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ABSTRACT

We present a simplified theory using reduced-gravity equations for North Atlantic Deep Water (NADW)
and its variation driven by high-latitude deep-water formation. The theory approximates layer thickness on
the eastern boundary with domain-averaged layer thickness and, in tandem with a mass conservation argu-
ment, retains fundamental physics for cross-equatorial flows on interannual and longer forcing time scales.
Layer thickness anomalies are driven by a time-dependent northern boundary condition that imposes a
southward volume flux representative of a variable source of NADW and damped by diapycnal mixing
throughout the basin. Moreover, an outflowing southern boundary condition imposes a southward volume
flux that generally differs from the volume flux at the northern boundary, giving rise to temporal storage of
NADW within the Atlantic basin. Closed form analytic solutions for the amplitude and phase are provided
when the variable source of NADW is sinusoidal. We provide a nondimensional analysis that demonstrates
that solution behavior is primarily controlled by two parameters that characterize the meridional extent of the
southern basin and the width of the basin relative to the equatorial deformation radius. Similar scaling applied
to the time-lagged equations of Johnson and Marshall provides a clear connection to their results. Numerical
simulations of reduced-gravity equations agree with analytic predictions in linear, turbulent, and diabatic
regimes. The theory introduces a simple analytic framework for studying idealized buoyancy- and wind-
driven cross-equatorial flows on interannual and longer time scales.
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1. Introduction

One of the most important functions of the oceans in
the global climate system is the meridional transport of
heat and freshwater (Buckley and Marshall 2016). These
transports are required to connect regions of net heat or
freshwater gain with regions of net heat or freshwater
loss, which are often located at great distances. One clear
and climatically important example of this is the surface
heat flux in the Atlantic Ocean (Talley 2003). The net
heat loss in the subpolar North Atlantic and Nordic Seas
is balanced by a net northward heat flux across the
equator of approximately 0.5 X 10> W (Trenberth and
Caron 2001). This northward flux represents a significant
fraction of the total northward heat flux in the coupled
ocean-atmosphere system. In addition to heat, the ocean
also transports freshwater and climatologically impor-
tant passive tracers, such as CO, and oxygen, into the
Northern Hemisphere (Kawase and Sarmiento 1986).

Much of this northward heat transport at low latitudes
is carried by the meridional overturning circulation
(MOC; Hall and Bryden 1982). Northward flow of warm,
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salty water is balanced by southward flow of colder,
fresher water at middepths (e.g., Schmitz 1995). These
middepth waters are isolated from interaction with the
atmosphere until they outcrop in the Southern Ocean,
feeding upwelling-driven by winds over the Antarctic
Circumpolar Current (Toggweiler and Samuels 1998;
Wolfe and Cessi 2011). In the limit of weak diapycnal
mixing in the ocean interior, the source waters formed
by deep convection at the high latitudes of the North
Atlantic are transported, nearly adiabatically, to these
outcrops in the Southern Ocean. Strong diapycnal mixing
has been measured near and above rough topography
(Polzin et al. 1997), and there is of course strong mixing
and water mass modification in the surface mixed layer,
but mixing at the middepths of North Atlantic Deep
Water (NADW) is generally much weaker.

The MOC has received much attention, both as a fea-
ture of the ocean circulation and as a component of the
coupled climate system. Here, we focus on the dynamics
of the middepth southward flow connecting the high-
latitude North Atlantic with the high-latitude Southern
Ocean. The basic mechanisms by which the lower limb
of the Atlantic meridional overturning circulation
(AMOOC) is established have been explored in several
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previous studies. Kawase (1987) described the adjustment
process of the deep ocean to a high-latitude mass source
as a combination of coastal and equatorial Kelvin waves
rapidly communicating the pressure signal to the eastern
boundary, where it is then slowly propagated into the basin
interior by baroclinic Rossby waves. In his model and
theory, these Rossby waves were damped by a diapycnal
mass flux. In a pair of papers, Johnson and Marshall
(Johnson and Marshall 2002a,b) develop a theory for the
time-dependent MOC response to variable water mass
formation rates or Ekman transport driven at high lati-
tudes. Their principal finding, as it relates to the present
study, is that the equator acts to dampen the meridional
propagation of transport anomalies in the hemisphere
opposite the forcing hemisphere. They found that the
degree of damping depends strongly on the forcing
frequency. For parameters typical of the North Atlantic,
variability in deep-water formation at periods less than
roughly decadal remain largely within the North Atlantic.
Analogously, variability in Ekman transport in the
Southern Ocean at similar frequencies does not penetrate
into the North Atlantic basin. This basic mechanism was
applied to multibasin, global domains by Johnson and
Marshall (2004) and to heat content and sea level change
by Zhai et al. (2011).

The present study builds on these previous results by
considering the influences of eddies and diapycnal
mixing using a simplified formulation that yields closed-
form analytic solutions for the spatially averaged layer
thickness . The theory developed below details a new
perspective on the propagation of NADW anomalies
that is consistent with, and a parallel and simplified de-
scription of, previous theoretical work by Johnson and
Marshall (2002b). Nondimensionalization is used to
identify two controlling parameters and to provide a
simple interpretation of the system behavior. We show
that the same two parameters also appear in non-
dimensional forms of the Johnson and Marshall (2002a)
governing equations for the eastern boundary layer
thickness #,, providing a connection between the two
approaches. The simplified formulation is allowed by
exploiting the approximation 4, =/~ which, in tandem
with a mass conservation argument, retains the funda-
mental physics involved in cross-equatorial flows on
interannual and longer time scales.

