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Abstract. The BDDC (balancing domain decomposition by constraints) methods have been4
applied successfully to solve the large sparse linear algebraic systems arising from conforming finite5
element discretizations of second order elliptic and Stokes problems. In this paper, the Stokes6
equations are discretized using the weak Galerkin method, a newly developed nonconforming finite7
element method. A BDDC algorithm is designed to solve the linear system such obtained. Edge/face8
velocity interface average and mean subdomain pressure are selected for the coarse problem. The9
condition number bounds of the BDDC preconditioned operator are analyzed, and the same rate10
of convergence is obtained as for conforming finite element methods. Numerical experiments are11
conducted to verify the theoretical results.12
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1. Introduction. Numerical solution of saddle point problems using non over-16

lapping domain decomposition methods have long been an active area of research; see,17

e.g., [28, 15, 11, 10, 18, 29, 30, 16, 33, 17, 34, 27]. The Balancing Domain Decomposi-18

tion by Constraints (BDDC) algorithm is an advanced variant of the non-overlapping19

domain decomposition technique. It was first introduced by Dohrmann [5], and the20

theoretical analysis was later given by Mandel and Dohrmann [20]. In this theoretical21

development, optimal condition number bound was obtained for the BBDC opera-22

tors proposed for symmetric positive definite systems. Nonetheless, the variational23

form of the incompressible Stokes problem is a saddle point problem [3], and the dis-24

cretization by finite element methods lead to symmetric indefinite matrices. Thus,25

the conventional theory usually fails to apply. In the first attempt to apply BDDC to26

the incompressible Stokes problem by Li and Widlund [18], the approach via benign27

spaces was used to reduce the Stokes system to a symmetric positive definite problem,28

and optimal convergence result was obtained as for the elliptic case. However, this29

method was proposed and analyzed with discontinuous pressure approximation, and30

there is a big class of mixed finite element spaces featuring continuous pressure, e.g.,31

the Taylor-Hood finite elements. Later, Li and Tu proposed a class of non-overlapping32

domain decomposition algorithms for continuous finite element pressure space, which33

were proved and numerically verified to be scalable [16, 33, 17, 34]. Earlier, Š́ıstek et34

al. applied a parallel BDDC pre-conditioner based on the corner constraints to the35

Stokes flow using Taylor-Hood finite element [41]. They numerically demonstrated the36

promising speedup property of their BDDC pre-conditioner as applied to benchmark37

test problems of real-life relevance, even though optimal scalability was not achieved.38

As the property of the discretized system to be solved is dependent on the nu-39

merical methods used, the BDDC algorithms have been extended to the second or-40

der elliptic problem with mixed and hybrid formulations, hybridizable discontinuous41
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Galerkin (HDG) methods [29, 30, 35]. In this study, we design BDDC pre-conditioners42

for trending non-conforming finite element methods, in particular, the weak Galerkin43

(WG) methods. The WG methods are a class of nonconforming finite element meth-44

ods, which were first introduced for second order elliptic problems by Wang and Ye45

[36]. The idea of WG is to introduce weak functions and their weak derivatives as46

distributions, which can be approximated by polynomials of different degrees on dif-47

ferent support. For example, for second order elliptic problems, weak functions have48

the form of v = {v0, vb}, where v0 is defined inside each element and vb is defined on49

the boundary of the element. v0 and vb can both be approximated by polynomials.50

The gradient operator is approximated by a weak gradient operator, which is further51

approximated by polynomials. These weakly defined functions and derivatives make52

the WG methods highly flexible in terms of approximating functions and finite ele-53

ment partition of the domain. The same weak concepts have been extended to other54

differential operators such as divergence and curl, which appears in applications like55

Stokes [38] and Maxwell [25] equations respectively.56

As most finite element methods, the WG methods result in a large number of57

degrees of freedom and therefore require solving large linear systems with condition58

number deteriorating with the refinement of the mesh. Efficient fast solvers for the59

resulting linear system are necessary. However, relatively few attempts on designing60

fast solvers for the WG methods can be found in the literature; see [4]. An effective61

implementation of WG methods is to reduce the unknown variables to those associated62

with element boundaries through a Schur-complement approach. It can be further63

reduced to the subdomain interface. The subdomain interface problem can then be64

solved using the conjugate gradient method preconditioned with a BDDC algorithm.65

It is necessary to impose edge or face average constraints across the interface. By66

a change of variable [19, 14], the primal constraint on edge or face average can be67

converted to an explicit variable. The reduced system for the primal variables will68

be the coarse problem to solve. The BDDC preconditioner can be built based on69

such designed coarse problem, and thus be used as a preconditioner for the conjugate70

gradient method.71

In a recent study [35], the authors proved the condition number bound of the72

BDDC preconditioned operator arising from elliptic problems with hybridizable dis-73

continuous Galerkin (HDG) discretizations. In this paper, a BDDC algorithm is fur-74

ther developed for weak Galerkin discretization with reduced polynomial basis func-75

tions. As in [35], we first establish the connection between the hybridized Raviart-76

Thomas(RT) method and the WG discretization and obtain the condition number77

estimate of the BDDC algorithm applied to the elliptic problem with the WG dis-78

cretization. We then consider the BDDC algorithms for the saddle point problem79

arising from the WG discretization for the incompressible Stokes problem. In [26], a80

similar saddle point problem is obtained by the HDG discretization for incompressible81

Stokes flow, where the resulting system is solved by an augmented Lagrange approach.82

An additional time dependent problem is introduced and solved by a backward-Euler83

method. Here, we solve the saddle point problem from WG discretization directly us-84

ing the BDDC methods. To the best of our knowledge, this is the first attempt for fast85

solvers applied to the Stokes problems with this type nonconforming discretization.86

There are many works on preconditioning the saddle point problems resulting from87

mixed finite element discretizations, such as [1, 2]. In those works, the original saddle88

point problems are reformulated to positive definite problems under specially defined89

inner products. In this paper, a benign subspace idea is used as in [18, 29, 40]. In the90

benign subspace approach, the positive definite system is obtained by carefully choos-91
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ing the coarse components in the BDDC preconditioner. Therefore, the formulation,92

implementation, and rate of convergence of the BDDC algorithm for Stokes are very93

similar to those for the positive definite systems arising from the elliptic problems.94

We prove that the condition number bound for the Stokes problem with the WG95

discretization is as good as for the conforming discretization. We note that the WG96

discretization has been extended to polytopal meshes, [37, 24, 23, 38]. With the97

development of the domain decomposition methods for irregular subdomain shapes,98

[6, 13, 7, 39, 8, 9], we believe that the BDDC algorithms proposed in this paper can99

be extended to polytopal meshes as well. But we will restrict ourselves to the stan-100

dard finite element triangulation here and leave the complete analysis and numerical101

verification for more general polytopal meshes in the future study.102

The rest of the paper is organized as follows. In Section 2, we introduce some103

notations for relevant Hilbert spaces. In Section 3, we introduce the Stokes problem104

and its weak Galerkin discretization. In Section 4, we reduce the linear system to105

an interface problem. Then, we introduce the BDDC preconditioner for the interface106

problem in Section 5, and give some auxiliary results in Section 6. In Section 7, we107

provide an estimate for the condition number of the BDDC preconditioned system.108

Finally, results from numerical experiments are presented and discussed in Section 8.109

2. Notations for some relevant Spaces. Let Ω ∈ Rd (d = 2, 3) be a bounded110

open set with Lipschitz continuous boundary. The Sobolev space Hk (Ω) for any111

integer k ≥ 1 is a Hilbert space with inner product112

(u, v)Hk(Ω) =
∑
|α|≤k

(Dαu, Dαv)L2(Ω) ,113

where the multi-index notation for derivatives114

Dαu = ∂α1
x1
· · · ∂αn

xn
u =

∂|α|u

∂α1x1 · · · ∂αnxn
115

with α = (α1, · · · , αn) and |α| = α1 + · · · + αn. Correspondingly, we can define the116

induced norm ‖·‖Hk(Ω)117

‖u‖2Hk(Ω) = (u, u)Hk(Ω) =
∑
|α|≤k

∫
Ω

|Dαu|2 dx,118

and a semi-norm119

|u|2Hk(Ω) =
∑
|α|=k

∫
Ω

|Dαu|2 dx.120

The space H0 (Ω) coincides with L2 (Ω), which is the space of square integrable121

functions on Ω, i.e.,122

L2 (Ω) =

{
u :

