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An Improved Generalized Average Model of DC-DC
Dual Active Bridge Converters

Jacob A. Mueller

Abstract—Improvements are proposed for generalized average
models of dual active bridge (DAB) converters. Generalized aver-
age modeling involves a tradeoff between accuracy and tractability.
To maintain an acceptable level of complexity, existing DAB models
are derived using a first harmonic approximation. These models
provide accurate small-signal representations, but are limited as
large-signal analysis tools due to persistent steady-state error. This
study proposes a modeling framework that provides accurate large
and small-signal models without significant increases in the overall
complexity. The framework describes DAB operation with a triple
phase shift modulation, and is easily simplified for single, dual,
or extended phase shift modulation schemes. The special case of
a single phase shift modulation, which experiences the most sig-
nificant large-signal error, is given additional consideration. The
framework is applied to open and closed-loop operation, and both
large- and small-signal models are discussed. Models are validated
in simulation and hardware experiments using a small scale DAB
prototype.

Index Terms—Average modeling, dual active bridge (DAB) con-
verter, generalized average model, phase shift modulation.

1. INTRODUCTION

HE dual active bridge (DAB) topology features desirable

performance characteristics including galvanic isolation,
high power density, low device stresses, and bidirectional opera-
tion[1], [2]. Many of these attributes are due to a high-frequency
ac conversion stage. However, the associated ac state variables
present challenges when developing models of the converter’s
behavior. In particular, the transformer current state precludes
the “small-ripple” approximation commonly employed in tra-
ditional modeling approaches, e.g., state-space averaging and
average circuit modeling.

Previous studies have addressed the challenges of modeling
DAB converters. The most common strategy uses the sampled-
data modeling procedure from [3] to develop discrete-time mod-
els. This approach was used in [4] to develop an open-loop
DAB model, and again in [5] to develop a more detailed model
consisting of a converter, EMI filters, and control system. In
these models, the converter transitions through discrete modes of

Manuscript received December 8, 2017; accepted January 15, 2018. Date of
publication January 25, 2018; date of current version August 7, 2018. Recom-
mended for publication by Associate Editor Dr. Santanu Kapat. (Corresponding
author: Jacob A. Mueller.)

The authors are with the Department of Electrical and Computer Engineering,
Missouri University of Science and Technology, Rolla MO 65409 USA (e-mail:
jam8z4 @ mst.edu; kimballjw @mst.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPEL.2018.2797966

, Student Member, IEEE and Jonathan W. Kimball

, Senior Member, IEEE

operation, each described by a set of linear time-invariant or-
dinary differential equations (ODEs). The transition times are
either explicitly controlled (e.g., by gate driver signals) or im-
plicitly determined by device thresholds (e.g., by diode current
zero crossings). The state solution within each mode is explic-
itly determined by initial conditions at transition times and state
transition matrices consisting of matrix exponentials. In [6],
matrix exponential calculations were avoided through the use
of bilinear approximations, leading to a simplified discrete-time
DAB model.

The advantage of the discrete-time models in [4]-[6] is that
they explicitly describe state trajectories in all subintervals of
converter operation, meaning that they are capable of providing
exact solutions for ac state variables. In the case of DAB con-
verters, these models are able to accurately predict transformer
currents and, as in [4], the current zero crossings critical to zero
voltage switching (ZVS) [7]. The capabilities of discrete-time
representations notwithstanding, two factors motivate the devel-
opment of accurate continuous-time models. First, continuous-
time models are still preferred for control design due to the
prevalence of simple and powerful design tools. Second, DAB
converters are well-suited to applications in multiconverter sys-
tems, such as solid-state transformers [8], microgrids, and dc
distribution systems. The framework of [3] assumes cyclic tran-
sitions through fully characterized modes of operation, and is
not intended to produce models that are modular elements of
a larger system. Representing all possible switching modes at
the system level quickly becomes infeasible as the number of
converters increases. Moreover, differences in converter switch-
ing frequencies make it difficult to define a usable system-wide
base period. For the purposes of a system-level analysis, more
scalable alternatives are required.

Continuous-time DAB models have been proposed as well.
The simplest model, proposed in [9], essentially results from the
application of classical state-space averaging [10]. Since the dc
average of transformer current is O, the state is eliminated in the
averaging process, and its dynamics are lost in the final model.
A more detailed approach was used in [11] to derive both large
and small-signal average models. The ac stage in these models
is represented by half period averages of the dc currents into
and out of the H-bridges. This allows the models to incorporate
effects of transformer core and conduction losses, which are
omitted from the models in [9]. A similar procedure was used
in [12] for the purposes of a steady-state analysis.

A continuous-time DAB model was derived using generalized
average modeling (GAM) in [13]. In GAM, state variables are
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expanded into Fourier series terms at multiples of the converter
switching frequency [14], providing straightforward represen-
tations of ac states. However, the GAM framework involves
a tradeoff between the accuracy and complexity. Specifically,
both the accuracy and complexity increase with the number of
Fourier series terms included in the model. The model in [13]
uses a first harmonic approximation, and truncates the Fourier
series at the first harmonic. When linearized, the model ac-
curately predicts small-signal responses, but the large-signal
model is inaccurate at the steady state. The accuracy of the model
increases when more Fourier series terms are included (see,
e.g., [15]), but the number of model states increases rapidly with
the number of Fourier series terms considered, so even small
accuracy gains require substantial penalties in terms of model
complexity.

This steady-state error was previously noted in [11], and a
method of correcting the error was proposed in [16]. The ap-
proach in [16] consists of applying a multiplicative correction
factor to the load and state variables. However, the correction
factor is only derived for a single phase shift operation. Further-
more, the method assumes lossless operation, and neglects the
effect of transformer winding resistance, which may be signif-
icant in practice. This copper loss is particularly important for
a single phase shift operation, which produces large circulat-
ing currents, or when the ratio of winding resistance to leakage
reactance is high [12].