2. Governing equations

The 2.5-layer reduced-gravity equations are used to
develop the theory presented below. The upper and
bottom layers are assumed motionless, and the active
middle layer represents the NADW responsible for
transporting flow southward as part of the lower limb of
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FIG. 1. Domain schematic for NADW (outlined with thick lines)
as the middle layer (layer 2 in the figure) in a 2.5-layer reduced-
gravity system. The upper and bottom layers are motionless, and
the resulting dynamics reflect motion for NADW with layer
thickness 2. NADW is put into motion by introducing southward
volume transports ¢y and .

the AMOC. While this is a significant idealization of the
three-dimensional AMOC, we have performed simula-
tions with a northward-flowing upper layer (with and
without wind stresses) and a southward-flowing bottom
layer. In this case, each layer yields similar behavior for
layer thickness and volume transports as a single active
middepth layer. This motivates a detailed study of the
simplified configuration illustrated in Fig. 1, in which
only the middle layer is in motion.

Following a presentation of the reduced-gravity
framework, a description of the theory for the domain-
averaged layer thickness is given, an outline of analytic
solutions is provided and their salient features discussed.

a. Reduced-gravity equations

The reduced-gravity equations are placed on the
equatorial beta plane in a simple rectangular domain
free from wind stress and topography. In dimensional
form, the 2.5-layer reduced gravity equations with
motionless upper and bottom layers simplify to

— / 2
du+tu-Vu+gBykXu=—-¢gVh+A Vu, 1)

ah+V - (hu) = —% (h—H). @)

Subscripts denoting layers are dropped with the un-
derstanding that the dynamics being considered are
those belonging to layer 2 in Fig. 1. The horizontal
coordinates (x, y) are along zonal and meridional di-
rections, respectively, and k is the unit vector normal
in the vertical. The horizontal extent of the domain is
taken to be L, X L,, with the equator at y =0. Hori-
zontal velocity is denoted as u= (u,v), and layer
thickness is denoted as h. The reduced gravity
is g, B=dfldy=2%x10""m !s™! is the gradient of
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planetary vorticity, and A, is the constant eddy viscosity
coefficient.

If the flow is nonadiabatic, then the right-hand side of (2)
is included where y = const is the imposed spatially uni-
form thickness relaxation time scale to the prescribed
target layer thickness H, = const. Previous studies have
implemented diapycnal mixing using the functional form
k,/h, where k, is the diapycnal diffusivity, which acts to
increase layer thickness (Allison et al. 2011). However, the
form of diapycnal mixing used by Kawase (1987) and used
in this study is approximately the same as the k,/h pa-
rameterization for appropriate choices of y and H,,. In fact,

k‘U ~ — 1 —

T ), 3)
and the appropriate choices for y and H, are y = Hj/k,
and H, =2H,. This is valid for |h — Hy|/H, < 1; there-
fore, Hy may be chosen to be any thickness such that
H.q~ Hy, where H is the equilibrium thickness. In the
analysis given below we provide analytic predictions for
H¢q, allowing diapycnal mixing in the form of a re-
laxation as a substitution for the form involving the
diffusivity k,, that is, k,/h.

b. Domain-averaged continuity equation

This section presents the theoretical model for layer
thickness of NADW in the form of a first-order, non-
linear, ordinary differential equation. Spatially averaging
(2), and noting that zonal velocities vanish at western and
eastern boundaries, gives

dn” 1 (e
——:‘—Jh
a A,

y=Ly
L

1 —X,y
dx=_ (B ~H,). (4

where Ly >0 and Lg>0 are the distances from the
equator to the northern and southern boundaries. We
have introduced the averaging operator

—xy 1 (L (L
F’=—J J Fdxdy, 5)
Ao )i

where F is some field variable, and A is the domain area.
Equation (4) relates the time rate of change of domain-
averaged layer thickness to the zonally integrated volume
transports at y = —Lg and y = Ly and the diapycnal mass
flux. The volume transports at these latitudes are defined to be

LX
o = J mi,__, dxy=-Lj, ()
0

LX
by = L hvlyer, dx.y =L, . 7)
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Since we aim to model NADW, flow at these boundaries is
such that g, ¢y <0, thatis, flow is southward and is driven
by remote downwelling in the north and upwelling in the
south. In particular, upwelling and downwelling processes
are presumed to exist in regions beyond the meridional
extent of the domain. In addition, volume fluxes at the
northern and southern boundaries are imposed in zonal
geostrophic balance where inertial accelerations are omit-
ted and zonal velocities are set to zero, implying that me-
ridional gradients of layer thickness vanish.

Volume flux into the domain through the northern
boundary at y = Ly is imposed and provides the forcing
method by which the flow is put into motion. This im-
posed forcing is related to, and is an idealized simplifi-
cation of, downwelling at high latitudes. This applied
volumetric flux is prescribed as a time-dependent con-
dition that varies sinusoidally with amplitude AS >0,
frequency w; = 27/T; >0, and mean § >0, that is,

hy=-S {1 + % sin(wft)} . (8)

Note that 77 is the forcing period over which fluctuations
of the AMOC occur. The case when AS =0and ¢y = —§
will also be considered and, as our results will show, the
system response in the limit 7y — 0 will tend toward the
response observed when iy = —S. For the southern
boundary, flow is fluxed southward from the domain in
zonal geostrophic balance

_ &
hv zfsaxh , Y L, 9)

where fg=—BLs is the planetary vorticity at the
southern boundary.