∫
Ω

|u|2 dx <∞
}
.123

The inner product and induced norm of L2 (Ω) are given by:124

(u, v)L2(Ω) =

∫
Ω

uvdx; ‖u‖2L2(Ω) =

∫
Ω

|u|2 dx.125
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We define the subspace of L2 (Ω) with zero mean to be126

L2
0 (Ω) =

{
u : u ∈ L2 (Ω) ,

∫
Ω

udx = 0

}
.127

Let HΩ be the diameter of Ω. We have the following scaled norm for the Sobolev128

space H1(Ω):129

‖u‖2s,H1(Ω) =
1

H2
Ω

‖u‖2L2(Ω) + |u|2H1(Ω) =
1

H2
Ω

‖u‖2L2(Ω) +

∫
Ω

|∇u|2 dx,130

with131

∇ = grad =

(
∂

∂x1
, · · · , ∂

∂xn

)
.132

The subspace of H1 (Ω) with vanishing boundary values is denoted by133

H1
0 (Ω) =

{
v ∈ H1 (Ω) : v = 0 on ∂Ω

}
.134

The spaces introduced above can be extended to spaces of vector-valued functions in135

a straightforward way.136

Also, we recall that the space H (div; Ω) is defined as the set of vector-valued137

functions on Ω such that both the functions and their divergence are square integrable;138

i.e.,139

H (div; Ω) =
{
v : v ∈

[
L2 (Ω)

]d
, ∇ · v ∈ L2 (Ω)

}
.140

The scaled norm in H (div; Ω) is defined by141

‖v‖2
s,H(div;Ω) =

1

H2
Ω

‖v‖2L2(Ω) + ‖∇ · v‖2L2(Ω) .142

3. A Stokes problem and its weak Galerkin Discretization. We con-143

sider the primary velocity-pressure formulation for the Stokes problem on a bounded144

polygonal domain Ω, in two dimensions (d = 2), or three dimensions (d = 3), with a145

Dirichlet boundary condition:146

(3.1)


−4u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ∂Ω,

147

where f ∈
[
L2 (Ω)

]d
, and g ∈

[
H1/2 (∂Ω)

]d
. Without loss of generality, we assume148

that g = 0. The weak form in the primary velocity-pressure formulation for the Stokes149

problem seeks u ∈
[
H1

0 (Ω)
]d

and p ∈ L2
0 (Ω) such that150

(3.2)

{
(∇u, ∇v)− (∇ · v, p) = (f, v) ∀v ∈

[
H1

0 (Ω)
]d
,

(∇ · u, q) = 0 ∀q ∈ L2
0 (Ω) .

151

The idea of weak Galerkin finite element scheme [38] is to substitute the standard152

function and differential operators with the weakly defined counterparts. A weak153

4

This manuscript is for review purposes only.



function over the domain D is defined as v = {v0, vb} such that v0 ∈ L2 (D) and154

vb ∈ L2 (∂D). The v0 part represents the value of v in the interior of D, while the155

vb part represents the value of v on the boundary of D. Note that vb does not bind156

itself with v0 from the definition. In essence, weak functions relax the continuity157

property of the standard functions, thus to offer more flexibility in terms of variable158

representation. Following the notation in [38], we denote by V (D) the space of weak159

functions over the domain D160

V (D) =
{
v = {v0, vb} : v0 ∈ L2 (D) , vb ∈ L2 (∂D)

}
,161

and the relevant vector-valued weak function space by162

[V (D)]
d

=
{
v = {v0, vb} : v0 ∈

[
L2 (D)

]d
, vb ∈

[
L2 (∂D)

]d}
,163

and164

[V (D)]
d

=
{
v = {v0, vb} : v0 ∈

[
L2 (D)

]d
, vb · n ∈ L2 (∂D)

}
.165

The space of weak gradient or divergence operators will be defined as the dual166

space of appropriate Hilbert space, in similar manner as the dual of
[
L2 (D)

]d
can167

be identified with itself by using the L2 inner product as the action of the linear168

functionals. The following two definitions are [38, Definitions 2.1 and 2.3]:169

Definition 1. For any v ∈ [V (D)]
d
, the weak gradient of v is defined as the170

linear functional ∇wv in the dual space of [H1(D)]d whose action on each q ∈171

[H1(D)]d×d is given by172

(∇wv, q)D = − (v0,∇ · q)D + 〈vb,q · n〉∂D ,173

where n is the outward normal direction to ∂D.174

Definition 2. For any v ∈ [V (D)]
d
, the weak divergence of v is defined as the175

linear functional ∇w ·v in the dual space of H1(D) whose action on each ϕ ∈ H1 (D)176

is given by177

(∇w · v, ϕ)D = − (v0,∇ϕ)D + 〈vb · n, ϕ〉∂D ,178

where n is the outward normal direction to ∂D.179

Now, we introduce the weak Galerkin finite element discretization for (3.1) as in180

[38]. First, we introduce the mesh of the domain, then we will define discontinuous181

weak Galerkin finite element spaces over the mesh. Let Th be a shape-regular and182

quasi-uniform triangulation of Ω, and the element in Th denoted by K. For any183

K ∈ Th, we denote by hK the diameter of K with h = maxK∈ThhK . Define Fh be the184

set of edges/faces of elements K ∈ Th. F ih and F∂h are subsets of Fh, which consists of185

domain interior and boundary edges, respectively. For any domain D, let Pk (D) be186

the space of polynomials of degree ≤ k on D. Define the weak Galerkin finite element187

spaces for the velocity variable associated with Th as follows:188

Vk =
{
v = {v0, vb} : {v0, vb} |K ∈ [Pk (K)]

d × [Pk−1 (e)]
d
, ∀K ∈ Th, e ⊂ ∂K

}
.189

Note that a function v ∈ Vk has a single value vb on each edge e ∈ Fh. The190

subspace of Vk with vanishing boundary values on ∂Ω is denoted by191
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V 0
k = {v = {v0, vb} ∈ Vk : vb = 0 on ∂Ω} .192

We denote a relevant matrix polynomial function space by193

Qk−1 =
{
v : v|K ∈ [Pk−1 (K)]

d×d
, ∀K ∈ Th

}
.194

For the pressure variable, define the following finite element space195

Wk−1 =
{
q : q ∈ L2

0 (Ω) , q|K ∈ Pk−1 (K)
}
.196

Denote the discrete weak gradient operator by ∇w,k−1, and the discrete weak197

divergence operator by (∇w,k−1·), respectively. On the finite element space Vk, they198

are defined as follows: for v = {v0, vb} ∈ Vk, on each element K ∈ Th, ∇w,k−1v |K∈199

[Pk−1 (K)]
d×d

and ∇w,k−1 · v |K∈ Pk−1 (K) are the unique solutions of the following200

equations, respectively,201

(∇w,k−1v |K , q)K = − (v0,K ,∇ · q)K + 〈vb,K ,q · n〉∂K , ∀q ∈ [Pk−1 (K)]
d×d

,202

(∇w,k−1 · v |K , ϕ)K = − (v0,K ,∇ϕ)K + 〈vb,K · n, ϕ〉∂K , ∀ϕ ∈ Pk−1 (K) ,203

where v0,K and vb,K are the restrictions of v0 and vb to K, respectively, (u, w)K =204 ∫
K
uwdx, and 〈u,w〉∂K =

∫
∂K

uwds. To simplify the notation, we shall drop the205

subscript k − 1 in the notation ∇w,k−1 and (∇w,k−1·) for the discrete weak gradi-206

ent and the discrete weak divergence operators. We denote the L2 inner product207

over the triangulation as a summation over each element of the triangulation, for208

example,(∇wu, ∇ww)Th =
∑
K∈Th

(∇wu, ∇ww)K , (∇w · v, q)Th =
∑
K∈Th

(∇w · v, q)K .209

Let Q0 be the L2 projection from
[
L2 (K)

]d
onto [Pk (K)]

d
, and Qb be the L2210

projection from
[
L2 (e)

]d
onto [Pk−1 (e)]

d
, for e ∈ Fh. We write the corresponding211

projection operator for the weak function as Qh = {Q0, Qb}. Next, we define three212

bilinear forms as below213

(3.3) s (v, w) =
∑
K∈Th h

−1
K 〈Qbv0 − vb, Qbw0 − wb〉∂K ,

a (v, w) = (∇wv, ∇ww)Th + s (v, w) ,
b (v, q) = (∇w · v, q)Th .

