 $\leq C\|v\| \|\rho\|_{L^2},$

410 where we use the definition of weak divergence for the second equality, and integration
411 by parts for the third equality. We use the Cauchy-Schwarz inequality for the fourth
412 inequality. Part (1) of Lemma 6, the definition of the triple-bar norm (6.3), and the
413 trace inequality (6.1) and the inverse inequality (6.2) for the last inequality.

414 The last result is the discrete inf-sup condition, which is proved in [38, Lemma
415 4.3]. These results also hold for the subdomain Ω_i . It follows that the weak Galerkin
416 scheme is well-posed for the global interface problem and local subdomain problems. \square

418 We introduce several conceptual tools which will be useful in our analysis of the
 419 BDDC preconditioner.

420 **DEFINITION 7.** (*Schur complement of the subdomain elliptic problem*) *The sub-*
 421 *domain Schur complement for the elliptic problem, denoted by $S_{\Gamma, E}^{(i)}$, is defined as*
 422 *follows: given $u_{\Gamma}^{(i)} \in V_{\Gamma}^{(i)}$, determine $S_{\Gamma, E}^{(i)} u_{\Gamma}^{(i)} \in F_{\Gamma}^{(i)}$ such that*

$$423 \quad A^{(i)} \begin{bmatrix} u_I^{(i)} \\ u_{\Gamma}^{(i)} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ S_{\Gamma, E}^{(i)} u_{\Gamma}^{(i)} \end{bmatrix},$$

$$424 \quad \text{where } A^{(i)} = \begin{bmatrix} A_{II}^{(i)} & A_{\Gamma I}^{(i)T} \\ A_{\Gamma I}^{(i)} & A_{\Gamma\Gamma}^{(i)} \end{bmatrix}.$$

425 Since the subdomain elliptic problem $A^{(i)}$ is symmetric positive definite [36], the
 426 Schur complement $S_{\Gamma, E}^{(i)}$ is also symmetric positive definite by the inertia of Schur
 427 complements [19]. Thus, we can define the norm

$$428 \quad \left| u^{(i)} \right|_{A^{(i)}}^2 = u^{(i)T} A^{(i)} u^{(i)} = a(u^{(i)}, u^{(i)}), \text{ for all } u^{(i)} \in V^{(i)},$$

429 and

$$430 \quad \left| u_{\Gamma}^{(i)} \right|_{S_{\Gamma, E}^{(i)}}^2 = u_{\Gamma}^{(i)T} S_{\Gamma, E}^{(i)} u_{\Gamma}^{(i)}, \text{ for all } u_{\Gamma}^{(i)} \in V_{\Gamma}^{(i)}.$$

431 Similarly, the subdomain Schur complements for the Stokes problems, defined in
 432 (4.3), are symmetric, positive semi-definite [18]. They are singular for any floating
 433 subdomains, by which we mean the boundary of the subdomain does not intersect
 434 with the global domain boundary $\partial\Omega$. Thus, we can define the $S_{\Gamma}^{(i)}$ – seminorms by

$$435 \quad \left| u_{\Gamma}^{(i)} \right|_{S_{\Gamma}^{(i)}}^2 = u_{\Gamma}^{(i)T} S_{\Gamma}^{(i)} u_{\Gamma}^{(i)}, \text{ for all } u_{\Gamma}^{(i)} \in V_{\Gamma}^{(i)}.$$

436 It follows that

$$437 \quad \left| u_{\Gamma} \right|_{S_{\Gamma}}^2 = u_{\Gamma}^T S_{\Gamma} u_{\Gamma} = \sum_{i=1}^N \left| u_{\Gamma}^{(i)} \right|_{S_{\Gamma}^{(i)}}^2.$$

438 The fully and partially assembled global interface velocity operators \widehat{S}_{Γ} and \widetilde{S}_{Γ} ,
 439 given in (5.2) and (5.1), are both symmetric, positive definite because of the Dirichlet
 440 boundary conditions on $\partial\Omega$ and the adequacy of the primal continuity constraints
 441 for the divergence free condition. In similar way as before, we define the \widehat{S}_{Γ} – and
 442 \widetilde{S}_{Γ} – norms on the spaces \widehat{V}_{Γ} and \widetilde{V}_{Γ} , respectively, as below.

$$443 \quad \|u_{\Gamma}\|_{\widehat{S}_{\Gamma}}^2 = u_{\Gamma}^T \widehat{S}_{\Gamma} u_{\Gamma} = u_{\Gamma}^T R_{\Gamma}^T S_{\Gamma} R_{\Gamma} u_{\Gamma} = |R_{\Gamma} u_{\Gamma}|_{S_{\Gamma}}^2, \quad \forall u_{\Gamma} \in \widehat{V}_{\Gamma},$$

$$444 \quad \|u_{\Gamma}\|_{\widetilde{S}_{\Gamma}}^2 = u_{\Gamma}^T \widetilde{S}_{\Gamma} u_{\Gamma} = u_{\Gamma}^T \overline{R}_{\Gamma}^T S_{\Gamma} \overline{R}_{\Gamma} u_{\Gamma} = |\overline{R}_{\Gamma} u_{\Gamma}|_{S_{\Gamma}}^2, \quad \forall u_{\Gamma} \in \widetilde{V}_{\Gamma}.$$

445 The global interface operator \widehat{S} and \widetilde{S} , introduced in (4.4) and (5.3), are sym-
 446 metric indefinite on the space $\widehat{V}_{\Gamma} \times W_0$ and $\widetilde{V}_{\Gamma} \times W_0$, respectively. However, when
 447 restricted to the proper subspaces, these operators can be positive semidefinite, and
 448 we can thus define a \widehat{S} – and \widetilde{S} – seminorms on these subspaces. We call such subspaces
 449 as the benign subspaces, and denote them by $\widehat{V}_{\Gamma, B} \times W_0$ and $\widetilde{V}_{\Gamma, B} \times W_0$, respectively.
 450 Specifically, they can be defined as follows.