We now make note of a key assumption that greatly
simplifies the equation for 1™ and allows for closed form
analytic solutions. This assumption takes the layer thickness
on the eastern boundary as representative of the basin-
averaged layer thickness, h,=h(L,,y,t)= Ex’y(t). To
justify this and to show when the relation £, = n may be
valid, we assume further that mixing is weak and the ocean
interior is in geostrophic balance. Therefore, if no normal
flow boundary conditions are imposed, then it is expected
that layer thickness will be y independent along the eastern
boundary, that is, dh./dy = 0. Since we are concerned with
interannual and longer time scales, we assume that the
combination of coastal and Kelvin waves are fast compared
to the forcing period Ty. In this sense, pressure signals
originating from the high-latitude forcing ¢y are immedi-
ately propagated south along the western boundary, east
along the equatorial waveguide, and finally poleward along
the eastern boundary (Kawase 1987; Johnson and Marshall
2002b). Marshall and Johnson (2013) distinguish between
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Kelvin and Rossby waves as the responsible coastal
mechanism for the adjustment of the MOC. These
boundary waves have speeds given by ¢, L;/8);, where ¢, is
the gravity wave speed, L, is the deformation radius, and
8y is the Munk layer thickness. For the numerical sim-
ulations provided below, L,/8y € [5, 8] when L, is the
equatorial deformation radius and L,/ € [2/3, 1] when
L, is deformation radius at the highest latitudes in the
numerical domain. Therefore, pressure signals propagate
quickly about the basin. If we expect the approximation
he =h"" (1) to hold, then sufficient time must be allowed for
the interior thickness to respond, via westward-propagating
Rossby waves, to the pressure signal along the eastern
boundary so that K™ is indeed representative of /.. Oth-
erwise, layer thickness in the interior may differ signifi-
cantly from #,, and there is no a priori justification for the
relation h, =1 .

To quantify the practicality of the relation A, = ",
consider, for y € (—Lgs, Ly), the layer thickness
differential

oh
o=, -, 001~ [3ead . (10)

where h,(y, t) is the layer thickness evaluated at a dis-
tance equal to the width of the western boundary layer
from the western boundary. If 64 can be shown to be
small relative to the signal of interest, then the relation
h.=h"" may be justified. To this end, we note that for a
geostrophic interior the time rate of change of layer
thickness may be related to zonal gradients through

oh _ oh
E = Ca 5 (11)
where ¢ = ¢(y) is the Rossby wave speed (Johnson and
Marshall 2002b). Suppose n represents the amplitude
for variations of 4., T is the time scale for variability
of h,, and Ax=L,, then we may use (11) to write
(10) as

LX Lx
c Tc

nom

8h_1|oh,
‘ - (12)

Therefore, 6h/m <« 1 if L,/Tc < 1, and the assumption
that basin-averaged layer thickness is representative of
the layer thickness on the eastern boundary is valid in
the limit that the time scale T for variability of 4, is long
compared to the time scale L,/c for a Rossby wave to
propagate across the basin. For the forcing given by (8)
and in the limit of rapidly propagating Kelvin waves, this
condition requires the forcing period 7y to be long
compared to the Rossby wave basin-crossing time, that
is, Ly/Trc < 1. However, note that §h/n > 1 is not
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necessarily true for high-frequency forcing since the
amplitude for the variation of h,, as determined by
reduced-gravity dynamics, may be small.

The condition L,/Tyc < 1 is generally satisfied at low
latitudes for interannual or longer period forcing be-
cause waves propagate quickly near the equator. For a
6000-km-wide basin with a typical gravity wave speed of
2ms” !, the basin-crossing time for a mode-1 baroclinic
equatorial Rossby wave is about 100 days and is fast
compared to the time scales of interest. From mid- to
high latitudes Rossby waves are much slower, and so this
assumption becomes more tenuous. To a rough ap-
proximation, the relative error for A, = s given by
An/AH , Where AlA=1- y/Ly is a nondimensional
measure of the basin area with long crossing time, y. is
the latitude at which L,/Tyc = 1, and H is the spatial and
temporal mean layer thickness. Even in cases where the
high-latitude crossing time is comparable to Ty, that is,
when y. = Ly, the condition L,/T;c < 1 will be satisfied
over most of the basin and An/AH < 1. Moreover, as
will be shown below, the amplitude 7 of variability in
layer thickness is small for forcing periods less than the
high-latitude basin crossing time scale; thus, An/AH < 1
and h, = K is valid in parameter space for which the
forced response is large. In fact, at high-frequency
forcing, both full numerical solutions and the analytic
solutions below predict a small-amplitude response;
therefore, the errors incurred by assuming b, =/~ are
small and are not fundamental to the overall predictions
of the theory. Favorable comparisons are also made with
the more complete solutions of Johnson and Marshall
(2002a) in section 4.