214

The discrete problem resulting from the WG discretization can then be written215

as: find uh = {u0, ub} ∈ V 0
k and ph ∈Wk−1 such that216 {

a (uh, v)− b (v, ph) = (f, v0) , ∀v = {v0, vb} ∈ V 0
k ,

b (uh, q) = 0, ∀q ∈Wk−1.
217

We introduce the following operators: A : V 0
k → V 0

k , B : V 0
k →Wk−1, by218

(3.4) (Auh, v) = a (uh, v) , (Buh, q) = −b (uh, q) .219

Using these operators, the matrix form of the weak Galerkin scheme can be rep-220

resented as221
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[
A BT

B 0

] [
uh
ph

]
=

[
f
0

]
.222

At element level, for each K, given the edge component vb of the velocity and223

the pressure p, the interior component v0 of the velocity can be uniquely determined.224

Namely, v0 can be eliminated in each element independently. We thus obtain the225

reduced system of vb and p only with considerable smaller size but different sparsity226

pattern (denser than the full system) as below227 [
Auu BTpu
Bpu Cpp

] [
uh,b
ph

]
=

[
fub

fp

]
.228

Throughout the rest of the paper, we will work with the reduced system such229

obtained.230

4. Reduced Subdomain Interface Problem. We decompose Ω into N non231

overlapping subdomain Ωi with diameters Hi, i = 1,. . . , N , and set H = maxiHi .232

We assume that each subdomain is a union of shape-regular coarse triangles and that233

the number of such elements forming an individual sudomain is uniformly bounded.234

We define edges/faces as open sets shared by two subdomains. Two nodes belong to235

the same face when they are associated with the same pair of subdomains. Let Γ be236

the interface between the subdomains. The set of the interface nodes Γh is defined as237

Γh := (∪i6=j∂Ωi,h ∩ ∂Ωj,h) \ ∂Ωh, where ∂Ωi,h is the set of nodes on ∂Ωi and ∂Ωh is238

that of ∂Ω. We assume the triangulation of each subdomain is quasi-uniform.239

We decompose the discrete velocity and pressure spaces Vk and Wk−1 into:240

Vk = VI ⊕ V̂Γ, Wk−1 = WI ⊕W0.241

Here, VI and WI are products of subdomain interior velocity spaces V
(i)
I and subdo-242

main interior pressure spaces W
(i)
I , respectively; i.e.,243

VI =
N∏
i=1

V
(i)
I , WI =

N∏
i=1

W
(i)
I .244

The elements of V
(i)
I are supported in the subdomain Ωi and vanishes on its245

interface Γi, while the elements of W
(i)
I are restrictions of the pressure variables to246

Ωi which satisfy
∫

Ωi
p

(i)
I = 0. V̂Γ is the subspace of edge functions on Γ , and W0247

is the subspace of W with constant values p
(i)
0 in the subdomain Ωi that satisfy248 ∑N

i=1 p
(i)
0 m (Ωi) = 0, where m (Ωi) is the measure of the subdomain Ωi.249

We denote the space of interface edge velocity variables of the subdomain Ωi by250

V
(i)
Γ , and the associated product space by VΓ =

∏N
i=1 V

(i)
Γ ; generally edge functions251

in VΓ are discontinuous across the interface. We define the restriction operators R
(i)
Γ :252

V̂Γ → V
(i)
Γ to be an operator which maps functions in the continuous global interface253

edge variable space V̂Γ to the subdomain component space V
(i)
Γ . Also, RΓ : V̂Γ → VΓ254

is the direct sum of R
(i)
Γ . We denote the spaces of the right-hand-side interior load255

vectors fI and interface load vectors fΓ by FI and FΓ, respectively. Similar notation256

conventions apply to the spaces F̃Γ, F̂Γ, F̂Π, F
(i)
∆ , F

(i)
Γ , and F0. We will use them257

throughout this paper without further explanation.258
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With the decomposition of the solution space, the global Stokes problem can be259

written as follows: find (uI , pI , uΓ, p0) ∈
(
VI ,WI , V̂Γ,W0

)
such that260

(4.1)


AII BTII ÂTΓI 0

BII CII B̂TΓI 0

ÂΓI B̂ΓI ÂΓΓ B̂T0Γ

0 0 B̂0Γ 0



uI
pI
uΓ

p0

 =


fI
fpI
fΓ

0

 .261

The lower left block in (4.1) is zero, because the bilinear form b(uh, ϕ) does not262

explicitly relate to uI and pI for any uh ∈ V 0
k and ϕ ∈ W0. The leading two-by-two263

block of the matrix above can be rewritten into a block diagonal form with each block264

corresponding to an independent subdomain problem. And the global problem can265

be assembled from the subdomain problems, defined as below266

(4.2)


A

(i)
II B

(i)T
II Â

(i)T
ΓI 0

B
(i)
II C

(i)
II B̂

(i)T
ΓI 0

Â
(i)
ΓI B̂

(i)
ΓI Â

(i)
ΓΓ B̂

(i)T
0Γ

0 0 B̂
(i)
0Γ 0



u

(i)
I

p
(i)
I

u
(i)
Γ

p
(i)
0

 =


f

(i)
I

f
(i)
pI

f
(i)
Γ

0

 .267

We can eliminate the subdomain interior variables u
(i)
I and p

(i)
I in each subdo-268

main independently, and assemble the global interface problem from the subdomain269

interface problems.270

Definition 3. (Schur complement of the Stokes problem) Define the subdomain271

Schur complement S
(i)
Γ for the Stokes problem as follows: given u

(i)
Γ ∈ V

(i)
Γ , determine272

S
(i)
Γ u

(i)
Γ ∈ F

(i)
Γ such that273

(4.3)

A
(i)
II B

(i)T
II A

(i)T
ΓI

B
(i)
II C

(i)
II B

(i)T
ΓI

A
(i)
ΓI B

(i)
ΓI A

(i)
ΓΓ


u

(i)
I

p
(i)
I

u
(i)
Γ

 =

 0
0

S
(i)
Γ u

(i)
Γ

 .274

The global interface problem can then be written as: to find (uΓ, p0) ∈
(
V̂Γ,W0

)
,275

such that276

(4.4) Ŝ

[
uΓ

p0

]
=

[
gΓ

0

]
.277

Here the global interface matrix Ŝ is defined as

Ŝ =

[
ŜΓ B̂T0Γ

B̂0Γ 0

]
,

where ŜΓ =
∑N
i=1R

(i)T
Γ S

(i)
Γ R

(i)
Γ , B̂0Γ =

∑N
i=1B

(i)
0ΓR

(i)
Γ , and278

gΓ =
∑N
i=1R

(i)T
Γ

f (i)
Γ −

[
A

(i)
ΓI B

(i)T
IΓ

] [
A

(i)
II B

(i)T
II

B
(i)
II C

(i)
II

]−1 [
f

(i)
I

f
(i)
pI

] .279
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Fig. 1. Left: V̂Γ for the subdomains Ω1 and Ω2; Right: ṼΓ for the subdomains Ω1 and Ω2,
where the midpoint of each edge is chosen as the primal unknown. The red dots are the primal
variable VΠ and the black dots are the dual variable V∆.