This study presents the following contributions:

1) The DAB model from [13] is extended to more general
modulation strategies, including dual, extended, and triple
phase shift modulation. Both large- and small-signal mod-
els are described.

2) A new method of eliminating the error caused by trun-
cating the Fourier series at the first harmonic is proposed.
The method involves deriving the relationship between
the equilibrium solution to the model equations and exact
steady-state expressions, and then including those rela-
tionships in the model itself.

3) Anadditional correction factor that includes copper losses
in the transformer is derived for the special case of single
phase shift modulation.

The structure of the paper is as follows. Section II briefly
reviews the DAB model from [13] and describes the steady-
state model error in precise terms. The improved DAB model 18
given in Section III, starting with the extension to more general
modulation strategies, and then including the large-signal error
correction. Model partial derivatives, including those necessary
to develop small-signal models, are given in Section IV. Special
consideration is given to the single phase shift case in Section V,
including the derivation of a lossy correction factor. Verification
experiments are described in Section VI.

II. BACKGROUND

This section reviews the DAB model from [13] to be improved
in the following section, establishes important terms and nota-
tion, and provides a mathematical description of the steady-state
error problem.
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A. Original DAB Model
The original DAB model proposed in [13] begins with
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where dot notations are used to indicate derivatives with re-
spect to time. The signals and parameters in these equations are
identified in Fig. 1. All hardware parameters are referred to the
secondary side of the transformer. For simplicity, the derivation
shown here assumes a 1:1 turns ratio. The only modification
necessary to include nonunity turns ratios in the model is to
replace all appearances of v;;, with %;’-—vin. This is true for this
model and for the models proposed in the following section.

s1(7,d) and s (7, d) are the switching signals that drive the
input and output H-bridges, respectively. The model from [13]
was derived for a single phase shift modulation. For time 7 in a
switching interval (0 < 7 < T') and phase shift argument d, the
single phase shift switching signals are as follows:

Sl(Td):{l, 0<r<Zi 3

' -1, L£<r<T )

SQ(Td)—{l’ TETSN Y “)
-1, 0§T<%or%+%gr<’r'

At this point, the GAM framework and first harmonic approx-
imation are applied. The following equations include a critical
change: the phase shift variable, represented as d in the switch-
ing signal definitions, becomes a new variable d. The reasons
for this are discussed in the following section, but the change
first appears here because it is a direct consequence of the first
harmonic approximation. The GAM state equations are as fol-
lows:

4 sind

('UIO)O R hc (UO)O (H)R

4cos1l'rd (i) — (z,g)o )
(is) g = 28‘“Td<vo>o —;(W + welie) 1 (6)
(s = 22— i — By - 2

The states of the model are the dc average output capacitor
voltage and the real/imaginary components of the fundamental
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harmonic transformer current. The model inputs are the source
voltage, phase shift, and load current. The closed-loop voltage-
controlled model, described briefly in [17], includes two addi-
tional equations:

(7)o = ki (vres — (v0)o) (8)
d = ky (vres — (vo)o) + (7)o )

In the closed-loop model, the phase shift is generated internally
by (9) and the input is replaced with voltage reference vyer.

B. Origin of Steady-State Error

This section describes the origin of the large-signal modeling
error. For simplicity, single phase shift modulation is considered
in this discussion, since only one control variable is involved.
The analysis applies equally to other modulation strategies.

The steady-state error manifests differently depending on how
the model is used. If a phase shift is specified as an exogenous
input (as is the case with the open-loop model), the error will
affect the output voltage. If an output voltage and load current
are specified, the error will affect the phase shift. Similarly, in
a closed-loop operation, if a voltage reference and load current
are specified, the phase shift will be affected.

For simplicity, we consider a lossless closed-loop converter
with current source load (i.e., B; — 0, R, — o0) in a steady-
state operation. The action of the controller forces output voltage
to the voltage reference at a steady state, so the error will be
restricted to the phase shift. The relationship in (1) reduces to
0 = its2(7, d) — ir, and the load current can be expanded as an
infinite Fourier series as follows:

ir= Y (isa(r,d))x =

o0

Yo D (sa(md))riin)s.

k=—0c k=—o0i=—00
(10)
Considering only the dc average current, we have
o0
(tr)0 = (izsa(T,d))o = Z (sa(r,d))_i (%) (11)

i=—00

Switching signal sa(7,d) is a phase-shifted square wave, and
only has nonzero Fourier series coefficients at odd harmonics.
The coefficients are functions of the phase shift, d:

(sa(ryd))x = 25:;”” +7 2023”” for k=1,3,...

12)

with (so(7,d))_r = (sa(7,d));. Note that this equation in-

volves functions of d rather than (f, since the first harmonic
approximation has not been applied to (1).

Under the same operating conditions, the dc average load

current may be determined from the GAM state equations by

simplifying and rearranging (5):

—4sin?rdA . —4cos7rdA .
—— (ig)r + ——(i)r1
T T

(s2(ryd))_1(ie) + (s2(myd)1(ic) 2. (13)

This expression corresponds exactly to the summation from (11)
truncated after ¢ = =£1, i.e., including the effect of the first

(i )0
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harmonic approximation. The value of (iy )q must be the same
in both (11) and (13), since it is specified as a constant, ex-
ogenous input. Therefore, the phase shift d that satisfies the
equilibrium solution of the truncated model equations must be
different from the real-world phase shift, d. This is consistent
with the observations in both [11] and [16].

The preceding analysis shows that when the phase shift is
treated as a free variable, a quantifiable difference exists be-
tween solutions to the GAM equations and steady-state expres-
sions derived from first principles. In short, the objective of
Section III-B is to eliminate the steady-state error by identify-
ing and correcting for this difference.

III. IMPROVED MODEL

This section describes the derivation of the improved DAB
model, starting with an extension to more general modulation
schemes. Following the derivation, Section III-B describes the
large-signal error correction. In the interest of notational clarity,
the angle-brackets used to denote averaging in the previous sec-
tion are dropped for the remainder of the paper. The dc average
of a generic variable x is therefore represented as xg rather than
{(x)g- Similarly, real and imaginary components of the funda-
mental harmonic are xp = (z)p and z; = (z);, respectively.