451 **DEFINITION 8. (Benign subspaces)**

452 $\widehat{V}_{\Gamma,B} = \{u_{\Gamma} \in \widehat{V}_{\Gamma} \mid \widehat{B}_{0\Gamma} u_{\Gamma} = 0\} \quad \text{and} \quad \widetilde{V}_{\Gamma,B} = \{u_{\Gamma} \in \widetilde{V}_{\Gamma} \mid \widetilde{B}_{0\Gamma} u_{\Gamma} = 0\}.$

453 It follows that we can define

454 $|u|_{\widehat{S}}^2 = u^T \widehat{S} u, \quad \forall u = (u_{\Gamma}, p_0) \in \widehat{V}_{\Gamma,B} \times W_0,$

455 $|u|_{\widetilde{S}}^2 = u^T \widetilde{S} u, \quad \forall u = (u_{\Gamma}, p_0) \in \widetilde{V}_{\Gamma,B} \times W_0.$

456 We can show by direct computation that the following facts hold.

457 $|u|_{\widehat{S}}^2 = \|u_{\Gamma}\|_{\widehat{S}_{\Gamma}}^2, \quad \forall u = (u_{\Gamma}, p_0) \in \widehat{V}_{\Gamma,B} \times W_0,$

458 $|u|_{\widetilde{S}}^2 = \|u_{\Gamma}\|_{\widetilde{S}_{\Gamma}}^2, \quad \forall u = (u_{\Gamma}, p_0) \in \widetilde{V}_{\Gamma,B} \times W_0.$

459 We denote the null space of the \widehat{S} -seminorm operator on the space $\widehat{V}_{\Gamma,B} \times W_0$ by

460 \widehat{Z} . It is easy to see that this space is comprised of elements $u = (0, p_0) \in \widehat{V}_{\Gamma,B} \times W_0$.

461 The following lemma is crucial to the analysis of the preconditioned BDDC operator. The proof can be found in [18, 29].

463 **LEMMA 9.** *Under the divergence free constraint for the dual interface velocities,*
 464 *introduced in Section 5, we have $\widetilde{R}_D^T u \in \widehat{V}_{\Gamma,B} \times W_0$ for any $u \in \widetilde{V}_{\Gamma,B} \times W_0$.*

465 With the choice of the primal velocity continuity constraints of the BDDC algorithm,
 466 the preconditioned BDDC operator $M^{-1} \widehat{S}$ is positive definite on the quotient space,
 467 and correspondingly, we can use the preconditioned conjugate gradient method when
 468 the iterations are restricted to the quotient space. The design of the BDDC preconditioner
 469 and the result from Lemma 9 guarantee that the iterations of the preconditioned
 470 conjugate gradient method will stay in the quotient subspace if the initialization lies
 471 in the quotient subspace [18].

472 Next we introduce two important extension operators for the trace over the sub-
 473 domain boundary.

474 **DEFINITION 10. (Discrete harmonic extension)** *The discrete harmonic extension*
 475 *of $\gamma \in V_{\Gamma}^{(i)}$ over the subdomain Ω_i , denoted by $\mathcal{H}(\gamma) : V_{\Gamma}^{(i)} \rightarrow V^{(i)}$, satisfies the*
 476 *following:*

477
$$\begin{cases} a(\mathcal{H}(\gamma), v) = 0, & \forall v = \{v_0, v_b\} \in V_k^0(\Omega_i), \\ \mathcal{H}(\gamma) |_{\partial\Omega_i} = \gamma. \end{cases}$$

478 *The bilinear form $a(\cdot, \cdot)$ is defined in (3.3).*

479 **DEFINITION 11. (Discrete Stokes extension)** *The discrete Stokes extension of $\gamma \in$*
 480 *$V_{\Gamma}^{(i)}$ over the subdomain Ω_i , denoted by $\mathcal{S}(\gamma) : V_{\Gamma}^{(i)} \rightarrow V^{(i)}$, satisfies the following:*

481
$$\begin{cases} a(\mathcal{S}(\gamma), v) - b(v, \mathcal{P}(\gamma)) = 0, & \forall v = \{v_0, v_b\} \in V_k^0(\Omega_i), \\ b(\mathcal{S}(\gamma), q) = 0, & \forall q \in W_{k-1}(\Omega_i), \\ \mathcal{S}(\gamma) |_{\partial\Omega_i} = \gamma, \end{cases}$$

482 *where $\mathcal{P}(\gamma)$ is the corresponding pressure extension with zero mean value living in the*
 483 *space $W_{k-1}(\Omega_i)$. The bilinear forms $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$ are defined in (3.3).*

484 The connection between the discrete harmonic/Stokes extensions and the Schur
 485 complements of the corresponding linear systems can be revealed as follows.

486 REMARK 1. *By definition, it is clear that*

$$487 \quad \left| u_{\Gamma}^{(i)} \right|_{S_{\Gamma, E}^{(i)}}^2 = \left| \mathcal{H} \left(u_{\Gamma}^{(i)} \right) \right|_{A^{(i)}}^2 = \inf_{u^{(i)} \in V^{(i)}, u^{(i)}|_{\partial\Omega_i} = u_{\Gamma}^{(i)}} \left| u^{(i)} \right|_{A^{(i)}}^2,$$

488 and that

$$489 \quad \left| u_{\Gamma}^{(i)} \right|_{S_{\Gamma}^{(i)}}^2 = \left| \mathcal{S} \left(u_{\Gamma}^{(i)} \right) \right|_{A^{(i)}}^2 = \inf_{u^{(i)} \in V^{(i)}, u^{(i)}|_{\partial\Omega_i} = u_{\Gamma}^{(i)}, B^{(i)}u^{(i)} = 0} \left| u^{(i)} \right|_{A^{(i)}}^2.$$

490 For the same edge velocities $u_{\Gamma}^{(i)}$ over the subdomain boundary $\partial\Omega_i$, we have

$$491 \quad \left| \mathcal{H} \left(u_{\Gamma}^{(i)} \right) \right|_{A^{(i)}}^2 \leq \left| \mathcal{S} \left(u_{\Gamma}^{(i)} \right) \right|_{A^{(i)}}^2,$$

492 since the infimum over a larger set is smaller. It follows that

$$493 \quad \left| u_{\Gamma}^{(i)} \right|_{S_{\Gamma, E}^{(i)}}^2 \leq \left| u_{\Gamma}^{(i)} \right|_{S_{\Gamma}^{(i)}}^2.$$

494 Next, we prove the connection between the edge velocity seminorms defined by the
 495 Schur complements of the elliptic and Stokes problems for the same subdomain. Sim-
 496 ilar proof for the conforming discretizations can be found in [2].