Ω1 Ω2 Ω1 Ω2 VΠ

V∆

V̂Γ ṼΓ

The operator ŜΓ is symmetric positive definite but Ŝ is symmetric indefinite. In280

what follows, we will propose a BDDC preconditioner, and show that the precondi-281

tioned operator is positive definite when restricted to a proper subspace. A precon-282

ditioned conjugate gradient method can then be used to solve the global interface283

problem.284

5. The BDDC Preconditioner. The BDDC (Balancing Domain Decomposi-285

tion by Constraints) algorithm is a variant of the two-level Neumann-Neumann type286

preconditioner. It was introduced and analyzed by Dohrmann, Mandel, and Tezaur287

[5, 20, 21] for standard finite element discretization of elliptic problems. The BBDC288

preconditioner consists of local solvers for the subdomain problems and the artisti-289

cally designed global coarse-level problem. The coarse level problem is assembled290

from primal variables, such as edge/face averages across the subdomain interface on291

which the continuity constraints are enforced. In contrast to earlier versions of balanc-292

ing Neumann-Neumann methods, the BDDC methods do not need to solve singular293

systems and the algorithms demonstrate good scalability for parallel computation.294

In order to introduce the BDDC preconditioner, we first introduce a partially295

assembled interface space ṼΓ by296

ṼΓ = V̂Π ⊕ V∆ = V̂Π ⊕

(
N∏
i=1

V
(i)
∆

)
.297

Here, V̂Π is the continuous, coarse level, primal interface edge velocity space. The298

variables in this space are called the primal unknowns, and each primal unknown is299

shared by the adjacent subdomains. The remaining interface velocity variables live300

in the complimentary dual space V∆ . This space is the direct sum of the V
(i)
∆ , which301

are spanned by basis functions with vanishing value at the primal degrees of freedom.302

The functions in V∆ are generally discontinuous, see Figure 1. Thus, in the space303

ṼΓ, we relax the continuity constraints across the interface at the dual variables but304

retain the continuity at the primal variables, which makes all the component linear305

systems in the preconditioner nonsingular.306

307

We need to introduce several restriction, extension, and scaling operators between308

different spaces. R
(i)

Γ : ṼΓ → V
(i)
Γ restricts functions in the space ṼΓ to the components309

V
(i)
Γ of the subdomain Ωi. RΓ : ṼΓ → VΓ is the direct sum of R

(i)

Γ . R
(i)
∆ : V̂Γ → V

(i)
∆310

maps the functions from V̂Γ to V
(i)
∆ , its dual subdomain components. RΓΠ : V̂Γ → V̂Π311

is a restriction operator from V̂Γ to its subspace V̂Π. R̃Γ : V̂Γ → ṼΓ is the direct sum312
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of RΓΠ and R
(i)
∆ . We define the positive scaling factor δ†i (x) as follows:313

δ†i (x) =
1

card (Ix)
, x ∈ ∂Ωi,h ∩ Γh,314

where Ix is the set of indices of the subdomains that have x on their boundaries, and315

card (Ix) counts the number of the subdomain boundaries to which x belongs. It is316

clear that δ†i (x)’s provide a partition of unity, i.e.,
∑
i∈Ix δ

†
i (x) = 1, for any x ∈ Γh.317

We note that δ†i (x) is constant on each edge. Multiplying each row of R
(i)
∆ with the318

scaling factor gives us R
(i)
D,∆. The scaled operators R̃D,Γ is the direct sum of RΓΠ and319

R
(i)
D,∆.320

The partially assembled Schur complement S̃Γ, defined on the interface velocity321

space ṼΓ, can be represented as follows: given uΓ ∈ ṼΓ, S̃ΓuΓ ∈ F̃Γ satisfies322 
A

(1)
II B

(1)T
II A

(1)T
∆I · · · Ã

(1)T
ΠI

B
(1)
II C

(1)
II B

(1)T
∆I · · · B̃

(1)T
ΠI

A
(1)
∆I B

(1)
∆I A

(1)
∆∆ · · · Ã

(1)T
Π∆

...
...

...
. . .

...

Ã
(1)
ΠI B̃

(1)
ΠI Ã

(1)
Π∆ · · · ÃΠΠ




u

(1)
I

p
(1)
I

u
(1)
∆
...
uΠ

 =



0
0(

S̃ΓuΓ

)(1)

∆
...(

S̃ΓuΓ

)
Π


.323

Here, ÃΠΠ =
∑N
i=1R

(i)T
Π A

(i)
ΠΠR

(i)
Π , Ã

(i)
ΠI = R

(i)T
Π A

(i)
ΠI , Ã

(i)
Π∆ = R

(i)T
Π A

(i)
Π∆, and B̃

(i)
ΠI =324

R
(i)T
Π B

(i)
ΠI .325

Based on this definition, we can also obtain S̃Γ from subdomain Schur comple-326

ments S
(i)
Γ by assembling with respect to the global degrees of freedom of the primal327

interface velocities, i.e.,328

(5.1) S̃Γ = R
T

ΓSΓRΓ.329

Here, we denote the direct sum of S
(i)
Γ by SΓ. The global interface Schur operator ŜΓ330

on the continuous interface velocity space V̂Γ can be obtained by further assembling331

with respect to the dual interface variables, i.e.,332

(5.2) ŜΓ = R̃TΓ S̃ΓR̃Γ = RTΓSΓRΓ.333

We note that, for any xΓ ∈ ṼΓ with xTΓ S̃ΓxΓ = 0, xΓ has to be a constant on each334

subdomain. Due to the continuity of the primal components of xΓ and the Dirichlet335

boundary condtion of (3.1), xΓ has to be zero and therefore S̃Γ is symmetric positive336

definite.337

Correspondingly, we define an operator B̃0Γ, which maps the partially assembled338

interface velocity space ṼΓ into F0, the space of right-hand sides corresponding to W0.339

B̃0Γ can be obtained from the subdomain operators B
(i)
0Γ by assembling with respect to340

the primal interface velocity part, i.e., B̃0Γ =
∑N
i=1B

(i)
0ΓR

(i)

Γ . Similarly, the operator341

B̂0Γ can be obtained from the partially assembled operator B̃0Γ by further assembling342

with respect to the dual interface velocity variables on the subdomain interfaces, i.e.,343

B̂0Γ = B̃0ΓR̃Γ. By the definition, we have that the B̃0Γ has a full row rank since B̂0Γ344

does.345
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Let346

(5.3) R̃D =

[
R̃D,Γ

I

]
, S̃ =

[
S̃Γ B̃T0Γ

B̃0Γ 0

]
.347

Due to the positive definiteness of S̃Γ and the full row rank of B̃0Γ, S̃ is invertible and348

we can define the preconditioner for solving the global interface Stokes problem as349

M−1 = R̃TDS̃
−1R̃D.350

Note that R̃D,Γ is of full rank and that the preconditioner is nonsingular. The pre-351

conditioned BDDC algorithm is then of the form: to find (uΓ, p0) ∈
(
V̂Γ, W0

)
, such352

that353

(5.4) M−1Ŝ

[
uΓ

p0

]
= M−1

[
gΓ

0

]
.354

We require that
∫
∂Ωi

u
(i)
∆ · ni = 0, for all the dual interface velocity variables355

u
(i)
∆ ∈ V

(i)
∆ , with ni the unit outward normal of ∂Ωi; see [18, 29]. We will refer to this356

assumption as the divergence free constraint for the dual velocity variables. When the357