A. Modulation Scheme Extension

Applying the GAM framework to (1) and (2) yields the fol-
lowing:

. 1 1. .
Vo = m’b‘oo + C—OHOSQO + FOHRSQR
2 1
—1 - —1 14
+ . i1 521 . L0 (14)
. 1 N 1 1
1tR = —Uin0$s —UinR 510 — =—Up0 8
tR Lt in051R Lt inRkR>510 Lt o052R
1 . .
- L—UoRSm - L—HR + Weltg (15)
t t
éﬂ = L_tt’inosll + L_tUinI S10 — L_tt’oﬂsﬂ
1 . -
- L—Uolsm — Wsltp — L—HI- (16)
T t

To prevent saturation of the transformer, switching signals are
typically defined such that their dc averages are zero, i.e., sjg =
sag = 0. Under this condition, the equations simplify as follows:

2 2 1
R 2. 2. 1. 17
To0 RnC. Vo0 + . itRS2R + . i1 Sa1 . igg (17)
.‘ 1 - ,
it = L_tUinElSlR - L_t'UoOSQR - Eﬁtﬁ + Wetsr (18)
. 1 1 . -
B = L_tUiDOSII - Evoos21 — Wglitp — Eﬁtl- (19)

The preceding equations are applicable to any modulation strat-
egy, provided that the dc average of the switching signals is zero.
In the case of a triple phase shift modulation, the switching sig-
nals are functions of three control arguments: dg, dp, and d,.
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Fig. 2. Triple phase shift modulation scheme. 1}, and V denote voltages
applied to the primary and secondary windings of the transformer, respectively.

These variables are contained in vector D = [dy dp dq]T.
The switching signals are as follows:
(1, O0sr<il
0, —d":’ <7< TT"
s1(m, D) = < (14+dy)T (20)
pr o=k St e
14d,)T.
bt BB (_QL
( dy T, ds+dg )T,
it} _EL <r< (_+2<~)é_
0<r< Bl QT‘
so(r,D) =4 0, orlltfelle <,  Q3ddl (2
or —(Hd‘;d“’ e G T
_1, (1+déé)Ts ST < (1+ds;‘d§)’rs .

This switching scheme is very general; single, dual, and ex-
tended phase shift are special cases of the triple phase shift
modulation [18]. A visual representation of the triple phase shift
scheme is shown in Fig. 2. The three control variables describe
the duty ratio of the voltages applied to the primary winding
(dp), secondary winding (ds), and the phase shift between them
(dg). An additional phase shift defined by the distance between
the center points of the primary and secondary voltage pulses
is d. This is an important parameter for describing triple phase
shift operation [18], and is critical to the large-signal error cor-
rection method. It may be derived from the control variables
as
dp = d
d=dy 5 ot 5

Switching signals for a dual phase shift modulation may be
recovered by fixing d, = d., and a single phase shift may be
recovered by further constraining dp = d, = 1. In both of these
cases, it is clear from (22) that d = d.

Taking the Fourier series of these signals, the real and imag-
inary components of the switching functions are as follows:

(22)

(D) = 22T @3)
: s
sur(D) = —% (24)
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sin(dgm) — sin ((ds + dg ) ™)

SQR(D) = " (25)
s21(D) = _ cos(dy) — co; ((ds + d,l,-,)?'r). 26)

Substituting the switching signal harmonic components
above into state equations (17)—(19) produces a generalized
average model for a DAB with triple phase shift modulation.
Again, other modulation strategies can be recovered from these
equations. For instance, applying the single phase shift condi-
tion (d, = d, = 1) in the general equations yields the original
DAB model, i.e., (5)—(7).

B. Correction of Large-Signal Error

The second improvement involves correcting the large-signal
modeling error due to the truncation of the Fourier series. In
Section II-B, the error was discussed in terms of a difference
between the exact phase shift, d, and the model phase shift, d.
The objective of the correction method is to include a descrip-
tion of the relationship between these two variables in the model
framework, and use this expression to correct the large-signal
error. This is done by introducing d in the model as an alge-
braic state. Adjusted control variables D= [dy dp d,|T are
derived from d, and are used as arguments for the switching
harmonic functions in (23)—(26). The evolution of dis governed
by an algebraic equation that forces normalized power transfer
expressions from the model to equal corresponding expressions
derived from first principles.

The correction procedure is presented as follows. First, an
expression for a normalized power transfer (in terms of Dyis
derived from the GAM state equations. Next, corresponding
expressions (in terms of D) from the existing literature are dis-
cussed. The difference between the two expressions is included
in the final model as an algebraic constraint. Finally, the actual
construction of D from d is described.

The correction factor is derived from lossless model equa-
tions, i.e., state equations with R; — 0. There are two reasons
for this. First, for a well-designed transformer, R is small, and
has little effect on the steady-state power transfer. An excep-
tion to this is the case of a single phase shift modulation, for
which R; plays a more significant role due to high circulating
currents. This is considered in Section V. Second, the objective
is to relate power relationships that are derived under the same
conditions. Lossless power transfer equations are simple, and
are readily available in the literature. Including the effect of R;
would involve a substantial increase in complexity, with only
marginal benefit in terms of accuracy.