497 LEMMA 12. *For any $u_{\Gamma}^{(i)} \in V_{\Gamma}^{(i)}$, we have*

$$498 \quad C \frac{\beta^2}{(1 + \beta)^2} \left| u_{\Gamma}^{(i)} \right|_{S_{\Gamma}^{(i)}}^2 \leq \left| u_{\Gamma}^{(i)} \right|_{S_{\Gamma, E}^{(i)}}^2 \leq \left| u_{\Gamma}^{(i)} \right|_{S_{\Gamma}^{(i)}}^2,$$

499 where β is the inf-sup stability constant defined in Lemma 6.

500 Proof. The second inequality directly follow from the Remark.

501 We prove the first inequality as follows. Denote the discrete harmonic and Stokes
 502 extension of $u_{\Gamma}^{(i)} \in V_{\Gamma}^{(i)}$ by $\mathcal{H} \left(u_{\Gamma}^{(i)} \right)$ and $\mathcal{S} \left(u_{\Gamma}^{(i)} \right)$, respectively. Using $v = \mathcal{S} \left(u_{\Gamma}^{(i)} \right) -$
 503 $\mathcal{H} \left(u_{\Gamma}^{(i)} \right)$ as the test function in Definition 11, we have

$$504 \quad a \left(\mathcal{S} \left(u_{\Gamma}^{(i)} \right), \mathcal{S} \left(u_{\Gamma}^{(i)} \right) - \mathcal{H} \left(u_{\Gamma}^{(i)} \right) \right) - b \left(\mathcal{S} \left(u_{\Gamma}^{(i)} \right) - \mathcal{H} \left(u_{\Gamma}^{(i)} \right), \rho \right) = 0,$$

505 where ρ is the corresponding pressure extension with zero mean value living in the
 506 space $W_{k-1}(\Omega_i)$.

507 Since $b \left(\mathcal{S} \left(u_{\Gamma}^{(i)} \right), \rho \right) = 0$, it follows that

$$508 \quad a \left(\mathcal{S} \left(u_{\Gamma}^{(i)} \right), \mathcal{S} \left(u_{\Gamma}^{(i)} \right) \right) = a \left(\mathcal{S} \left(u_{\Gamma}^{(i)} \right), \mathcal{H} \left(u_{\Gamma}^{(i)} \right) \right) + b \left(\mathcal{H} \left(u_{\Gamma}^{(i)} \right), \rho \right).$$

509 By the part (4) in Lemma 6, we have

$$510 \quad (6.4) \quad \left| \mathcal{S} \left(u_{\Gamma}^{(i)} \right) \right|_{A^{(i)}}^2 \leq \left| \mathcal{S} \left(u_{\Gamma}^{(i)} \right) \right|_{A^{(i)}} \left| \mathcal{H}^{(i)} \left(u_{\Gamma}^{(i)} \right) \right|_{A^{(i)}} + C \left| \mathcal{H} \left(u_{\Gamma}^{(i)} \right) \right|_{A^{(i)}} \left\| \rho \right\|_{L^2(\Omega_i)}$$

511 By the inf-sup condition (the part (5) in Lemma 6),

$$\begin{aligned}
512 \quad & \| \rho \|_{L^2(\Omega_i)}^2 \leq \beta^{-2} \sup_{v \in V_k^0(\Omega_i)} \frac{b(v, \rho)^2}{\|v\|^2} \\
513 \quad (6.5) \quad & = \beta^{-2} \sup_{v \in V_k^0(\Omega_i)} \frac{a(\mathcal{S}(u_\Gamma^{(i)}), v)^2}{\|v\|^2} \\
514 \quad & \leq \beta^{-2} \left\| \mathcal{S}(u_\Gamma^{(i)}) \right\|^2 = \beta^{-2} \left| \mathcal{S}(u_\Gamma^{(i)}) \right|_{A^{(i)}}^2,
\end{aligned}$$

515 where we have used Definition 11 for the second equality and the parts (2) and (3) in
516 Lemma 6 for the last inequality.

517 Substituting (6.5) into (6.4), we have

$$\begin{aligned}
518 \quad & \left| \mathcal{S}(u_\Gamma^{(i)}) \right|_{A^{(i)}}^2 \leq \left| \mathcal{S}(u_\Gamma^{(i)}) \right|_{A^{(i)}} \left| \mathcal{H}(u_\Gamma^{(i)}) \right|_{A^{(i)}} + C\beta^{-1} \left| \mathcal{S}(u_\Gamma^{(i)}) \right|_{A^{(i)}} \left| \mathcal{H}(u_\Gamma^{(i)}) \right|_{A^{(i)}} \\
519 \quad & \leq C \frac{1+\beta}{\beta} \left| \mathcal{S}(u_\Gamma^{(i)}) \right|_{A^{(i)}} \left| \mathcal{H}(u_\Gamma^{(i)}) \right|_{A^{(i)}}. \\
520
\end{aligned}$$

521 It follows that
522 $C \frac{\beta^2}{(1+\beta)^2} \left| u_\Gamma^{(i)} \right|_{S_{\Gamma, S}^{(i)}}^2 = C \frac{\beta^2}{(1+\beta)^2} \left| \mathcal{S}(u_\Gamma^{(i)}) \right|_{A^{(i)}}^2 \leq \left| \mathcal{H}(u_\Gamma^{(i)}) \right|_{A^{(i)}}^2 = \left| u_\Gamma^{(i)} \right|_{S_{\Gamma, E}^{(i)}}^2. \quad \square$

523 In order to prove the condition number bounds for the BDDC preconditioner,
524 we define an averaging operator for the Stokes problem, denoted by E_D , which
525 maps $\tilde{V}_\Gamma \times W_0$, with generally discontinuous interface velocities, to the same space
526 with continuous interface velocities. Specifically, for any $u = (u_\Gamma, p_0) \in \tilde{V}_\Gamma \times W_0$,
527 $E_D [u_\Gamma, p_0]^T \in \tilde{V}_\Gamma \times W_0$, where

$$528 \quad E_D = \tilde{R} \tilde{R}_D^T = \begin{bmatrix} \tilde{R}_\Gamma & I \end{bmatrix} \begin{bmatrix} \tilde{R}_{D,\Gamma}^T & I \end{bmatrix} = \begin{bmatrix} E_{D,\Gamma} & I \end{bmatrix},$$

529 and $E_{D,\Gamma} = \tilde{R}_\Gamma \tilde{R}_{D,\Gamma}^T$ is the interface averaging operator for the velocities across the
530 interface Γ . The operator $E_{D,\Gamma}$ computes a weighted average for the edge velocity
531 across the subdomain interface Γ , and then distributes the average back to the original
532 degree of freedoms on the interface.