Conjugate Gradient (CG) method is used to solve the preconditioned system (5.4), the358

divergence free constraint can ensure the CG iterations will be in a special subspace359

where the preconditioned operator is positive definite and therefore the CG method360

can be applied. In order to satisfy this constraint, we choose the primal variables361

which are spanned by subdomain interface edge/face basis functions with constant362

values on these edges/faces for two/three dimensions. We change the variables so363

that the degree of freedom of each primal constraint is explicit; see [19, 14]. The364

dual space is correspondingly spanned by the remaining interface degrees of freedom365

with zero average values over the interface edge/face. This constraint is critical to the366

design of the preconditioner, as we will see more details in Section 6.367

At the end of this section, we discuss the implementation of the preconditioner.368

The main operation is the product of S̃−1 with a vector, which requires solving a369

coarse problem related to the primal variables we choose and independent subdomain370

Stokes problems with Neumann type boundary conditions. The size of the coarse371

problem will increase with the increasing of the number of the subdomains and it can372

be a bottleneck of the algorithm. The multilevel extension of the algorithms can be373

explored as in [32, 31, 22].374

6. Some Auxiliary Results. We adopt the convention that C denotes a generic375

constant independent of the mesh size h and subdomain size H. In general, its value376

may vary at different instances.377

First, we list two useful results. For shape regular partition Th as detailed in [38],378

the following trace and inverse inequalities hold; see[37].379

Lemma 4. (Trace Inequality) There exists a constant C such that380

(6.1) ‖g‖2e ≤ C
(
h−1
K ‖g‖

2
K + hK ‖∇g‖2K

)
,381

where g ∈ H1(K), and K is an element of Th with e as an edge/face.382
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Lemma 5. (Inverse Inequality) There exists a constant C = C(k) such that383

(6.2) ‖∇g‖K ≤ C(k)h−1
K ‖g‖K , ∀K ∈ Th384

for any piecewise polynomial g of degree k on Th.385

We collect a few results of the weak Galerkin finite element scheme, which will386

be used in our analysis of the BDDC preconditioner. Note that the discrete weak387

velocity function space V 0
k is a normed linear space with a triple-bar norm given by388

[38, (4.1)]389

(6.3) |||v|||2 =
∑
K∈Th ‖∇wv‖

2
K +

∑
K∈Th h

−1
K ‖Qbv0 − vb‖2∂K .390

391

Lemma 6. For the weak Galerkin scheme described in Section 3, the following392

results hold:393

1. For any v = {v0, vb} ∈ Vk, we have
∑
T∈Th ‖∇v0‖2T ≤ C|||v|||

2
;394

2. For any v ∈ V 0
k , a (v, v) = |||v|||2;395

3. For any v, w ∈ V 0
k , |a (v, w)| ≤ |||v||| |||w|||;396

4. For any v = {v0, vb} ∈ V 0
k , ρ ∈Wk−1, |b (v, ρ)| ≤ C|||v||| ‖ρ‖L2 ;397

5. For any ρ ∈ Wk−1, supv∈V 0
k

b(v, ρ)
|||v|||w

≥ β ‖ρ‖L2 , where β is positive constant398

independent of the mesh size h.399

Proof. The first result is in [38, Lemma A.2]; the second and third results give the400

coercivity and boundedness property of the bilinear form a (·, ·), which are proved in401

[38, Lemma 4.1]. The fourth result is the boundedness property of the bilinear form402

b (·, ·). This can be proved as follows.403

|b (v, ρ)| =

∣∣∣∣∣ ∑
K∈Th

(∇w · v, ρ)K

∣∣∣∣∣404

=

∣∣∣∣∣ ∑
K∈Th

(− (v0, ∇ρ)K + 〈vb · n, ρ〉∂K)

∣∣∣∣∣405

=

∣∣∣∣∣ ∑
K∈Th

((∇ · v0, ρ)K − 〈(Qbv0 − vb) · n, ρ〉∂K)

∣∣∣∣∣406

≤ C

( ∑
K∈Th

‖∇v0‖2L2(K)

)1/2( ∑
K∈Th

‖ρ‖2L2(K)

)1/2

407

+ C

( ∑
K∈Th

h−1
K ‖vb −Qbv0‖2L2(∂K)

)1/2( ∑
K∈Th

hk ‖ρ‖2L2(∂K)

)1/2

408

≤ C|||v||| ‖ρ‖L2 ,409410

where we use the definition of weak divergence for the second equality, and integration411

by parts for the third equality. We use the Cauchy-Schwarz inequality for the fourth412

inequality. Part (1) of Lemma 6, the definition of the triple-bar norm (6.3), and the413

trace inequality (6.1) and the inverse inequality (6.2) for the last inequality.414

The last result is the discrete inf-sup condition, which is proved in [38, Lemma415

4.3]. These results also hold for the subdomain Ωi. If follows that the weak Galerkin416

scheme is well-posed for the global interface problem and local subdomain problems.417
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We introduce several conceptual tools which will be useful in our analysis of the418

BDDC preconditioner.419

Definition 7. (Schur complement of the subdomain elliptic problem) The sub-420

domain Schur complement for the elliptic problem, denoted by S
(i)
Γ, E, is defined as421

follows: given u
(i)
Γ ∈ V

(i)
Γ , determine S

(i)
Γ, Eu

(i)
Γ ∈ F

(i)
Γ such that422

A(i)

[
u

(i)
I

u
(i)
Γ

]
=

[
0

S
(i)
Γ,Eu

(i)
Γ

]
,423

where A(i) =

[
A

(i)
II A

(i)T
ΓI

A
(i)
ΓI A

(i)
ΓΓ

]
.424

Since the subdomain elliptic problem A(i) is symmetric positive definite [36], the425

Schur complement S
(i)
Γ,E is also symmetric positive definite by the inertia of Schur426

complements [19]. Thus, we can define the norm427 ∣∣∣u(i)
∣∣∣2
A(i)

= u(i)TA(i)u(i) = a
(
u(i), u(i)

)
, for all u(i) ∈ V (i),428

and429 ∣∣∣u(i)
Γ

∣∣∣2
S

(i)
Γ, E

= u
(i)T
Γ S

(i)
Γ, Eu

(i)
Γ , for all u

(i)
Γ ∈ V

(i)
Γ .430

Similarly, the subdomain Schur complements for the Stokes problems, defined in431

(4.3), are symmetric, positive semi-definite [18]. They are singular for any floating432

subdomains, by which we mean the boundary of the subdomain does not intersect433

with the global domain boundary ∂Ω. Thus, we can define the S
(i)
Γ − seminorms by434 ∣∣∣u(i)

Γ

∣∣∣2
S

(i)
Γ

= u
(i)T
Γ S

(i)
Γ u

(i)
Γ , for all u

(i)
Γ ∈ V

(i)
Γ .435

It follows that436

|uΓ|2SΓ
= uTΓSΓuΓ =

N∑
i=1

∣∣∣u(i)
Γ

∣∣∣2
S

(i)
Γ

.437

The fully and partially assembled global interface velocity operators ŜΓ and S̃Γ,438

given in (5.2) and (5.1), are both symmetric, positive definite because of the Dirichlet439

boundary conditions on ∂Ω and the adequacy of the primal continuity constraints440

for the divergence free condition. In similar way as before, we define the ŜΓ− and441

S̃Γ−norms on the spaces V̂Γ and ṼΓ, respectively, as below.442

‖uΓ‖2ŜΓ
= uTΓ ŜΓuΓ = uTΓR

T
ΓSΓRΓuΓ = |RΓuΓ|2SΓ

, ∀uΓ ∈ V̂Γ,443

‖uΓ‖2S̃Γ
= uTΓ S̃ΓuΓ = uTΓR

T

ΓSΓRΓuΓ =
∣∣RΓuΓ

∣∣2
SΓ
, ∀uΓ ∈ ṼΓ.444

The global interface operator Ŝ and S̃, introduced in (4.4) and (5.3), are sym-445

metric indefinite on the space V̂Γ ×W0 and ṼΓ ×W0, respectively. However, when446

restricted to the proper subspaces, these operators can be positive semidefinite, and447

we can thus define a Ŝ− and S̃−seminorms on these subspaces. We call such subspaces448

as the benign subspaces, and denote them by V̂Γ,B ×W0 and ṼΓ,B ×W0, respectively.449