Zonally integrating the product in (9) yields the fol-
lowing for the volume flux at the southern boundary

e (! (13)

fs

Here, the approximation 4, = 7" has been made, and
hsw is a prescribed layer thickness at the southwestern
corner of the domain, (x, y) = (0, —Lg). Information
propagating equatorward along the western boundary
and originating from outside our model domain is re-
sponsible for setting hsw, and therefore, it is appropriate
to impose this as a boundary condition. Using the ex-
pressions for ¢ and ¢, given in (13) and (8), the
domain-averaged continuity equation [(4)] becomes

75y

N ,
N o v | (A N

At A 2fA

dt A (%)

This first-order differential equation becomes our gov-
erning equation for layer thickness of NADW. While we
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will be particularly focused on the case in which v is suf-
ficiently large such that the flow may be considered adia-
batic, we will also consider the case for nonadiabatic flow.
In each case, closed-form analytic solutions are obtained.

c¢. Analytic solutions for n

We briefly outline the analytic solutions that solve
(14) for four different cases of interest, which we split
into two categories: adiabatic and nonadiabatic flow. For
each category we consider two possibilities for the vol-
ume flux ¢ry: either ¢ is constant in time [with AS =0
in (8)] or varies sinusoidally (with AS#0). See the
appendix for details.

1) ADIABATIC FLOW

In the case of adiabatic flow in the presence of con-
stant volume flux through the northern boundary, with
Y = —S, solutions for domain-averaged layer thickness
take the form

—x t—
T Htanh( CO) : (15)
2T
The equilibrium layer thickness is
H = /2fSlg' + h,, (16)
and is approached over the intrinsic time scale
Af
T= g/H y (17)

and ¢ is a constant determined by the initial condition
R (t=0)= ﬁg’y. The time scale 7 may be interpreted as
the equilibrium volume of NADW divided by the trans-
port into the domain from the north. This time scale was
also found by Johnson and Marshall (2002b) for the
equilibration of layer thickness /., on the eastern boundary.

If ¢y is allowed to vary sinusoidally, then solutions
resemble the case when ¢ is constant; however, they
contain sinusoidal variations that are phase-shifted from
the imposed perturbation by the amount ¢ = tan™!(wy7),
so that variations are approximately in phase with ¢
for Ty > 2zr7. In addition, the amplitude of variation is
given by

TAS/A

h = —— (18)
1+ (o fT)
These solutions take the form
—X t— . . —
R = Htanh( 5 c0> + K'[sinf + sin(¢)e "], (19)
T
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where 6 = wst — ¢ and the expressions for H, 7, and ¢
are the same as those given for the case of constant
volume flux. The solution consists of the exponential
transition to the equilibrium solution (first term), a
phase-shifted sinusoidal oscillation (second term),
and a transient associated with the initial condition
(third term).

2) NONADIABATIC FLOW

Solutions for 7'~ above are valid in the limit y > 7;
however, solutions for K take a similar form when
nonadiabatic effects are considered, that is, when
v = (7). If the volume flux ¢, varies sinusoidally, then
nonadiabatic solutions become

—x H+_H_ t—c
R =—"—""|tanh o)+
2 [an (27y>

! Tai : —t/7.
+ K [sin6 + sin(p)e "],

H*+H
H*—-H~

(20)

where the solution form is similar to (19). Parameter H*
may be interpreted similarly to H in (16): the equilibrium
thickness obtained as t — . On the other hand, H~ may
be interpreted as an equilibrium thickness obtained if time
is allowed to march backward, that is, t = —oc. The dis-
tinct pair H™* results from the quadratic form of (14) and
corresponds to layer thicknesses that satisfy dhldt = 0.
Expressions for equilibrium layer thicknesses H*, per-
turbation thickness //,, and time scale 7, are

o =m|- \/1 (")2 2 <7) 1)
- = — =+ + (- +2—(— ’

Y Y H \y
h;:ﬂ’ and (22)

V1t (@)

-1

T = <1+1> . (23)
Y T Y

Here, 7 denotes the intrinsic time scale for equilibra-
tion in the adiabatic limit given by (17). If AS = 0, then
H, =0 and the first term in (20) provides the solution
for h'™”.

d. Analytic solutions for g

Once the analytic form for n s known, this can be
used to determine the closed form solutions for g by
substitution of 2™ into (13). We note that this solution is
fully nonlinear, which, in the adiabatic limit y > 7 and
for t > 1, is of the form

Al Ah?
+
St sin(6) 4STH

o= —S{l + [1- cos(20)]} ,  (24)
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where we have taken hgw =0. The terms omitted in
taking the long-time limit ¢ > 7 simply describe the
transient adjustment process as the system equilibrates
from the initial condition, a process illustrated in the
results provided in section 3a.

The first term for ¢ is the imposed mean volume
transport —S while the second gives fluctuations about
the mean with identical phase to that of n ; however,
using (18), the amplitude is seen to differ from the
imposed amplitude at the northern boundary, AS/S
through (8), by the scalar factor 1/4/1 + (wff)z. There-
fore, the amplitude of this fluctuation is easily seen to
decay to zero for high-frequency forcing, that is, when
wsT>> 1, and obtains its maximum value AS/S in the limit
of low-frequency forcing, that is, when wyr <« 1. This
analytic result is similar to the time-lagged expression
for volume transport found by Johnson and Marshall
(2002a). This acts as a low-pass filter to variability
propagating out of the source hemisphere, a mechanism
termed the ‘‘equatorial buffer”” by Johnson and
Marshall (2002b).