533 To facilitate further analysis, we introduce a useful norm as defined in [12]:

$$534 \quad (6.6) \quad \|\lambda\|_{h,D}^* = \left(\sum_{K \in \mathcal{T}_h, K \subseteq \bar{D}} \frac{1}{h} \|\lambda - m_K(\lambda)\|_{\partial K}^2 \right)^{1/2},$$

535 where

$$536 \quad m_K(\lambda) = \frac{1}{|\partial K|} \int_{\partial K} \lambda ds.$$

537 Denote $\|\lambda\|_h^* = \|\lambda\|_{h,\Omega}^*$.

538 Define the local lifting operators $\mathcal{Q}(\cdot)$ and $\mathcal{U}(\cdot)$ for the weak Galerkin (WG)
539 method as below: given λ on ∂K ,

$$540 \quad (6.7a) \quad (\mathcal{Q}\lambda, \mathbf{r})_K + (\mathcal{U}\mu, \nabla \cdot \mathbf{r})_K = \langle \lambda, \mathbf{r} \cdot \mathbf{n} \rangle_{\partial K} \quad \text{for all } \mathbf{r} \in [P_{k-1}(K)]^{d \times d},$$

$$541 \quad (6.7b) \quad -(w, \nabla \cdot \mathcal{Q}\lambda)_K + \langle h_K^{-1}(Q_b \mathcal{U}\lambda - \lambda), Q_b w \rangle_{\partial K} = 0 \quad \text{for all } w \in [P_k(K)]^d.$$

543 Let $u = (u_0, u_b) = (\mathcal{U}\lambda, \lambda)$. We have $\mathcal{Q}\lambda = \nabla_w u$ and can obtain a reduced norm of
 544 λ using the norm from the WG bilinear form as given in (6.3) as

545 (6.8) $\|\lambda\|_D^2 = \sum_{K \in \mathcal{T}_h, K \subseteq \bar{D}} \|\nabla_w u\|_K^2 + \sum_{K \in \mathcal{T}_h, K \subseteq \bar{D}} h_K^{-1} \|Q_b u_0 - u_b\|_{\partial K}^2.$

546 Denote $\|\lambda\| = \|\lambda\|_\Omega$

547 We will show the equivalence between the triple-bar norm defined above in (6.6)
 548 and (6.8). To denote the triple-bar norm defined over an element K , we add a sub-
 549 script K to it. Note that similar strategy was used to prove the equivalence between
 550 the norm generated by the bilinear form from a hybridized mixed method and triple-
 551 bar norm (6.6) in [12].

552 LEMMA 13. *The function $\|\lambda\|_K$ is zero on $K \in \mathcal{T}_h$ if and only if λ is constant on
 553 ∂K .*

554 *Proof.* Assume that $\|\lambda\|_K = 0$ on K . It follows that

555 $0 = (\nabla_w u, \nabla_w u) + h_K^{-1} \langle Q_b \mathcal{U}\lambda - \lambda, Q_b \mathcal{U}\lambda - \lambda \rangle_{\partial K},$

556 where $u = \{\mathcal{U}\lambda, \lambda\}$, and $\nabla_w u = \mathcal{Q}\lambda$. This implies that $\nabla_w u = 0$ on element K and
 557 $Q_b \mathcal{U}\lambda = \lambda$ on ∂K . Further, we have from the definition of the discrete weak gradient
 558 operator or the lifting operator \mathcal{Q} given in (6.7b) that for any $\tau \in [P_{k-1}(K)]^n$,

559
$$\begin{aligned} 0 &= (\nabla_w u, \tau)_K \\ 560 &= -(\mathcal{U}\lambda, \nabla \cdot \tau)_K + \langle \lambda, \tau \cdot n \rangle_{\partial K} \\ 561 &= (\nabla \mathcal{U}\lambda, \tau)_K - \langle \mathcal{U}\lambda - \lambda, \tau \cdot n \rangle_{\partial K} \\ 562 &= (\nabla \mathcal{U}\lambda, \tau)_K - \langle Q_b \mathcal{U}\lambda - \lambda, \tau \cdot n \rangle_{\partial K} \\ 563 &= (\nabla \mathcal{U}\lambda, \tau)_K. \end{aligned}$$

565 Let $\tau = \nabla \mathcal{U}\lambda$. Then we have $\nabla \mathcal{U}\lambda = 0$ on K . It follows that $\mathcal{U}\lambda = \text{const.}$ on K .
 566 Thus, $Q_b \mathcal{U}\lambda = \text{const.}$ on ∂K . Since $Q_b \mathcal{U}\lambda = \lambda$ on ∂K , we have $\lambda = \text{const.}$ Note that
 567 similar argument as above was provided in [38] to prove that (6.3) gives a norm.