Specifically, they can be defined as follows.450
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Definition 8. (Benign subspaces)451

V̂Γ,B =
{
uΓ ∈ V̂Γ|B̂0ΓuΓ = 0

}
and ṼΓ,B =

{
uΓ ∈ ṼΓ|B̃0ΓuΓ = 0

}
.452

If follows that we can define453

|u|2Ŝ = uT Ŝu, ∀u = (uΓ, p0) ∈ V̂Γ,B ×W0,454

|u|2S̃ = uT S̃u, ∀u = (uΓ, p0) ∈ ṼΓ,B ×W0.455

We can show by direct computation that the following facts hold.456

|u|2Ŝ = ‖uΓ‖2ŜΓ
, ∀u = (uΓ, p0) ∈ V̂Γ,B ×W0,457

|u|2S̃ = ‖uΓ‖2S̃Γ
, ∀u = (uΓ, p0) ∈ ṼΓ,B ×W0.458

We denote the null space of the Ŝ−seminorm operator on the space V̂Γ,B×W0 by459

Ẑ. It is easy to see that this space is comprised of elements u = (0, p0) ∈ V̂Γ,B ×W0.460

The following lemma is crucial to the analysis of the preconditioned BDDC op-461

erator. The proof can be found in [18, 29].462

Lemma 9. Under the divergence free constraint for the dual interface velocities,463

introduced in Section 5, we have R̃TDu ∈ V̂Γ,B ×W0 for any u ∈ ṼΓ,B ×W0.464

With the choice of the primal velocity continuity constraints of the BDDC algorithm,465

the preconditioned BDDC operator M−1Ŝ is positive definite on the quotient space,466

and correspondingly, we can use the preconditioned conjugate gradient method when467

the iterations are restricted to the quotient space. The design of the BDDC precondi-468

tioner and the result from Lemma 9 guarantee that the iterations of the preconditioned469

conjugate gradient method will stay in the quotient subspace if the initialization lies470

in the quotient subspace [18].471

Next we introduce two important extension operators for the trace over the sub-472

domain boundary.473

Definition 10. (Discrete harmonic extension) The discrete harmonic extension474

of γ ∈ V
(i)
Γ over the subdomain Ωi, denoted by H (γ) : V

(i)
Γ → V (i), satisfies the475

following:476 {
a (H (γ) , v) = 0, ∀v = {v0, vb} ∈ V 0

k (Ωi) ,

H (γ) |∂Ωi= γ.
477

The bilinear form a (·, ·) is defined in (3.3).478

Definition 11. (Discrete Stokes extension) The discrete Stokes extension of γ ∈479

V
(i)
Γ over the subdomain Ωi, denoted by S (γ) : V

(i)
Γ → V (i), satisfies the following:480 

a (S (γ) , v)− b (v, P (γ)) = 0, ∀v = {v0, vb} ∈ V 0
k (Ωi) ,

b (S (γ) , q) = 0, ∀q ∈Wk−1 (Ωi) ,

S (γ) |∂Ωi
= γ,

481

where P (γ) is the corresponding pressure extension with zero mean value living in the482

space Wk−1 (Ωi). The bilinear forms a (·, ·) and b (·, ·) are defined in (3.3).483
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The connection between the discrete harmonic/Stokes extensions and the Schur484

complements of the corresponding linear systems can be revealed as follows.485

Remark 1. By definition, it is clear that486 ∣∣∣u(i)
Γ

∣∣∣2
S

(i)
Γ, E

=
∣∣∣H(u(i)

Γ

)∣∣∣2
A(i)

= inf
u(i)∈V (i), u(i)|∂Ωi

=u
(i)
Γ

∣∣∣u(i)
∣∣∣2
A(i)

,487

and that488 ∣∣∣u(i)
Γ

∣∣∣2
S

(i)
Γ

=
∣∣∣S (u(i)

Γ

)∣∣∣2
A(i)

= inf
u(i)∈V (i), u(i)|∂Ωi

=u
(i)
Γ , B(i)u(i)=0

∣∣∣u(i)
∣∣∣2
A(i)

.489

For the same edge velocities u
(i)
Γ over the subdomain boundary ∂Ωi, we have490 ∣∣∣H(u(i)

Γ

)∣∣∣2
A(i)
≤
∣∣∣S (u(i)

Γ

)∣∣∣2
A(i)

,491

since the infimum over a larger set is smaller. It follows that492 ∣∣∣u(i)
Γ

∣∣∣2
S

(i)
Γ, E

≤
∣∣∣u(i)

Γ

∣∣∣2
S

(i)
Γ

.493

Next, we prove the connection between the edge velocity seminorms defined by the494

Schur complements of the elliptic and Stokes problems for the same subdomain. Sim-495

ilar proof for the conforming discretizations can be found in [2].496

Lemma 12. For any u
(i)
Γ ∈ V

(i)
Γ , we have497

C
β2

(1 + β)
2

∣∣∣u(i)
Γ

∣∣∣2
S

(i)
Γ

≤
∣∣∣u(i)

Γ

∣∣∣2
S

(i)
Γ, E

≤
∣∣∣u(i)

Γ

∣∣∣2
S

(i)
Γ

,498

where β is the inf-sup stability constant defined in Lemma 6.499

Proof. The second inequality directly follow from the Remark.500

We prove the first inequality as follows. Denote the discrete harmonic and Stokes501

extension of u
(i)
Γ ∈ V

(i)
Γ by H

(
u

(i)
Γ

)
and S

(
u

(i)
Γ

)
, respectively. Using v = S

(
u

(i)
Γ

)
−502

H
(
u

(i)
Γ

)
as the test function in Definition 11, we have503

a
(
S
(
u

(i)
Γ

)
, S
(
u

(i)
Γ

)
−H

(
u

(i)
Γ

))
− b

(
S
(
u

(i)
Γ

)
−H

(
u

(i)
Γ

)
, ρ
)

= 0,504

where ρ is the corresponding pressure extension with zero mean value living in the505

space Wk−1(Ωi).506

Since b
(
S
(
u

(i)
Γ

)
, ρ
)

= 0, it follows that507

a
(
S
(
u

(i)
Γ

)
, S
(
u

(i)
Γ

))
= a

(
S
(
u

(i)
Γ

)
, H

(
u

(i)
Γ

))
+ b

(
H
(
u

(i)
Γ

)
, ρ
)
.508

By the part (4) in Lemma 6, we have509

(6.4)
∣∣∣S (u(i)

Γ

)∣∣∣2
A(i)
≤
∣∣∣S (u(i)

Γ

)∣∣∣
A(i)

∣∣∣H(i)
(
u

(i)
Γ

)∣∣∣
A(i)

+ C
∣∣∣H(u(i)

Γ

)∣∣∣
A(i)
‖ρ‖L2(Ωi)

510

By the inf-sup condition (the part (5) in Lemma 6) ,511
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‖ ρ ‖2L2(Ωi)
≤ β−2 sup

v∈V 0
k (Ωi)

b (v, ρ)
2

|||v|||2
512

= β−2 sup
v∈V 0

k (Ωi)

a
(
S
(
u

(i)
Γ

)
, v
)2

|||v|||2
(6.5)513

≤ β−2
∣∣∣∣∣∣∣∣∣S (u(i)

Γ

)∣∣∣∣∣∣∣∣∣2 = β−2
∣∣∣S (u(i)

Γ

)∣∣∣2
A(i)

,514

where we have used Definition 11 for the second equality and the parts (2) and (3) in515

Lemma 6 for the last inequality.516

Substituting (6.5) into (6.4), we have517

∣∣∣S (u(i)
Γ

)∣∣∣2
A(i)
≤
∣∣∣S (u(i)

Γ

)∣∣∣A(i)

∣∣∣H(u(i)
Γ

)∣∣∣A(i) + Cβ−1
∣∣∣S (u(i)