The remaining terms result from nonlinear pro-
jections of the imposed frequency onto the mean zero-
frequency mode and the higher-frequency mode with
phase 26. Each of these projections have amplitude that
is smaller than the lower-order fluctuations [the second
term in (24)] by the amount #'/4H. The projection onto
the zero-frequency mode acts to increase mean south-
ward transport at the southern boundary when the
forcing is sinusoidal, an effect that increases with in-
creasing /', or equivalently, increasing 7. Instances
when t=n6, for n cZ, transport at the southern
boundary is equal to the imposed mean transport, that is,
Y = —S. Instances when t = nw/2, for n odd, the mag-
nitude of ¢ obtains its largest [sin(f) > 0] and smallest
[sin(6) < 0] values.

3. Numerical experiments

We briefly outline the setup for the numerical simu-
lations of the reduced-gravity equations [(1) and (2)]
and the parameters used for their calculation. The nu-
merical domain is an idealized rectangular basin with
dimensions L, X L, =3000km X 6000km (approxi-
mately 27° wide extending from 27°S to 27°N) and flat
topography. The domain is centered about the equator
such that Lg= Ly =3000km. The reduced-gravity
equations are discretized and solved on a C-grid using
finite differences on a uniform grid with spatial resolu-
tion Ax=Ay=10km. The numerical time-stepping
scheme used is the explicit third-order Adams-—
Bashforth scheme with time step Ar=180s (when A,
is large) or AT =120s (when A, is small). At eastern
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and western boundaries, no-slip and no normal flow
conditions are applied.

Numerical simulations are performed with two
layers in anticipation of high Reynolds number cal-
culations in which baroclinic instability may become
important. However, first we consider flow in the
laminar regime (A, =2500m?s™!) where the upper
layer is essentially passive. In this study we fix
S=10Sv (1Sv = 10°m?s™'), AS=5Sv, and with
forcing period T € [1/2, 20] years.

Within 400 km of the northern boundary the meridi-
onal velocity is restored toward a hyperbolic secant
profile that is geostrophically balanced. The layer
thickness assumes a hyperbolic tangent decay from the
modeled layer thickness at x =300km. At y = Ly the
imposed velocity is v = (g’ Z/|BLyl)sech’(x/l), where
[ =70km is the horizontal scale of the western boundary
layer, and the amplitude . Z is determined such that the
desired southward volume flux ¢, through the northern
boundary is obtained. Meridional velocity at the south-
ern boundary is restored in a similar fashion. The profile
for layer thickness assumes a hyperbolic tangent decay
from the modeled layer thickness at x =300km on the
southern boundary and zero at the western boundary
(hsw = 0). Specifically, the meridional velocity is re-
stored toward v = —(g'h/BLgl) sech’(x/l). This boundary
condition allows all the transport that is approaching the
southern boundary to exit the domain along the western
boundary. We have found the results to be insensitive to
the details of boundary layer width or restoring time
scale. We set Asw = 0 so the transport ¢ at the southern
boundary is initially small and allowed to adjust from
zero to a signal with mean transport S; however, the
results are not qualitatively sensitive to this choice. The
following results illustrate the validity of the analytic
solutions for 7" outlined in section 2c.

a. Results

1) ADIABATIC FLOW
(i) Steady forcing

When the flow is adiabatic and the northern volume
flux is steady, the domain-averaged layer thickness is
given by (15). Figure 2a shows numerical solutions (solid
curves) and analytic solutions (dotted curves) for 7.
We note an incremental disagreement between these
curves as g’ decreases, corresponding to weakly strati-
fied flows. This disagreement is due to a decreasing de-
formation radius L, for which, particularly at high
latitudes, L, < 2Ax. Additional simulations (not shown)
confirm that unresolved deformation radii contribute to
the disagreement seen in Fig. 2a. Despite a declining
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resolution with decreasing g, analytic solutions for /"~
provided in section 2c agree with numerical simulations
of the reduced-gravity equations.

Figure 2b shows volume transports at the southern
boundary ¢ and the imposed constant volume transport
at the northern boundary ¢y (shown in gray). While we
set ¥y =10Sv, values seen in Fig. 2b slightly over-
estimate this due to numerical quadrature and in-
terpolation used to diagnose transport. Moreover,
southern transports equilibrate to the northern volume
flux, balancing the incoming mass flux. Analytic and
numerical solutions to ¢ are also seen to coincide (not
shown). As g’ decreases the volume flux at the southern
boundary requires more time for equilibration. This
trend, which goes like 7~ (¢/H) ', can be related to
the time required for Rossby waves at the southern
boundary to travel across the basin from the eastern
boundary to the western boundary. Since Rossby waves
propagate with speed g’ﬁx’y/,By2 at midlatitudes and at
speeds less than /g’H/3 at the equator, weakly stratified
adiabatic flows require longer periods than strongly
stratified flows to equilibrate.

From Fig. 2b the flow displays evidence of early time
instabilities, discernible as oscillations in the time series
of g for t = 15 years. To aid in quantifying the degree of
turbulence achieved by the flow, we define the Reynolds
number

Reziiy,
Ah”

u

(25)

where, for these numerical solutions, A, =2500m?s~!.