568 Conversely, assume λ is a constant on ∂K . Substituting the ordered pair (r, w)
 569 in (6.7) with $(\mathcal{Q}\lambda, \mathcal{U}\lambda)$ and adding up, we obtain

570 $\|\lambda\|_K^2 = \langle \lambda, \mathcal{Q}\lambda \cdot n \rangle_{\partial K} - h_K^{-1} \langle Q_b \mathcal{U}\lambda - \lambda, \lambda \rangle_{\partial K}.$

571 Let $w = \lambda$ be the test function in (6.7b). Since λ is constant, $\lambda = Q_b \lambda$. It follows
 572 from (6.7b) that

573 $-\langle \lambda, \mathcal{Q}\lambda \cdot n \rangle_{\partial K} + h_K^{-1} \langle Q_b \mathcal{U}\lambda - \lambda, \lambda \rangle_{\partial K} = 0. \quad \square$

574 Therefore, $\|\lambda\|_K = 0$.

575 LEMMA 14. *Let $M_h = \{v_b : v = \{v_0, v_b\} \in V_k^0\}$. For all $\lambda \in M_h$,*

576 $c \|\lambda\|_h^{*,2} \leq \|\lambda\|^2 \leq C \|\lambda\|_h^{*,2}.$

577

578 *Proof.* First, we prove the lower bound. By Lemma 13, $\|\lambda\|_K = 0$ implies that λ
 579 is constant on ∂K . Similarly as in [12], by a scaling argument, it can be shown that

580 $\|\lambda\|_K \geq \frac{c}{|\partial K|^{1/2}} \inf_{\kappa \in \mathbb{R}} \|\lambda - \kappa\|_{\partial K} = \frac{c}{|\partial K|^{1/2}} \|\lambda - m_K(\lambda)\|_{\partial K} = c \|\lambda\|_{h,K}^*,$

581 for some constant c independent of λ .

582 Next, we prove the upper bound. Let $r = \mathcal{Q}\lambda$, and $w = \mathcal{U}\lambda$. Plugging the ordered
583 pair (r, w) into (6.7), and adding up, we obtain

$$\begin{aligned}
584 \quad \|\lambda\|_K^2 &= \langle \lambda, \mathcal{Q}\lambda \cdot n \rangle_{\partial K} - h_K^{-1} \langle Q_b \mathcal{U}\lambda - \lambda, \lambda \rangle_{\partial K} \\
585 &= \langle \lambda, \mathcal{Q}\lambda \cdot n - h_K^{-1} (Q_b \mathcal{U}\lambda - \lambda) \rangle_{\partial K} \\
586 &= \langle \lambda - m_K(\lambda), \mathcal{Q}\lambda \cdot n - h_K^{-1} (Q_b \mathcal{U}\lambda - \lambda) \rangle_{\partial K} \\
587 &\leq \frac{C}{|\partial K|^{1/2}} \|\lambda - m_K(\lambda)\|_{\partial K} \|\lambda\|_K \\
588 &= C \|\lambda\|_{h,K}^* \|\lambda\|_K,
\end{aligned}$$

589

591 where we have used (6.7b) for the third equality, the trace inequality (6.1) and inverse
592 inequality (6.2) for the second-to-last inequality. It follows that

$$593 \quad c \|\lambda\|_{h,K}^{*,2} \leq \|\lambda\|_K^2 \leq C \|\lambda\|_{h,K}^{*,2}.$$

594 Summing up over all elements in \mathcal{T}_h , we obtain

$$595 \quad c \|\lambda\|_h^{*,2} \leq \|\lambda\|^2 \leq C \|\lambda\|_h^{*,2}. \quad \square$$

596 Based on the equivalence of norms in Lemma 14, similar to the proof of [35,
597 Lemma 5], we can obtain that the interface averaging operator $E_{D,\Gamma}$ satisfies the
598 following bound:

599 LEMMA 15. *For any $w_\Gamma \in \tilde{V}_\Gamma$,*

$$600 \quad |E_{D,\Gamma} w_\Gamma|_{\tilde{S}_{\Gamma,E}}^2 \leq C \left(1 + \log \frac{H}{h}\right)^2 |w_\Gamma|_{\tilde{S}_{\Gamma,E}}^2,$$

601 where C is a positive constant independent of the domain size H , and mesh size h .

602 Now, we are in a position to prove the bound of the averaging operator E_D for
603 the Stokes problem.

604 LEMMA 16. *There exists a positive constant C , which is independent of H and h ,
605 such that*

$$606 \quad |E_D w|_{\tilde{S}}^2 \leq C \left(\frac{1+\beta}{\beta}\right)^2 \left(1 + \log \frac{H}{h}\right)^2 |w|_{\tilde{S}}^2 \quad \forall w = (w_\Gamma, q_0) \in \tilde{V}_{\Gamma,B} \times W_0,$$

607 where β is the inf-sup stability constant.

608 Proof. For any vector $w = (w_\Gamma, q_0) \in \tilde{V}_{\Gamma,B} \times W_0$, by Lemma 9, $\tilde{R}_D^T w \in \hat{V}_{\Gamma,B} \times W_0$.
609 Thus, $E_D w = \tilde{R} \tilde{R}_D^T w \in \tilde{V}_{\Gamma,B} \times W_0$.

610 From the definition of the \tilde{S} -seminorm, we have $|E_D w|_{\tilde{S}}^2 = \|E_{D,\Gamma} w_\Gamma\|_{\tilde{S}_\Gamma}^2 =$
611 $|\bar{R}_\Gamma(E_{D,\Gamma} w_\Gamma)|_{S_\Gamma}^2$.

612 Noting that $S_\Gamma = \text{diag}(S_\Gamma^{(i)})$, and applying Lemma 12 to each subdomain, we
613 have

$$614 \quad |\bar{R}_\Gamma(E_{D,\Gamma} w_\Gamma)|_{S_\Gamma}^2 \leq C \left(\frac{1+\beta}{\beta}\right)^2 |\bar{R}_\Gamma(E_{D,\Gamma} w_\Gamma)|_{S_{\Gamma,E}}^2$$

615 Further, we have

$$\begin{aligned}
 616 \quad |\bar{R}_\Gamma(E_{D,\Gamma}w_\Gamma)|_{S_{\Gamma,E}}^2 &= |E_{D,\Gamma}w_\Gamma|_{\tilde{S}_{\Gamma,E}}^2 \leq C \left(1 + \log \frac{H}{h}\right)^2 |w_\Gamma|_{\tilde{S}_{\Gamma,E}}^2 \\
 617 \quad &\leq C \left(1 + \log \frac{H}{h}\right)^2 |w_\Gamma|_{\tilde{S}_\Gamma}^2.
 \end{aligned}$$

619 Combining these inequalities, we have

$$620 \quad |E_D w|_{\tilde{S}}^2 \leq C \left(\frac{1+\beta}{\beta}\right)^2 \left(1 + \log \frac{H}{h}\right) |w_\Gamma|_{\tilde{S}_\Gamma}^2 = C \left(\frac{1+\beta}{\beta}\right)^2 \left(1 + \log \frac{H}{h}\right)^2 |w|_{\tilde{S}}^2. \quad \square$$

621 **7. Condition number estimate for the BDDC preconditioner.** We are
622 now ready to formulate and prove our main results. It follows by proving the lower
623 and upper bound for $u^T M^{-1} \hat{S} u$. See similar proof in [18].