Γ

)∣∣∣
A(i)

∣∣∣H(u(i)
Γ

)∣∣∣
A(i)

518

≤ C 1 + β

β

∣∣∣S (u(i)
Γ

)∣∣∣
A(i)

∣∣∣H(u(i)
Γ

)∣∣∣
A(i)

.519
520

It follows that521

C β2

(1+β)2

∣∣∣u(i)
Γ

∣∣∣2
S

(i)
Γ, S

= C β2

(1+β)2

∣∣∣S (u(i)
Γ

)∣∣∣2
A(i)
≤
∣∣∣H(u(i)

Γ

)∣∣∣2
A(i)

=
∣∣∣u(i)

Γ

∣∣∣2
S

(i)
Γ, E

.522

In order to prove the condition number bounds for the BDDC preconditioner,523

we define an averaging operator for the Stokes problem, denoted by ED, which524

maps ṼΓ ×W0, with generally discontinuous interface velocities, to the same space525

with continuous interface velocities. Specifically, for any u = (uΓ, p0) ∈ ṼΓ ×W0,526

ED [uΓ, p0]
T ∈ ṼΓ ×W0, where527

ED = R̃R̃TD =

[
R̃Γ

I

] [
R̃TD,Γ

I

]
=

[
ED,Γ
I

]
,528

and ED,Γ = R̃ΓR̃
T
D,Γ is the interface averaging operator for the velocities across the529

interface Γ. The operator ED,Γ computes a weighted average for the edge velocity530

across the subdomain interface Γ, and then distributes the average back to the original531

degree of freedoms on the interface.532

To facilitate further analysis, we introduce a useful norm as defined in [12]:533

(6.6) |||λ|||∗h,D =

 ∑
K∈Th,K⊆D

1

h
‖λ−mK(λ)‖2∂K

1/2

,534

where535

mK(λ) =
1

|∂K|

∫
∂K

λds.536

Denote |||λ|||∗h = |||λ|||∗h,Ω.537

Define the local lifting operators Q(·) and U(·) for the weak Galerkin (WG)538

method as below: given λ on ∂K,539

(Qλ, r)K + (Uµ,∇ · r)K = 〈λ, r · n〉∂K for all r ∈ [Pk−1(K)]d×d,(6.7a)540

−(w,∇ ·Qλ)K + 〈h−1
K (QbUλ− λ), Qbw〉∂K = 0 for all w ∈ [Pk(K)]d.(6.7b)541542
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Let u = (u0, ub) = (Uλ, λ). We have Qλ = ∇wu and can obtain a reduced norm of543

λ using the norm from the WG bilinear form as given in (6.3) as544

(6.8) |||λ|||2D =
∑
K∈Th,K⊆D ‖∇wu‖

2
K +

∑
K∈Th,K⊆D h

−1
K ‖Qbu0 − ub‖2∂K .545

Denote |||λ||| = |||λ|||Ω546

We will show the equivalence between the triple-bar norm defined above in (6.6)547

and (6.8). To denote the triple-bar norm defined over an element K, we add a sub-548

script K to it. Note that similar strategy was used to prove the equivalence between549

the norm generated by the bilinear form from a hybridized mixed method and triple-550

bar norm (6.6) in [12].551

Lemma 13. The function |||λ|||K is zero on K ∈ Th if and only if λ is constant on552

∂K.553

Proof. Assume that |||λ|||K = 0 on K. It follows that554

0 = (∇wu,∇wu) + h−1
K 〈QbUλ− λ,QbUλ− λ〉∂K ,555

where u = {Uλ, λ}, and ∇wu = Qλ. This implies that ∇wu = 0 on element K and556

QbUλ = λ on ∂K. Further, we have from the definition of the discrete weak gradient557

operator or the lifting operator Q given in (6.7b) that for any τ ∈ [Pk−1(K)]n,558

0 = (∇wu, τ)K559

= −(Uλ,∇ · τ)K + 〈λ, τ · n〉∂K560

= (∇Uλ, τ)K − 〈Uλ− λ, τ · n〉∂K561

= (∇Uλ, τ)K − 〈QbUλ− λ, τ · n〉∂K562

= (∇Uλ, τ)K .563564

Let τ = ∇Uλ. Then we have ∇Uλ = 0 on K. It follows that Uλ = const. on K.565

Thus, QbUλ = const. on ∂K. Since QbUλ = λ on ∂K, we have λ = const. Note that566

similar argument as above was provided in [38] to prove that (6.3) gives a norm.567

Conversely, assume λ is a constant on ∂K. Substituting the ordered pair (r, w)568

in (6.7) with (Qλ, Uλ) and adding up, we obtain569

|||λ|||2K = 〈λ, Qλ · n〉∂K − h−1
K 〈QbUλ− λ, λ〉∂K .570

Let w = λ be the test function in (6.7b). Since λ is constant, λ = Qbλ. It follows571

from (6.7b) that572

−〈λ, Qλ · n〉∂K + h−1
K 〈QbUλ− λ, λ〉∂K = 0.573

Therefore, |||λ|||K = 0.574

Lemma 14. Let Mh = {vb : v = {v0, vb} ∈ V 0
k }. For all λ ∈Mh,575

c|||λ|||∗,2h ≤ |||λ|||
2 ≤ C|||λ|||∗,2h .576

577

Proof. First, we prove the lower bound. By Lemma 13, |||λ|||K = 0 implies that λ578

is constant on ∂K. Similarly as in [12], by a scaling argument, it can be shown that579

|||λ|||K ≥
c

|∂K|1/2
inf
κ∈R
‖λ− κ‖∂K =

c

|∂K|1/2
‖λ−mK(λ)‖∂K = c|||λ|||∗h,K ,580
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for some constant c independent of λ.581

Next, we prove the upper bound. Let r = Qλ, and w = Uλ. Plugging the ordered582

pair (r, w) into (6.7), and adding up, we obtain583

|||λ|||2K = 〈λ, Qλ · n〉∂K − h−1
K 〈QbUλ− λ, λ〉∂K584

= 〈λ, Qλ · n− h−1
K (QbUλ− λ)〉∂K585

= 〈λ−mK(λ), Qλ · n− h−1
K (QbUλ− λ)〉∂K586

≤ C

|∂K|1/2
‖λ−mK(λ)‖∂K |||λ|||K587

= C|||λ|||∗h,K |||λ|||K ,588

589590

where we have used (6.7b) for the third equality, the trace inequality (6.1) and inverse591

inequality (6.2) for the second-to-last inequality. It follows that592

c|||λ|||∗,2h,K ≤ |||λ|||
2
K ≤ C|||λ|||

∗,2
h,K .593

Summing up over all elements in Th, we obtain594

c|||λ|||∗,2h ≤ |||λ|||
2 ≤ C|||λ|||∗,2h .595

Based on the equivalence of norms in Lemma 14, similar to the proof of [35,596

Lemma 5], we can obtain that the interface averaging operator ED,Γ satisfies the597

following bound:598

Lemma 15. For any wΓ ∈ ṼΓ,599

|ED,ΓwΓ|2S̃Γ, E
≤ C

(
1 + log

H

h

)2

|wΓ|2S̃Γ, E
,600

where C is a positive constant independent of the domain size H, and mesh size h.601