With R; — 0, a general power transfer expression is eas-
ily determined from the steady-state equations of the model.
Equations (18) and (19) may be rearranged for ¢;; and
iz g. respectively, and substituted into (17). The substitution
results in

) 2vino
irg = Xl-ﬂ (s2rs11r — simsar) (27)

i
where X; = w.L; is the transformer reactance. All switch-
ing signal harmonics in (27)—and in all equations
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TABLEI
TRIPLE PHASE SHIFT OPERATING MODES AND POWER TRANSFER EQUATIONS
Mode Operating Region Normalized Power Expression
I 0<d<-% Py, = ndy (4~ % %)
I 0<d< % -4 Py =mdy (dg — F — %)
mo % <asmin{% b -% %) % = 5 (d(ds + 2d0) — 2 — 3)
v - - <d<y 4 % =5 (246 (1—dg —dy +dy) +dg(2+ dy —dy) — d2 —1)
v Frycd<1-F-% Py = Fdypds
henceforth— - are functions of D. The transferred power is then only J¢. The control variables are then
defined as follows: ) . d d
: Uin0 Y00 p=d+— —— G2V
P =wepiro = ——Fy (28) 2 2
X N
. . dp = dp (32)
where Py is the normalized power, and can be expressed as
de = d,. (33)

Py =2(sopsir — sipsar). (29)

Note that this formulation assumes a current source load, i.e.,
R.p — oo, such that the dc average current through the sec-
ondary H-bridge is equal to the load current. This assumption
serves only to prevent the need for an additional current term
definition; including a finite resistive load term does not change
the power transfer analysis.

Next, a steady-state power transfer equation must be deter-
mined using a method that does not include the first harmonic
approximation. Suitable expressions are readily available in the
literature, since power transfer equations are central to converter
analysis. For instance, [18], [19], and [20] provide appropriate
equations for triple, dual, and extended phase shift modulation,
respectively. This function for power transfer is referred to as
P*, to distinguish from the expression determined from model
equations.

Because of the wide range of operating cases that occur in
triple phase shift modulation, no single expression for P* is
sufficient. In [18], five separate modes of operation are defined,
each with their own power transfer expression. For full gener-
ality, P* is defined as a piecewise function that selects between
components according to the control inputs of the model. Table I
shows the five power transfer equations and the operating condi-
tions under which each is active. The active mode is determined
by d, and is easily identified from the control inputs.

The expressions in Table I are the same as those in [ 18], butare
given in the terminology used in this study, and are normalized
as follows:

« _ Yin0Vol
P = X, Py
The reason for this normalization is to simplify expressions
when relating P* to P. Clearly, when P* and P are set equally,
the leading fractional terms cancel out.

The final part of the correction procedure is determining how
D is generated from d. Because of the multiple degrees of
freedom involved in the triple phase shift modulation, there are
several viable ways to do this. The simplest method is to adjust

(30)

This approach is sufficient for correcting error over the full
possible range of control inputs for both the single and dual
phase shift modulation.

For the triple phase shift modulation, an additional adjustment
scheme is needed to ensure that a solution to the algebraic
power equation exists over the entire operating space. For a
solution to exist, the maximum normalized power transfer over
the possible range of d must exceed the corresponding value of
P In addition to the correction applied to dy, an adjustment
can be applied to dj, as

5

o= do (34)
dy = 2d, — 2d + d, (35)
d, = d,. (36)

For a given set of control inputs, the correction should be applied
to either dg or dp. The selection is made according to which
choice produces the larger maximum normalized power transfer.
This can be determined by the following condition:

. [dpT .o fm (ds
sin (T) > sin (E (? —I—d,,.,)).

If this condition is true, the correction should be applied to d.
If not, the correction should be applied to dp,. This condition
may be derived as follows. First, analytical expressions for Py
as functions of d are determined for each of the correction
schemes. This is done by substituting either (31), (32), and (33)
or (34),(35), and (36) into (29). Next, the maximum values of the
expressions for Py are determined by setting derivatives with
respect to d equal to 0, solving for d, and substituting the results
back into the Py expressions. The right-hand and left-hand
sides of (37) correspond to the two resultant expressions after
common coefficients have been eliminated. Therefore, when
the inequality is true, applying the correction through d,; yields
the higher maximum normalized power. This provides a simple
method for identifying the proper correction scheme using only
the control inputs to the model.

37
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C. Model Organization

The structure of the proposed model framework is as follows:
i = f(,d,u) (38)

0= g(,d,u) (39)

where x is the state vector, u is the input vector, and d is an
algebraic state variable. The model state equations are contained
in the vector-valued function f(-). The scalar function g(-) is
defined as

g(z,d,u) 2 P*—P. (40)

Together, f(-) and g(-) define a semiexplicit (or type 1) system
of differential algebraic equations (DAEs).

The state equations, state vector, and input vector differ ac-
cording to whether an open- or closed-loop system is being
modeled. Both are discussed below. Subscripts “0™ and “c” are
used to denote whether model elements (namely f(-), =, and «)
pertain to the open-loop or closed-loop systems, respectively.

The state and input vectors of the open-loop model are as
follows:

T = [V it ier]" (41)

Uy = [’L’ino E.LO dm dp ds]T . (42)

The state equations in f,(-) are exactly those of the original
DAB model, shown in Section II as (5)—(7). With respect to
a large-signal error correction, the critical point of difference
tletween this model and the model in [13] is that d, rather than
d, is defined as an input.

Triple phase shift modulation includes three control variables,
and a wide variety of control structures and feedback mecha-
nisms are possible. To limit the scope, the closed-loop formu-
lation in the present study considers a single controller that
regulates output voltage through the phase shift control vari-
able, dy. The state and input vectors of the closed-loop model
are as follows:

te=[voo iR wr Yo|° (43)

Uref dp ds]T- (44)

Ue = [Vino Lo

The additional state, ~p, is contributed by the integral of a PIcon-
troller. In addition to the open-loop state equations, f.(-) con-
tains (8), which descrlbes ~0. In the ongmal model, controller
output was defined to be d¢, (or, equivalently d) as shown in (9).
In contrast, controller output is defined in the present model as

dt,'} = kp (Uref - 'UOO) + 7Yo- (45)

D. Discussion

The system defined by (38) and (39) is a large-signal gen-
eralized average model that is accurate in both transient and
steady-state conditions. The model is a semiexplicit DAE sys-
tem. Models of this type are commonly used for describing
power systems [21] and are suitable for all applications expected
of power electronics models. In particular, they may be used
for time-domain simulations, stability analyses, or linearized to
provide small-signal representations.
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Both of the model improvements proposed here generalize
the original DAB model from [13]. Extension to more advanced
modulation strategies is a fairly straightforward improvement,
but the inclusion of g(-), too, is a generalization of the original
model. The model from [13] implicitly assumes that d = d. This
assumption may be included in the proposed modeling frame-
work by defining g(-) as 0 =d — d. The resulting structure,
when used with the single phase shift modulation, is identical
to the model in [13].