For t=15 years the layer thickness is small and
Re = 7(10?). Eventually, these early time instabilities
vanish as the layer thickness increases and the Re de-
creases below a critical value Re.~ 32 (Springer and
Kawase 1993), where viscous effects dominate inertial
accelerations.

The appearance of planetary vorticity fs and area A in
the expressions for H and  indicates that basin geom-
etry plays a role in setting these quantities. Defining the
area as

A=(Lg+Ly)L (26)

o
increases in Lg and Ly can be shown to impede equili-
bration. For example, 7 ~ L3?, whereas 7 scales linearly
with Ly and L,. That basin geometry can control
equilibration is an indication of equatorial dampening
effects found by Johnson and Marshall (2002a,b). We
discuss these effects further in section 4 from a non-
dimensional perspective that illuminates the role of
basin geometry.
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FI1G. 2. (a) Domain-averaged layer thickness vs time for adiabatic
flow with steady forcing for g’ =0.01, 0.03, 0.05, 0.07. Numerical
solutions computed from the reduced-gravity equations are given
as solid lines, and analytic solutions are given as dotted curves.
A dashed curve is provided for g =0.07 for the case when
A, =500m?s~! and the flow exhibits large-scale eddies. Increasing
g, i.e., increasing stratification, decreases the equilibrium layer
thickness H and decreases the time scale 7 over which H is ob-
tained. This can be interpreted as the time for Rossby waves to
propagate from the eastern boundary to the western boundary;
weakly stratified flow equilibrates slower than strongly stratified
flow since Rossby waves travel faster when g’ is larger. (b) Volume
flux ¢y (in gray) and i3 shown to converge for large ¢.

(ii) Periodic forcing

If 4, has the sinusoidal form given in (8), then
domain-averaged layer thickness evolves according to
(19). Similar to Fig. 2a, Fig. 3a provides a comparison of
numerical solutions (solid curves) and analytic solutions
(dotted curves), but Fig. 3a illustrates the effect of time-
dependent volume flux at the northern boundary.
Again, marginally resolved deformation radii at high
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FIG. 3. (a) Domain-averaged layer thickness vs time for adia-
batic flow with periodic forcing. Numerical solutions computed
from the reduced-gravity equations are given as solid lines, and
analytic solutions are given as dotted curves. Leading-order be-
havior is similar to that shown in Fig. 2. (b) Volume flux ¢ (in
gray) and g converge in a time-averaged sense; however, the
amplitudes clearly differ, indicating a loss of meridional transport
into the basin interior and temporary mass storage.

latitudes in the numerical solutions are responsible for
minor disagreement when the flow is weakly stratified.
The analytic solutions in section 2c agree well with nu-
merical solutions of the reduced-gravity equations.
Figure 3b shows the effect of sinusoidal volume
transport at the northern boundary ¢, (shown in gray)
on the transport at the southern boundary . Again,
southern transports equilibrate to the northern volume
flux (on average) and analytic and numerical solutions to
g are seen to coincide; however, high-frequency oscil-
lations due to turbulence are not captured (not shown).
The same leading-order features observed when
v = — 8§ persist when ¢ varies sinusoidally. Notably,
the amplitude of ¢y and ¢ differ, indicating that
southward meridional transport in the western bound-
ary layer is lost to/gained from the basin interior. We
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return to the issue of loss of transport in section 4, where
we connect this to basin geometry and propagation pe-
riod of Rossby waves by extending the analysis of
Johnson and Marshall (2002a,b).

The amplitude of variations for 2" are given by the
expression for /4’ in (18). For ws > 7, the amplitude of
variations scale like /'~ o, 1. so that high-frequency
forcing has only a weak influence on domain-averaged
thickness. When wy is small /' tends toward the maxi-
mum value 7AS/A. Equation (18) shows how the ge-
ometry of the domain also determines the magnitude of
I'. For example, i’ ~ L., but A ~ Lg! when Lg= L,
and /' ~ Lg when Lg < L,. This reduced amplitude of /'
for increasing Ly reflects the equatorial damping dis-
cussed by Johnson and Marshall (2002a); however, the
dependence on L, suggests a further dependence on the
basin geometry. We return to this point, and the con-
nection between our model and that of Johnson and
Marshall (2002a), in section 4.

b. Nonadiabatic flow

While the focus of this study is on adiabatic flow, for
completeness, we make a brief mention of the results
when diapycnal mixing is a leading-order effect. Spe-
cifically, whereas previous adiabatic considerations
presumed y > 7, we now consider y = ?(7). This regime
of nonadiabatic effects is comparable to flows studied by
Kawase (1987), where Rossby waves are damped by dia-
pycnal mass fluxes. For these numerical simulations, we set
the spatially uniform relaxation time scale y =4.5 years
and the relaxation layer thickness /1, = 175 m.

1) STEADY FORCING

Figure 4a compares curves from numerical simula-
tions of the reduced-gravity equations (solid curves) and
analytic solutions (dotted curves). As before, good
agreement between these curves is evident. From (21) it
can be shown that H* — H for 7/y < 1, recovering the
adiabatic result, while H* — H, for 7/y > 1. An im-
portant parameter is the ratio of the damping time scale
v to the time scale for Rossby waves to propagate across
the basin (Kawase 1987). For the values of g’ in Fig. 4
this ratio spans the interval (0.6, 2.8), and Rossby waves
are damped by diapycnal mass fluxes. It is clear how the
equilibrium time scale depends on 7/y.