624 **THEOREM 17.** *Assume the divergence free constraint holds for the interface velocities.* The preconditioned operator $M^{-1} \hat{S}$ is symmetric, positive definite with respect
625 to the bilinear form $\langle \cdot, \cdot \rangle_{\hat{S}}$ on the space $\hat{V}_{\Gamma,B} \times W_0$. Its eigenvalues are bounded from
626 below by 1 and from above by $C \frac{(1+\beta)^2}{\beta^2} \left(1 + \log \frac{H}{h}\right)^2$, where C is a constant which is
627 independent of the domain size H , and the mesh size h , and β is the inf-sup stability
628 constant.

630 *Proof.* It is sufficient to prove that for any $u = (u_\Gamma, p_0) \in \hat{V}_{\Gamma,B} \times W_0$, with $u_\Gamma \neq 0$,

$$631 \quad \langle u, u \rangle_{\hat{S}} \leq \langle u, M^{-1} \hat{S} u \rangle_{\hat{S}} \leq C \left(\frac{1+\beta}{\beta}\right)^2 \left(1 + \log \left(\frac{H}{h}\right)\right)^2 \langle u, u \rangle_{\hat{S}}.$$

632 In what follows, we prove the lower and upper bound for $\langle u, M^{-1} \hat{S} u \rangle_{\hat{S}}$ respectively.

634 Let $\tilde{u} = \tilde{S}^{-1} \tilde{R}_D \hat{S} u$. Obviously, $\tilde{u} \in \tilde{V}_{\Gamma,B} \times W_0$.

635 Note that $\tilde{R}^T \tilde{R}_D = \tilde{R}_D^T \tilde{R} = I$. The details for the proof of the lower bound go as
636 follows:

$$\begin{aligned}
 637 \quad \langle u, u \rangle_{\hat{S}} &= u^T \hat{S} \tilde{R}_D^T \tilde{R} u = u^T \hat{S} \tilde{R}_D^T \tilde{S} \tilde{S}^{-1} \tilde{R} \hat{S} u = \langle \tilde{u}, \tilde{R} u \rangle_{\tilde{S}} \\
 638 \quad &\leq \langle \tilde{u}, \tilde{u} \rangle_{\tilde{S}}^{1/2} \langle \tilde{R} u, \tilde{R} u \rangle_{\tilde{S}}^{1/2} = \langle \tilde{u}, \tilde{u} \rangle_{\tilde{S}}^{1/2} \langle u, u \rangle_{\hat{S}}^{1/2}.
 \end{aligned}$$

640 Thus, we obtain $\langle u, u \rangle_{\hat{S}} \leq \langle \tilde{u}, \tilde{u} \rangle_{\tilde{S}}$ by canceling a common factor and squaring on
641 both sides.

642 Since

$$643 \quad \langle \tilde{u}, \tilde{u} \rangle_{\tilde{S}} = u^T \hat{S} \tilde{R}_D^T \tilde{S} \tilde{S}^{-1} \tilde{S} \tilde{S}^{-1} \tilde{R}_D \hat{S} u = \langle u, \tilde{R}_D^T \tilde{S} \tilde{S}^{-1} \tilde{R}_D \hat{S} u \rangle_{\hat{S}} = \langle u, M^{-1} \hat{S} u \rangle_{\hat{S}},$$

644 we have $\langle u, u \rangle_{\hat{S}} \leq \langle u, M^{-1} \hat{S} u \rangle_{\hat{S}}$.

645 Next, we prove the upper bound.

646 Since $M^{-1} = \tilde{R}_D^T \tilde{S}^{-1} \tilde{R}_D$, we have $\tilde{R}_D^T \tilde{u} = M^{-1} \hat{S} u$.

647 By using Lemma 16 and the fact that $\hat{S} = \tilde{R}^T \tilde{S} \tilde{R}$, we obtain

$$\begin{aligned}
 648 \quad \langle M^{-1} \hat{S} u, M^{-1} \hat{S} u \rangle_{\hat{S}} &= \langle \tilde{R}_D^T \tilde{u}, \tilde{R}_D^T \tilde{u} \rangle_{\hat{S}} = \langle \tilde{R} \tilde{R}_D^T \tilde{u}, \tilde{R} \tilde{R}_D^T \tilde{u} \rangle_{\tilde{S}} = |E_D \tilde{u}|_{\tilde{S}}^2 \\
 649 \quad &\leq C \left(\frac{1+\beta}{\beta}\right)^2 \left(1 + \log \frac{H}{h}\right)^2 |\tilde{u}|_{\tilde{S}}^2 \\
 650 \quad &\leq C \left(\frac{1+\beta}{\beta}\right)^2 \left(1 + \log \frac{H}{h}\right)^2 \langle u, M^{-1} \hat{S} u \rangle_{\hat{S}}
 \end{aligned}$$

TABLE 1

Condition number estimates and iteration counts for the BDDC preconditioned operator with changing subdomains numbers. $\frac{H}{h} = 8$, and $k = 1$.

Number of Subdomains	Iterations	Condition number
4×4	11	4.12
8×8	13	5.01
16×16	13	4.90
24×24	13	5.05
32×32	12	4.94

TABLE 2

Condition number estimates and iteration counts for the BDDC preconditioned operator with changing subdomains numbers. $\frac{H}{h} = 8$, and $k = 2$.