While the general model is a DAE system, in some operating
cases (namely, single phase shift modulation), it is possible to
define d as an explicit function of d, i.e., by solving g(-) directly
for d. When an explicit solution is possible, the model may be
converted into an equivalent system of ODEs.

In comparison to alternative continuous-time DAB modeling
approaches, the primary advantage of the proposed modeling
framework is its flexibility. The most closely related methods,
i.e., [11] and [16], consider only the single phase shift modula-
tion. The method in [11] is not affected by the large-signal error,
but its derivation is inherently tied to the modulation strategy,
meaning that new modulation schemes would require a full red-
erivation. In contrast, the proposed method is derived for general
switching functions, so different modulation schemes are to be
included by changing modular elements of the base model. Ad-
ditionally, the method in [11] models the ac stage by deriving av-
eraged equations for the dc currents into and out of the H-bridge
circuits, effectively consolidating the switching circuit as a sin-
gle averaged element. As a result, frequency domain accuracy
is limited to one-tenth of the switching frequency. In contrast,
the original DAB model from [13] is accurate up to one-third
of the switching frequency. The upper frequency bound is, in
general, imposed by the eigenvalues of the dynamic model [10],
[22]. The proposed model maintains the small-signal accuracy
of the model from [13]; when linearized, the eigenvalues of the
proposed model are very close to those of the original model,
meaning their upper limits are similar as well. This is further
illustrated in Section V1.

The method from [16] is more closely related to the proposed
framework than [11], but differs in how the correction factor is
applied. The correction factor in [16] modifies the load and state
variables directly, and the modifications required are different
for each of the state variables. In this study, error correction is
applied through an algebraic equation rather than through the
model state variables, so modifications to the correction factor
equation do not change the base model. This makes it possible to
include more general modulation strategies or lossy correction
factors within the same modeling framework.

TV. PARTIAL DERIVATIVES AND SMALL-SIGNAL MODELS

Partial derivatives are central to many modeling applications.
Partial derivatives are used for calculating steady-state solutions
to model equations, time-domain simulation via numerical inte-
gration, and linearization for small-signal analysis. The partial
derivatives of the models under consideration are given in this
section.
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A. Open-Loop System

The partial derivatives of the open-loop model equations with
respect to converter states are as follows:

! 2 2
of R0, T, %2R 752
0 1 R
7. = | TR T We (46)
e -1 —R:
i KSQI —Ws T,
-2
o z. (%R 54 -HI )
% — | L (g d8R — g g 2828
2= | & (vino 2 — voo s ) @7)
ad
1 (.. Os7 LY
| T, (vmo ad "% a4

Derivatives with respect to inputs are given in (48) shown at the
bottom of this page.

The switching signal derivatives are shown in general form
in these equations. The specific derivatives for the triple phase
shift modulation are given in Section IV-C.

The partial derivatives of the algebraic function g(-) are as
follows:

9081
dg  OFy Jsor Os1r
fr— 2 —
ad,  od, | (S”“ o, o, )
Osi1 Jdsap
-2 (Sma—ds S17 8_(13) . (54)

The derivatives of Py, with respect to control inputs depend on
the operational mode. For all of the cases shown in Table I, these
terms are straightforward derivatives of polynomial functions.

B. Closed-Loop System

The partial derivatives of the closed-loop model equations are
as follows:
r -1

S PrYen ,_%823 (,?_0321 0
af. _ 5—352R _ij‘- W 0 55)
Oz, oS2ar  —Wws _T‘TL 0

| ks 0 0 0
8{“ = %l (56)
ddg | 0

where gﬂ{i is given in (47). Derivative %ﬁ& is given in (57) shown
é o

99 =[0 0 0] (49) at the bottom of this page. The derivative of g(-) with respect to
o dy is the same as for the open-loop system, as shown in (50).
39 dsa1 Js1p Os11 Jsar The remaining derivatives of g(-) are as follows:
=2|8sip—— + 891 —— | — 2| s9op—= 17 -
ad od ad ad od dg ope op
(50) 2=k 0 0 5] (58)
o
dg 99 03 8 dg 99 89 B
du, :[0 0 3396_ ﬁq; EH S Au, :[0 0 kpaj‘g“’_ a?g"_ a_&g:} o9
where F.?_, .%?_, and E%?_ are given by where 8—?;, %, and aﬁi— are given (52)—(54), respectively.
‘D 8
x C. Swiitching Signal Derivativ
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o B function s, is only a function of control variable dj,. Therefore,
-2 (SQR Sz + s11 SQR) (52) the partial derivatives of s; g and s;; with respect to d, dy, and
Odg dy d, are 0. The derivatives with respect to dj, are as follows:
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Switching function ss is a function of variables d (through (f¢ ),
dp, and d,. Since d, is replaced, the derivatives with respect to
dy are 0. The remaining derivatives are as follows:

8(;3;;2 = % (COS((ds + é@)ﬁ) - COS(J(ﬁ?T)) (62)
%‘?: = % (sin(ti(ﬁ?r) —sin((ds + J@)ﬁ)) (©3)
) 1 7 )

28— 2 (ool o)) + costdom)) (64
d -1/, : j

o = =5 (sin(dym) +sin((ds +dg)m))  (©9)
P58 _ con(d, +dyyr) - conldyr)  (6)
ad

% = sin(dy) — sin((ds + dy ). (67)

When the correction factor is applied through d,, switching

function s; depends on d (through Jp), dg, and dy. Input dy is
replaced, so derivatives with respect to d, are 0:

%SE}; = cos(d,) (68)
211: = —sin(d,) (69)
8;;:* = 2 cos(dy) (70)
%2; = —2sin(d, ) (71)
8;? = —2cos(dy) (72)
041 _ 5 in(d, m). (73)

Finally, switching function sz depends only on dys and dg, so
derivatives with respect to d,, and d are zero:

%STQ;% = cos((ds + dy)m) (74)
(3872; = —sin((ds + dy)) (73)
a;;R = cos((ds + dg)m) — cos(dy) (76)
?932" = sin(dy) — sin((ds + d)r). a7

D. Small-Signal Models

For all models under consideration, the small-signal models

have the form
r= Ar + Bu (78)

where I is a vector of small-signal deviations around a steady-
state operating point. Matrices A and B are calculated using
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matrix operations, given here in terms of generic functions f(-)

and g(-) as follows:
_of _of 1 ag
T 9r  ad 8d Oz

_of 8f 89
T ou ad 8d u’

The derivation for these linearized matrices is given in the
Appendix.

(79)

(80)

V. CONSIDERATIONS FOR THE SINGLE PHASE
SHIFT MODULATION

Although the single phase shift modulation has several per-
formance deficiencies, it is still commonly used in the DAB
literature due to its overall simplicity. In particular, single phase
shift is commonly used in studies that include DAB converters
as elements of a larger system [15], [23]. In light of this, a more
detailed consideration of the single phase shift case is given
here. As a secondary benefit, this section provides a simple il-
lustration of how the general framework outlined in Section III
may be applied to a specific modulation scheme.

A. Model Simplifications

Single phase shift modulation is a subset of a triple phase shift,
and corresponds to the case in which d,, and d, are constant and
equal to 1. This condition simplifies the model. With d, and
d; fixed, it is not necessary to include these variables as model
inputs, and dy = d.

The first harmonic components of switching functions for
the single phase shift modulation may be recovered by fixing
dy = ds = 1in(23)-(26):

sir(d) =0 1)
5 2

811 (d) = —; (82)

san(d) = - 22T) (83)

sar () = 22D, (84)

Furthermore, the single phase shift modulation restricts the
operating region of the converter. According to Table I, single
phase shift modulation is entirely contained in Mode IV, so only
one power transfer equation is necessary.

B. Lossless Case

Without including R, the procedure begins directly with a
normalized power:

8 sin(cf?r)

2

Py =2(sopsir — sirs21) = (85)

Next, the power transfer equation from Table I is reduced
using the same conditions on dj, and d,. These conditions restrict
the operating region to Mode IV, and the corresponding equation
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simplifies to

Py =md(1—d). (86)
Therefore, the equation that relates dtod is
5 Sd(1—d 5
g(z,d,u) = % — sin7rd. (87)
C. Lossy Case

In the lossy case, Ry is nonzero. The parameter R; represents
winding losses in the transformer, but it can also be used as
a lumped-element parameter to represent conduction losses in
the semiconductors as well. Including R in the large-signal
error correction requires a substantial increase in the complexity,
and is only necessary when the losses modeled by R; become
significant. One case in which R; plays an important role is
the single phase shift modulation with high phase shift values.
Under these conditions, the transformer will experience high
circulating currents, and conduction losses will be larger. While
this issue may be addressed through the use of more advanced
modulation schemes, there is still a need to accurately represent
converter behavior under these conditions when the single phase
shift modulation is used.

The problem with including R in the error correction is
that the power transfer equations become dependent on state
variables and hardware parameters. In the previous cases, g(-)
was only dependent on control variables. This is not the case
when R; is included. Nevertheless, the procedure for deriving
the correction equation remains the same.

The expression for irg in terms of d given in (27) is de-
rived with R; — 0. Applying the same derivation procedure,
i.e., solving the state equations with time derivatives set to 0, a
similar expression may be derived with R; included. In general
form, the resulting expression is as follows:

[(s2rR:

iLg = — 521 X¢) (VinoS1R — Vo0S2R)

2
R? + X7

+ (s2r Rt + sarX:) (vinoS11 — o0 S21)) - (88)

After applying the simplifications for the single phase shift mod-
ulation, this may be more conveniently written as follows:

) 2X;
Lo = 2
TRIK

where K is a hardware constant given by

m Xt (R‘? + Xf )
iR
The definition of K is arbitrary at this point, but substantially
simplifies derivative terms when linearizing the model.

The next step is to determine a corresponding expression in
terms of d. Average output current equations have previously
been derived in the literature. One such equation is used by the
average value model proposed in [11]. However, the equation
in question (see [11, Eq. (19)]) is valid only for a unidirectional
power flow, ie., d > 0. A more suitable equation is derived
in [12] by integrating the instantaneous current terms, which are

(vino Rt cos wd + Vino X; sin nd — vooRe) (89)

K = (90)

0983

piecewise exponential, over the switching period. This expres-
sion (originally [12, Eq. (6)]) is cumbersome; Zhang et al. [12]
spent considerable effort obtaining a more manageable approx-
imation. In this study, we use a simplified form of the exact
equation:

I ('UmlJ Uol)) Vo

=~ 74 tanh 6
lro = R@ QRf
d (vino d
+ — ] (GRI ) [1 26d — sech #exp (EQ - 29d)]
(C2Y)
where 8 is a hardware constant:

Ry

f= 2Xr (92)

The expression in (91) is mathematically equivalent to [12, Eq.
(6)]. The only differences are that notational conventions have
been changed (e.g., phase shift is defined as a fraction of the
switching period rather than an angle) and simplifications have
been applied using hyperbolic function identities. The exact con-
version consists entirely of standard algebraic manipulations,
and the result is easily verified using a computer algebra sys-
tem.

The form of (91) is relatively simple. The arguments of hy-
perbolic functions tanh and sech are hardware constants, hence
they have very little impact on the complexity when applied in
the model. Furthermore, the sign factors I%I are only necessary
to support bidirectional operation. For the unidirectional power
flow case, these may be eliminated entirely.