Now, we are in a position to prove the bound of the averaging operator ED for602

the Stokes problem.603

Lemma 16. There exists a positive constant C, which is independent of H and h,604

such that605

|EDw|2S̃ ≤ C
(

1 + β

β

)2(
1 + log

H

h

)2

|w|2
S̃

∀w = (wΓ, q0) ∈ ṼΓ, B ×W0,606

where β is the inf-sup stability constant.607

Proof. For any vector w = (wΓ, q0) ∈ ṼΓ, B×W0, by Lemma 9, R̃TDw ∈ V̂Γ,B×W0.608

Thus, EDw = R̃R̃TDw ∈ ṼΓ, B ×W0.609

From the definition of the S̃-seminorm, we have |EDw|2S̃ = ‖ED,ΓwΓ‖2S̃Γ
=610

|R̄Γ (ED,ΓwΓ) |2SΓ
.611

Noting that SΓ = diag(S
(i)
Γ ), and applying Lemma 12 to each subdomain, we612

have613

|R̄Γ (ED,ΓwΓ) |2SΓ
≤ C

(
1+β
β

)2

|R̄Γ (ED,ΓwΓ) |2SΓ,E
614
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Further, we have615

|R̄Γ (ED,ΓwΓ) |2SΓ,E
= |ED,ΓwΓ|2S̃Γ,E

≤ C
(

1 + log
H

h

)2

|wΓ|2S̃Γ,E
616

≤ C
(

1 + log
H

h

)2

|wΓ|2S̃Γ
.617

618

Combining these inequalities, we have619

|EDw|2S̃ ≤ C
(

1+β
β

)2 (
1 + log H

h

)
|wΓ|2S̃Γ

= C
(

1+β
β

)2 (
1 + log H

h

)2 |w|2
S̃

.620

7. Condition number estimate for the BDDC preconditioner. We are621

now ready to formulate and prove our main results. It follows by proving the lower622

and upper bound for uTM−1Ŝu. See similar proof in [18].623

Theorem 17. Assume the divergence free constraint holds for the interface veloc-624

ities. The preconditioned operator M−1Ŝ is symmetric, positive definite with respect625

to the bilinear form 〈·, ·〉Ŝ on the space V̂Γ,B ×W0. Its eigenvalues are bounded from626

below by 1 and from above by C (1+β)2

β2

(
1 + log H

h

)2
, where C is a constant which is627

independent of the domain size H, and the mesh size h, and β is the inf-sup stability628

constant.629

Proof. It is sufficient to prove that for any u = (uΓ, p0) ∈ V̂Γ,B×W0, with uΓ 6= 0,630

〈u, u〉Ŝ ≤
〈
u, M−1Ŝu

〉
Ŝ
≤ C

(
1+β
β

)2 (
1 + log

(
H
h

))2 〈u, u〉Ŝ .631

In what follows, we prove the lower and upper bound for
〈
u, M−1Ŝu

〉
Ŝ

respec-632

tively.633

Let ũ = S̃−1R̃DŜu. Obviously, ũ ∈ ṼΓ,B ×W0.634

Note that R̃T R̃D = R̃TDR̃ = I. The details for the proof of the lower bound go as635

follows:636

〈u, u〉Ŝ = uT ŜR̃TDR̃u = uT ŜR̃TDS̃
−1S̃R̃u =

〈
ũ, R̃u

〉
S̃

637

≤ 〈ũ, ũ〉1/2
S̃

〈
R̃u, R̃u

〉1/2

S̃
= 〈ũ, ũ〉1/2

S̃
〈u, u〉1/2

Ŝ
.638

639

Thus, we obtain 〈u, u〉Ŝ ≤ 〈ũ, ũ〉S̃ by canceling a common factor and squaring on640

both sides.641

Since642

〈ũ, ũ〉S̃ = uT ŜR̃TDS̃
−1S̃S̃−1R̃DŜu =

〈
u, R̃TDS̃

−1R̃DŜu
〉
Ŝ

=
〈
u, M−1Ŝu

〉
Ŝ
,643

we have 〈u, u〉Ŝ ≤
〈
u, M−1Ŝu

〉
Ŝ

.644

Next, we prove the upper bound.645

Since M−1 = R̃TDS̃
−1R̃D, we have R̃TDũ = M−1Ŝu.646

By using Lemma 16 and the fact that Ŝ = R̃T S̃R̃, we obtain647 〈
M−1Ŝu, M−1Ŝu

〉
Ŝ

=
〈
R̃TDũ, R̃

T
Dũ
〉
Ŝ

=
〈
R̃R̃TDũ, R̃R̃

T
Dũ
〉
S̃

= |EDũ|2S̃648

≤ C
(

1 + β

β

)2(
1 + log

H

h

)2

|ũ|2
S̃

649

≤ C
(

1 + β

β

)2(
1 + log

H

h

)2 〈
u, M−1Ŝu

〉
Ŝ

650
651

19

This manuscript is for review purposes only.



Table 1
Condition number estimates and iteration counts for the BDDC preconditioned operator with

changing subdomains numbers. H
h

= 8, and k = 1.

Number of Subdomains Iterations Condition number

4×4 11 4.12
8×8 13 5.01

16×16 13 4.90
24×24 13 5.05
32×32 12 4.94

Table 2
Condition number estimates and iteration counts for the BDDC preconditioned operator with

changing subdomains numbers. H
h

= 8, and k = 2.

Number of Subdomains Iterations Condition number

4×4 13 7.37
8×8 17 9.24

16×16 20 9.89
24×24 20 10.29
32×32 19 10.26

Using the Cauchy-Schwarz inequality, we have652 〈
u, M−1Ŝu

〉
Ŝ
≤ 〈u, u〉1/2

Ŝ

〈
M−1Ŝu, M−1Ŝu

〉1/2

Ŝ
653

≤ C 1 + β

β

(
1 + log

H

h

)
〈u, u〉1/2

Ŝ

〈
u, M−1Ŝu

〉1/2

Ŝ
.654

655

This gives
〈
u, M−1Ŝu

〉
Ŝ
≤ C

(
1+β
β

)2 (
1 + log H

h

)2 〈u, u〉Ŝ . The upper bound of656

the eigenvalues thus follows.657

8. Numerical Experiments. In this section, we will report some numerical658

results for the BDDC algorithm proposed for the weak Galerkin discretization of the659

Stokes problem. We used the BDDC algorithm to solve the model problem (3.1) on660

the square domain Ω = [0, 1]
2

with zero Dirichlet boundary condition. The analytical661

solution of the test problem is given by662

u =

[
sin3 (πx) sin2 (πy) cos (πy)
− sin2 (πx) sin3 (πy) cos (πx)

]
and p = x2 − y2.663

We decompose the unit square into N×N subdomains with side length H = 1/N .664

Each subdomain has a characteristic mesh size h. Both the first order (k = 1)665

and second order (k = 2) weak Galerkin methods are used to discretize the model666

equations. The BDDC preconditioned conjugate gradient iterations are stopped when667

the l2−norm of the residual has been reduced by a factor of 106.668

In the first set of experiments, we fix the size of the subdomain problem to be669
H
h = 8. Table 1 and 2 show the iteration counts and the estimates of the condition670

numbers for the BDDC preconditioned operator with changing subdomain numbers671

for k = 1 and k = 2, respectively. The condition numbers are found to be independent672

of the number of subdomains. As the second set of experiment, instead of fixing the673
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Table 3
Condition number estimates and iteration counts for the BDDC preconditioned operator with

changing subdomain problem size. 8 × 8 subdomains, and k = 1.

H
h Iterations Condition number

4 9 2.49
8 13 5.01
16 15 7.48
24 18 9.12
32 19 10.37

Table 4
Condition number estimates and iteration counts for the BDDC preconditioned operator with

changing subdomain problem size. 8 × 8 subdomains, and k = 2.

H
h Iterations Condition number

4 14 5.87
8 17 9.24
16 21 12.47
24 23 15.33
32 23 16.09

size of the subdomain problems, we fix the subdomain partition to be 8 × 8, and674

allow the subdomain problem size to vary. The condition number is found to increase675

logarithmically with the subdomain problem size. Table 3 and 4 demonstrate results676

for the second set of experiments for k = 1 and k = 2, respectively.677

To conclude, we have carried out a series of experiments to obtain iteration counts678

and condition number estimates. The experimental results prove to be consistent679

with the theory. That is the condition number bound of the BDDC preconditioned680

system is of the form C (1+β)2

β2

(
1 + log H

h

)2
, where H and h are the diameters of the681

subdomains and elements, respectively. Possible future work will be to explore the682

order of the basis functions effects on C.683
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