Number of Subdomains	Iterations	Condition number
4×4	13	7.37
8×8	17	9.24
16×16	20	9.89
24×24	20	10.29
32×32	19	10.26

652 Using the Cauchy-Schwarz inequality, we have

$$\begin{aligned} 653 \quad \langle u, M^{-1} \widehat{S} u \rangle_{\widehat{S}} &\leq \langle u, u \rangle_{\widehat{S}}^{1/2} \langle M^{-1} \widehat{S} u, M^{-1} \widehat{S} u \rangle_{\widehat{S}}^{1/2} \\ 654 \quad &\leq C \frac{1+\beta}{\beta} \left(1 + \log \frac{H}{h} \right) \langle u, u \rangle_{\widehat{S}}^{1/2} \langle u, M^{-1} \widehat{S} u \rangle_{\widehat{S}}^{1/2}. \end{aligned}$$

656 This gives $\langle u, M^{-1} \widehat{S} u \rangle_{\widehat{S}} \leq C \left(\frac{1+\beta}{\beta} \right)^2 \left(1 + \log \frac{H}{h} \right)^2 \langle u, u \rangle_{\widehat{S}}$. The upper bound of
657 the eigenvalues thus follows. \square

658 **8. Numerical Experiments.** In this section, we will report some numerical
659 results for the BDDC algorithm proposed for the weak Galerkin discretization of the
660 Stokes problem. We used the BDDC algorithm to solve the model problem (3.1) on
661 the square domain $\Omega = [0, 1]^2$ with zero Dirichlet boundary condition. The analytical
662 solution of the test problem is given by

$$663 \quad u = \begin{bmatrix} \sin^3(\pi x) \sin^2(\pi y) \cos(\pi y) \\ -\sin^2(\pi x) \sin^3(\pi y) \cos(\pi x) \end{bmatrix} \quad \text{and} \quad p = x^2 - y^2.$$

664 We decompose the unit square into $N \times N$ subdomains with side length $H = 1/N$.
665 Each subdomain has a characteristic mesh size h . Both the first order ($k = 1$)
666 and second order ($k = 2$) weak Galerkin methods are used to discretize the model
667 equations. The BDDC preconditioned conjugate gradient iterations are stopped when
668 the l_2 -norm of the residual has been reduced by a factor of 10^6 .

669 In the first set of experiments, we fix the size of the subdomain problem to be
670 $\frac{H}{h} = 8$. Table 1 and 2 show the iteration counts and the estimates of the condition
671 numbers for the BDDC preconditioned operator with changing subdomain numbers
672 for $k = 1$ and $k = 2$, respectively. The condition numbers are found to be independent
673 of the number of subdomains. As the second set of experiment, instead of fixing the

TABLE 3

Condition number estimates and iteration counts for the BDDC preconditioned operator with changing subdomain problem size. 8×8 subdomains, and $k = 1$.

$\frac{H}{h}$	Iterations	Condition number
4	9	2.49
8	13	5.01
16	15	7.48
24	18	9.12
32	19	10.37

TABLE 4

Condition number estimates and iteration counts for the BDDC preconditioned operator with changing subdomain problem size. 8×8 subdomains, and $k = 2$.

$\frac{H}{h}$	Iterations	Condition number
4	14	5.87
8	17	9.24
16	21	12.47
24	23	15.33
32	23	16.09

674 size of the subdomain problems, we fix the subdomain partition to be 8×8 , and
675 allow the subdomain problem size to vary. The condition number is found to increase
676 logarithmically with the subdomain problem size. Table 3 and 4 demonstrate results
677 for the second set of experiments for $k = 1$ and $k = 2$, respectively.

678 To conclude, we have carried out a series of experiments to obtain iteration counts
679 and condition number estimates. The experimental results prove to be consistent
680 with the theory. That is the condition number bound of the BDDC preconditioned
681 system is of the form $C \frac{(1+\beta)^2}{\beta^2} (1 + \log \frac{H}{h})^2$, where H and h are the diameters of the
682 subdomains and elements, respectively. Possible future work will be to explore the
683 order of the basis functions effects on C .

684 **Acknowledgments.** The authors would like to thank the anonymous referees
685 for their comments and suggestions that helped improve the quality of the manuscript.

686

REFERENCES

- 687 [1] J. Bramble and J. Pasciak, *A preconditioning technique for indefinite systems resulting from*
688 *mixed approximations of elliptic problems*, Math. Comp. **50** (1988), no. 181, 1–17. MR
689 917816
690 [2] ———, *A domain decomposition technique for Stokes problems*, Appl. Numer. Math. **6** (1990),
691 no. 4, 251–261. MR 1051718
692 [3] F. Brezzi and M. Fortin, *Mixed and hybrid finite element methods*, Springer-Verlag, New York
693 – Berlin – Heidelberg, 1991.
694 [4] L. Chen, J. Wang, Y. Wang, and X. Ye, *An auxiliary space multigrid preconditioner for the*
695 *weak Galerkin method*, Computers & Mathematics with Applications **70** (2015), no. 4,
696 330–344.
697 [5] C. Dohrmann, *A preconditioner for substructuring based on constrained energy minimization*,
698 SIAM J. Sci. Comput. **25** (2003), no. 1, 246–258.
699 [6] C. Dohrmann, A. Klawonn, and O. Widlund, *Domain decomposition for less regular subdo-*
700 *mains: overlapping Schwarz in two dimensions*, SIAM J. Numer. Anal. **46** (2008), no. 4,
701 2153–2168. MR 2399412