Figure 4b provides curves for volume transport at
the northern boundary ¢y (shown in gray) and at the
southern boundary . If the domain-averaged layer
thickness equilibrates to a value different from f,, then a
diapycnal mass flux into or out of the layer is observed,
the sign being determined by whether s greater or
less than H,. For example, when g’ = 0.01, Fig. 2a shows
that H ~ 375 m > H,, in the absence of diapycnal mixing.
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FIG. 4. (a) Domain-averaged layer thickness vs time for non-
adiabatic flow with steady forcing for g’ = 0.01, 0.03, 0.05, 0.07 and
H, =175m. Numerical solutions computed from the reduced-
gravity equations are given as solid lines, and analytic solutions are
given as dotted curves. The presence of diapycnal fluxes is evident
from the relatively faster time scales for equilibration. (b) Volume
fluxes ¢y (in gray) and ¢ differ due to mass loss, when ¢y <5 or
mass gain, when ¢y > .

With spatially uniform diapycnal mixing, Fig. 4a shows the
curve for i" with g = 0.01 tends toward H, and Fig. 4b
shows that ¢, < (/;S, implying the loss of mass. Similarly,
when g’ =0.07, 7" tends toward H,>H ~145m and sg
differs from ¢, by the amount of dlapycnal mass fluxes.

2) PERIODIC FORCING

When sinusoidal transport is imposed in the presence
of diapycnal mass fluxes, much of the above behavior is
observed However, in this case 4/, # 0, and this can al-
low 7" to fluctuate about H,. Thls behavior can be seen
in Fig. 5. When g’ =0.01, the basin-averaged layer
thickness is such that 2"’ > H,, for t > 6years, and the
flow experiences a diapycnal mass loss. Volume trans-
port via diapycnal fluxes for other values of g’ oscillate
in time between loss (when iy <) and gain (when
Yy > hg); however, time-mean diapycnal mass fluxes for
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FI1G. 5. (a) Domain-averaged layer thickness vs time for adiabatic
flow with periodic forcing. Numerical solutions computed from the
reduced-gravity equations are given as solid lines, and analytic
solutions are given as dotted curves. Leading-order behavior is
similar to that shown in Fig. 4. (b) Leading-order (time mean)
volume transports differ when forcing is sinusoidal, causing dia-
pycnal fluxes for values other than g’ =0.01 to oscillate in time
between mass loss (When iy < i5) and mass gain (When ¢y > ).

simulations shown in Fig. 5 are precisely those observed
for simulations shown in Fig. 4, where /), = 0.
Since A, # 0 in this case, (18) may be written

(1+7/y) '7AS/A
\/1 +[(1+ 7'/)/)71(%7']2

, 27)

W, =

where, similar to (21), the ratio 7/ indicates the signif-
icance of diapycnal mass fluxes. Here, T denotes the
intrinsic time scale for equilibration in the adiabatic
limit given by (17). When 7/y < 1, diapycnal fluxes are
weak and (27) approaches its adiabatic value given by
(18). In the limit 7/ > 1, diapycnal mass fluxes become
significant and cause /), to decrease monotonically to
zero. Therefore, if 7/y is allowed to vary from small
to large, basin-averaged layer thickness anomalies are
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maximal in the adiabatic limit and increasingly negligi-
ble as diapycnal mass fluxes act to dampen these
anomalies when 7/ is large. Since volume flux at the
southern boundary is a function of ™ [see (13)], the
amplitude of ¢ will decrease when 7/y > 1, requiring a
loss of meridional volume transport into the domain
interior. The adiabatic analog of the issue of loss of
meridional volume transport and amplitude of /) is
discussed further in section 4.

c. Turbulent flow

To this point, all comparisons between numerical so-
lutions of the reduced-gravity equations and the analytic
solutions of basin-averaged layer thickness have been
made in a laminar regime for which viscous effects dom-
inate inertial accelerations. Since Earth’s oceans are re-
plete with nonlinear behavior, we consider turbulent flow
and how well analytic solutions for 7"~ compare in this
case. Here, we set g = 0.07 and consider A, = 500 m?s™.
This value of lateral viscosity permits instabilities to de-
velop and thus extends the resolved physics beyond the
geostrophic approximation used in the theory. However,
we note that submesoscale processes and higher-order
vertical modes are still neglected, and the Reynolds
number defined in (25) depends on the eddy viscosity
coefficient A,, which is not well constrained theoretically
or observationally.

Figure 6 shows an instance of the volume transport
¥(x, y) when A, =500m?s~'. The Reynolds number is
an order of magnitude larger than the critical value
Re. =~ 32. Eddies dominate the flow along the western
boundary south of the equator, as expected from sta-
bility theory (Edwards and Pedlosky 1998), similar to
findings by Goes et al. (2009) and consistent with ob-
servations in the Brazil basin (Dengler et al. 2004). A
comparison of analytic and numerical versions of n
yields a difference during the initial establishment of the
circulation where /" appears to increase more rapidly
than analytic solutions predict. This is shown by the
dashed curve for g’ =0.07 in Fig. 2a. This difference is
due to an artificial mass source in regions where the
layer thickness is prohibited from becoming negative.
Early in these turbulent calculations, where 2"~ =10m
initially, eddying motion causes fluctuations in layer
thickness that, if permitted, result in 2 <0. As K in-
creases and instances of # <0 no longer occur, agree-
ment between analytic and numerical values of s
observed.