The final step is to form the algebraic correction equation.
Since P = vopiro and P* = v,1}, the equation may be de-
fined as

glz,d,u) =ity —iLo
= —jpo Ry cos wd — Vin0-X ¢ SIn rd + vo0 Rs

+ K ('UinlJ — Uol)) 0 + Kvyo tanh @

+ Kuino |j| (1—26‘d—sech fexp (|j| 0 — 29d))
93)

Since (93) includes v,p and vinp, some of the derivatives
from Section IV must be changed. For the open-loop system,
the derivatives of g(-) are as follows:

dg

5= [R: — K (6 —tanh6) 0 0] (94)
a -~ -~
83 = TUino (R¢ sinmd — X; cos ‘?\'d) (95)
dg [ 5 8
B = o0 O 8] ©6)

09 apd & i
where elements Do and 7% are given by

d
dg _ gl

d
Domg ] (1 — 260d — sech @ exp (| ] - 29d>)

—|—K9—R;cos1"r(§—X;sin7rd

o7
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Fig. 3.

Prototype DAB converter.

TABLE I
CONTROL AND HARDWARE PARAMETERS

Parameter Value Parameter Value

i 40 uF e, 40 uF

L 553uH R 0.550
ny Mg 1:0.85 R 6.667 2
kp 0.01 k; 25

dg [ 2d0Kuvi, d
iz W Rl i hé —0—-20d) —1).
ad ( d] ) ( S (|d| ) )

(98)
For the closed-loop system, the derivatives of g(-) are as
follows:

dg
axcz[a—K(e—tmhe) 00 %] 99
99 (100)

Jdu, - [Tgf; 0 kpg%}
d

where the elements ﬁfﬂ—u and %‘1 are given in (97) and (98),
respectively.

VI. VERIFICATION

To validate the proposed models, experiments were per-
formed to verify model accuracy both at the steady state and
during transient response. The experiments were conducted us-
ing a small-scale DAB prototype, shown in Fig. 3. Switching
simulations performed in PLECS supplement the hardware re-
sults. The prototype converter is controlled by a Texas Instru-
ments TMS320F28377S digital signal processor (DSP). Both
the sampling rate and switching frequency of the converter were
80 kHz. The switching deadtime was t; = 300 ns. These and
other important parameters are given in Table II.

The effect of the switching deadtime on the converter behav-
ior is significant in practice. Deadtime introduces conduction
modes that are not explicitly included in the model derivation,
and effectively changes the control inputs dg, dp, and d, [24].
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Fig. 4. Comparison of relationships between phase shift inputs and output

voltage for the triple phase shift modulation.
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Fig. 5. Comparison of relationships between phase shift inputs and output

voltage for the dual phase shift modulation.

Including conduction modes related to deadtime in the model
would require a substantial increase in complexity. Alterna-
tively, deadtime compensation strategies may be employed in
the control system. The latter approach is used here: deadtime
is compensated in the controller by applying phase shift correc-
tions according to [25].

A. Steady-State Accuracy

The first test considers the steady-state accuracy. The con-
verter output voltage is measured while varying d. A resistive
load is used and input voltage is fixed at 10 V throughout. Re-
sults for triple and dual phase shift modulation are shown in
Figs. 4 and 5, respectively. For these results, and the dual and
triple phase shift dynamic results in the following section, loss-
less model correction factors have been used. Two combinations
of d, and d, are considered in each plot. Fig. 4 shows results
withd, = 0.5,d, =0.75and d, = 0.75,d, = 0.5.Fig. 4 shows
results with d, = d; =0.5and d, = ds = 0.75. In all cases, dy
varies over the operating range for which 0 < d < 0.5. The re-
sults indicate that the large-signal model accurately predicts the
steady-state response of the converter.

Results for the single phase shift modulation are shown
in Fig. 6. In this case, the hardware results are compared to
the uncorrected model and to the corrected model using both
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Fig.6. Comparison of relationships between the phase shift and output voltage

for the single phase shift modulation.
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Fig.7. Open-loop voltage transient response for step changes in control inputs
for the triple phase shift modulation. Att = 0 ms, ds changes from 0.5 to 0.75;
att = 2 ms, d, changes from 0.5 to 0.75.

lossless and lossy correction factors. As expected, the lossy vari-
ant is more accurate for larger phase shifts, since the effects of
converter loss become more significant.

B. Dynamic Accuracy

The second set of tests consider dynamic response, namely
the output voltage transients for step changes in phase shift
inputs. The experiment uses same the resistive load and 10 V
input voltage as in the previous test. For the triple phase shift
modulation, step changes to d, and d, are considered. The
results are shown in Fig. 7. At the start of the experiment, both
d, and dg are 0.5; at t = 0 ms, d, steps from 0.5 to 0.75. At
t = 2 ms, dp, steps from 0.5 to 0.75. The model predictions and
experimental results are consistent for both transients.

In the dual phase shift modulation, d, and d, are equal, so
only one step change is considered. The results for the dual phase
shift modulation are shown in Fig. 8. At time ¢ = O ms, both
d,, and d, change from 0.5 to 0.75. Again, the model accurately
predicts the response.

For the single phase shift, step changes in dy are considered.
As in the steady-state experiments, hardware measurements are
compared to the uncorrected model and to both lossless and
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Fig.8. Open-loop voltage transient response for step changes in control inputs

for dual phase shift modulation. At £ = 0 ms d,, (and d,) changes from 0.5 to
0.75.
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Fig.9. Open-loop voltage transient response for step changes in phase shift.

At t = 0 ms, d changes from 0.15 to 0.3 (top) and from 0.3 to 0.4 (bottom).
Experimental results are shown as raw measurements and the dc average over a
single switching period.

lossy variants of the corrected model. The results are shown in
Fig. 9. In the top plot, dg steps from 0.15 to 0.3 at t = 0 ms;
in the bottom plot, dy steps from 0.3 to 0.4. The plots show
both the raw hardware measurements and dc sliding averages of
the measurements, taken over a single switching period. These
averages are, by definition, the experimental vgp.