- 702 [7] ———, *Extending theory for domain decomposition algorithms to irregular subdomains*, Domain decomposition methods in science and engineering XVII, Lect. Notes Comput. Sci. Eng., vol. 60, Springer, Berlin, 2008, pp. 255–261. MR 2436090
- 703 [8] C. Dohrmann and O. Widlund, *An alternative coarse space for irregular subdomains and an overlapping Schwarz algorithm for scalar elliptic problems in the plane*, SIAM J. Numer. Anal. **50** (2012), no. 5, 2522–2537. MR 3022229
- 704 [9] ———, *On the design of small coarse spaces for domain decomposition algorithms*, SIAM J. Sci. Comput. **39** (2017), no. 4, A1466–A1488. MR 3686806
- 705 [10] C. R. Dohrmann, *Preconditioning of saddle point systems by substructuring and a penalty approach*, Domain decomposition methods in science and engineering XVI, Lect. Notes Comput. Sci. Eng., vol. 55, Springer, Berlin, 2007, pp. 53–64.
- 706 [11] P. Goldfeld, L. Pavarino, and O. Widlund, *Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity*, Numer. Math. **95** (2003), no. 2, 283–324.
- 707 [12] J. Gopalakrishnan, *A schwarz preconditioner for a hybridized mixed method*, Comput. Methods Appl. Math. **3** (2003), no. 1, 116–134.
- 708 [13] A. Klawonn, O. Rheinbach, and O. Widlund, *An analysis of a FETI-DP algorithm on irregular subdomains in the plane*, SIAM J. Numer. Anal. **46** (2008), no. 5, 2484–2504. MR 2421044
- 709 [14] A. Klawonn and O. Widlund, *Dual-primal FETI methods for linear elasticity*, Comm. Pure Appl. Math. **59** (2006), no. 11, 1523–1572.
- 710 [15] J. Li, *A Dual-Primal FETI method for incompressible Stokes equations*, Numer. Math. **102** (2005), 257–275.
- 711 [16] J. Li and X. Tu, *A nonoverlapping domain decomposition method for incompressible Stokes equations with continuous pressures*, SIAM J. Numer. Anal. **51** (2013), no. 2, 1235–1253. MR 3045654
- 712 [17] J. Li and X. Tu, *A FETI-DP algorithm for incompressible Stokes equations with continuous pressures*, Domain decomposition methods in science and engineering XXI, Lect. Notes Comput. Sci. Eng., vol. 98, Springer, Berlin, 2014, pp. 157–165.
- 713 [18] J. Li and O. Widlund, *BDDC algorithms for incompressible Stokes equations*, SIAM J. Numer. Anal. **44** (2006), no. 6, 2432–2455.
- 714 [19] ———, *FETI-DP, BDDC, and block Cholesky methods*, Internat. J. Numer. Methods Engrg. **66** (2006), 250–271.
- 715 [20] J. Mandel and C. Dohrmann, *Convergence of a balancing domain decomposition by constraints and energy minimization*, Numer. Linear Algebra Appl. **10** (2003), no. 7, 639–659.
- 716 [21] J. Mandel, C. Dohrmann, and R. Tezaur, *An algebraic theory for primal and dual substructuring methods by constraints*, Appl. Numer. Math. **54** (2005), no. 2, 167–193.
- 717 [22] J. Mandel, B. Sousedík, and C. Dohrmann, *Multispace and multilevel BDDC*, Computing **83** (2008), no. 2-3, 55–85.
- 718 [23] L. Mu, J. Wang, and X. Ye, *Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes*, Numer. Methods Partial Differential Equations **30** (2014), no. 3, 1003–1029. MR 3190348
- 719 [24] ———, *Weak Galerkin finite element methods on polytopal meshes*, Int. J. Numer. Anal. Model. **12** (2015), no. 1, 31–53. MR 3286455
- 720 [25] L. Mu, J. Wang, X. Ye, and S. Zhang, *A weak Galerkin finite element method for the Maxwell equations*, J. Sci. Comput. **65** (2015), no. 1, 363–386.
- 721 [26] N. C. Nguyen, J. Peraire, and B. Cockburn, *A hybridizable discontinuous Galerkin method for Stokes flow*, Comput. Methods Appl. Mech. Engrg. **199** (2010), no. 9–12, 582–597. MR 2796169
- 722 [27] L. Pavarino and S. Scacchi, *Isogeometric block FETI-DP preconditioners for the Stokes and mixed linear elasticity systems*, Comput. Methods Appl. Mech. Engrg. **310** (2016), 694–710. MR 3548578
- 723 [28] L. Pavarino and O. Widlund, *Balancing Neumann-Neumann methods for incompressible Stokes equations*, Comm. Pure Appl. Math. **55** (2002), no. 3, 302–335.
- 724 [29] X. Tu, *A BDDC algorithm for a mixed formulation of flows in porous media*, Electron. Trans. Numer. Anal. **20** (2005), 164–179.
- 725 [30] ———, *A BDDC algorithm for flow in porous media with a hybrid finite element discretization*, Electron. Trans. Numer. Anal. **26** (2007), 146–160.
- 726 [31] ———, *Three-level BDDC in three dimensions*, SIAM J. Sci. Comput. **29** (2007), no. 4, 1759–1780.
- 727 [32] ———, *Three-level BDDC in two dimensions*, Internat. J. Numer. Methods Engrg. **69** (2007), 33–59.
- 728 [33] X. Tu and J. Li, *A unified dual-primal finite element tearing and interconnecting approach*

- 764 for incompressible Stokes equations, *Internat. J. Numer. Methods Engrg.* **94** (2013), no. 2,
 765 128–149. MR 3040516

766 [34] ———, A *FETI-DP* type domain decomposition algorithm for three-dimensional incompressible
 767 Stokes equations, *SIAM J. Numer. Anal.* **53** (2015), no. 2, 720–742. MR 3317383

768 [35] X. Tu and B. Wang, A *BDDC* algorithm for second order elliptic problems with hybridizable
 769 discontinuous Galerkin discretizations, *Electron. Trans. Numer. Anal.* **45** (2016), 354–370.

770 [36] J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems,
 771 *J. Comput. Appl. Math.* **241** (2013), 103–115. MR 2994424

772 [37] ———, A weak Galerkin mixed finite element method for second order elliptic problems, *Math. Comp.* **83** (2014), no. 289, 2101–2126. MR 3223326

773 [38] ———, A weak Galerkin finite element method for the Stokes equations, *Adv. Comput. Math.* **42** (2016), no. 1, 155–174. MR 3452926

774 [39] O. Widlund, Accomodating irregular subdomains in domain decomposition theory, Domain
 775 decomposition methods in science and engineering XVIII, *Lect. Notes Comput. Sci. Eng.*,
 776 vol. 70, Springer, Berlin, 2009, pp. 87–98. MR 2743961

777 [40] S. Zampini and X. Tu, Adaptive multilevel *BDDC* deluxe algorithms for flow in porous media,
 778 *SIAM J. Sci. Comput.* **39** (2017), no. 4, A1389–A1415.

779 [41] J. Šístek, B. Sousedík, P. Burda, J. Mandel, and J. Novotný, Application of the parallel *BDDC*
 780 preconditioner to the Stokes flow, *Computers & Fluids* **46** (2011), no. 1, 429 – 435.