The top plots of Fig. 9 show that if large phase shifts are
avoided, the difference in the accuracy between the lossless
and lossy model variants is negligible. However, the bottom
plots show a situation in which the lossy correction equation is
measurably superior. This is particularly clear when comparing
model predictions to the dc average output voltage measure-
ments. In both cases, the inclusion of either correction factor
consistently improves the accuracy with respect to the uncor-
rected model.
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Fig. 10. Magnitude responses of control-to-output transfer functions. Model

predictions are shown as solid lines, dots indicate results of switching simula-
tions. (a) TPS control-to-output transfer functions. (b) DPS control-to-output
transfer functions. (c) SPS control-to-output transfer function.

The results in Fig. 9 show that the proposed modeling frame-
work improves on the accuracy of the original model. However,
these results use large-signal model predictions. To assess the
small-signal accuracy of the models, frequency-domain predic-
tions are compared to ac sweep analyses from switching simula-
tions. The focus of the assessment is control-to-output transfer
functions. In the triple phase shift modulation, there are three
relevant control-to-output transfer functions, representing the
effect of perturbations in each of the three control inputs on
the output voltage. Similarly, there are two relevant control-to-
output transfer functions for the dual phase shift modulation,
and one for the single phase shift modulation. Magnitude plots
of the frequency responses for each modulation strategy are
shown in Fig. 10. Parameters used in the switching simulation
are shown in Table III. Simulations include nonideal behaviors
such as deadtime, control delays, and converter lossess. The
control inputs for each modulation strategy were chosen such
that the steady-state output voltage would be approximately
28 V in all three cases. For the triple phase shift case, the inputs
were dy = 0.25, d, = 0.435, and d, = 0.85. For the dual phase
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TABLE III
SIMULATION PARAMETERS

Parameter  Value  Parameter Value
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Fig. 11. Closed-loop transient response for step change reference voltage. At
t = 0 ms, vef changes from 18 to 20 V. Plots show output voltage (top) and
closed-loop phase shift (bottom).

shift case, the inputs were dy = 0.25, d, = d; = 0.775. For the
single phase shift case, the inputs were dy = 0.2, d, = d. = 1.

The final validation experiment considers the closed-loop
transient response during a step change in voltage reference.
The results are measured by logging data from the DSP dur-
ing the experiment. This allows the sampled voltage and inter-
nal control variables to be observed experimentally. Data are
logged from the DSP at a rate of 8 kHz. Load and hardware
parameters are the same as those used in the previous tests, but
the input voltage is fixed at 17 V. Results are shown in Fig. 11.
The top plot shows sampled voltage and the bottom shows the
phase shift calculated by the controller. Because a closed-loop
system is used, the phase shift is not specified as an exogenous
input. Instead, it is calculated internally as the output of the
voltage controller. The action of the controller ensures that in
a steady state, the output voltage is equal to the voltage refer-
ence. In terms of the model equations, the steady-state condition
Vo0 = Uper allows even the original model to predict output volt-
age with zero steady-state error. This is shown in the top plot of
Fig. 11. However, in order to satisfy this relationship, all of the
errors due to the first harmonic approximation are confined to
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the phase shift. In contrast, the proposed modeling framework
is able to predict both phase shift and output voltage accurately.
This is a significant advantage in analyzing converter behavior.
For instance, ZVS conditions for DAB converters are typically
specified in terms of phase shift and voltage conversion ratio.
The improved model is therefore capable of identifying ZVS
operation, whereas the large-signal error of the original model
precludes this type of analysis.

VII. CONCLUSION

The modeling framework proposed in this study extends the
functionality of the existing GAM-based DAB models with-
out significantly increasing the complexity. The new framework
improves on the original model by including more general mod-
ulation strategies and by eliminating steady-state errors caused
by the truncation of the Fourier series. This produces fully
continuous-time models that are accurate over a wide range
of converter operating conditions. The framework is proposed
as a general tool: it is applicable to both open- and closed-
loop operation and supports both large- and small-signal model
development.

While the methods proposed here are useful for modeling
a single converter, one of the motivations driving this line of
research is the development of computationally efficient mod-
els for multiconverter systems. The large-signal accuracy of the
proposed framework opens the door for system-level applica-
tions, and methods for semiexplicit DAE models are already
well established in the traditional power system analysis. Fu-
ture work in this study will continue to explore the challenges
of system-level model construction, with the objective of iden-
tifying methods and models that are accessible to both power
electronics and power systems research communities.

APPENDIX

We consider the linearization of f(z,y,u) and g(x,y,w).
Large-signal states/inputs (x,y, u) can be broken into steady-
state operating points (denoted by capital letters) and small-
signal deviations.

r=X+i% y=Y+7g u=U+a (101)
The first-order Taylor series expansion of f(-) is
L—X+,me(XYU)+8f~+(;f§+afﬁ (102)

where gi g; ,and gfi are evaluated at (X, Y, U). By definition,

X = f(X,Y,U) =0,s0

. Of_ Of _ adf.
T 8I.L—|— 3y ¥+ 8uu (103)
Similarly, the Taylor series expansions of g(-) is
a dg
o—g(XYU)+—”+8—g”+8— (104)

Again, derivatives are evaluated at (X,Y,U), and 0=
g(X,Y,U). An expression for  may be found by rearranging
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the following:

_ dg\~" dg. 0Og.
== F— =1 ]. 105
v (3y) ( 9z Ou (103)

Substituting this expression into (103) eliminates 3. The result-
ing equation is

= _Of_ 9f (dg\" (5‘5'~+5>‘g~ +8f"
i_a'-ﬁi dy \ dy or 3uu au“

= Ai + Ba

(106)

(107)

where A and B correspond to the expressions in (79) and (80),
respectively.
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