A stability analysis by Isachsen et al. (2007) reports
that baroclinic Rossby waves are unstable to barotropic
perturbations resulting in increased westward phase
velocities. A decomposition of layer thickness and
velocities into time-mean and time-fluctuating (eddy)
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FIG. 6. An instance of the volume transport s(x, y) when the flow
is turbulent. The Reynolds number is ¢7(10?) and is larger along
the equatorial band and near the western boundary south of the
equator where eddies dominate the flow. Basin-integrated eddy
fluxes are small and contribute less than half a percent difference
between analytic and numerical solutions for .

components shows eddy fluxes of layer thickness are
negative (westward). These fluxes are strongest during
the initial spinup when %"~ is small and the Reynolds
number is large. This suggests that stirring motion due
to time-dependent eddies acts to expedite the interior
response to transport signals beyond what is achiev-
able with baroclinic Rossby waves alone. Simula-
tions of steady (A, =5000m?s™!) and time-dependent
(A, =1000m?s™1) flows with and initial layer thickness
K" (t=0)=75m were computed. The time-dependent
flow shows an increased variation of i compared to
that of the steady flow, however, this increased variation
is accompanied by a decrease in variation of the trans-
port rs. This is opposite to the behavior for ¢ given in
(24), where an increase in 4’ corresponds to an increase
in the variation of . Instead, the effect of eddies on i
projects variations onto fast time scales, diminishing the
variability on slow time scales and requiring the ob-
served increase in variation of .
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4. Nondimensional analysis

In this section we consider the amplitude of the
AMOC variability in a nondimensional framework us-
ing the analytic solutions presented in section 2c. This
provides a general understanding of what controls var-
iability and allows us to connect more directly the results
from our analytic model, specifically (18) above, and the
delay equations of Johnson and Marshall (2002a,b).

The dimensional solution for the adiabatic flow sub-
ject to sinusoidal forcing is now nondimensionalized using
the basin width L, as the characteristic length, average
layer thickness H as the characteristic height, the mode-1
baroclinic equatorial Rossby wave phase speed
U = \/g’'H/3 as the characteristic velocity, and T = L,/U
as the characteristic time. The choice for 7" describes the time
it takes the fastest available (long wave) equatorially trapped
Rossby wave to cross the basin (Gill 1982). We note the
choice for U and T are only true for domains with sufficiently
large zonal extent, that is, for L, ~ 10* km; however, for do-
main widths similar to that of the Atlantic, the longest avail-
able Rossby waves travel at roughly 90% the speed of U.

The solution for the variability of the domain-
averaged thickness [(18)] is nondimensionalized using
the above scaling, resulting in the nondimensional
domain-averaged thickness variability

7= 12 (28)

{1 + [MAZ(l +a)2?77]2}”2 |

where P=Ty/T is the nondimensional forcing pe-
riod. Several nondimensional numbers arise: o = Ly/Lsg,
A= Lg/L,, n=BL%3\/g’'H. If we define the equatorial
deformation radius L2=./g’H/B, then u=L2/3L3
Defined this way, A and p can be interpreted as non-
dimensional aspect ratios for the southern basin and
equatorial band, respectively. If these parameters are to
be representative of NADW, then A ~ 0.6, u = @' (10?),
and @ = @(1).

From this form, behavior can be seen to change at the
transition from high-frequency forcing to low-frequency
forcing, which occurs near P = uA?, within the (1)
factor of 1 + a. This is the period at which a Rossby wave
can cross the basin at the southern latitude of the do-
main. However, the solution also depends on the
northern extent, or overall area of the layer, which gives
the scale factor of 1+ «. For high-frequency forcing
i — 0, while for low-frequency forcing & — 1/2. The
amplitude of #'is shown in Fig. 7a as a function of A and
P. We fix @ = 1.67 and u = 102, which are roughly rep-
resentative of the Atlantic. We find a similar behavior
for variations in u and P with A =0.6 in Fig. 7b. The
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FI1G. 7. The nondimensional amplitude of the variability in /4’ as
a function of the nondimensional period of forcing and (a) A and
(b) w. In (a) w = 10% and in (b) A = 0.6, while @ = 1.67 in both. The
white line marks the slope where P = uA2, and the red star marks
the location for parameters typical of the North Atlantic Ocean
with a forcing period of 20 years.

closed form solution provides a simple interpretation
of the transition from a weak response in the basin-
averaged layer thickness (and outflow at the southern
boundary) to a strong response.

We now make the connection between our closed form
solutions for the average layer thickness and the delay
equations derived by Johnson and Marshall (2002b) for
the layer thickness on the eastern boundary and the
meridional gradient of the transport streamfunction.
Using the above scaling, the nondimensional equation for
the layer thickness on the eastern boundary 4, [Eq. (14)
of Johnson and Marshall (2002b)] is written as
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where A and w are as previously defined, Wy is the
nondimensional transport into the domain from the
north, and ¢ is the nondimensional baroclinic Rossby
wave speed. Away from the equator, the dimensional
Rossby wave speed is given by g’ H/By?, while near the
equator the wave speed is limited by the mode-1 baro-
clinic equatorial Rossby wave speed /g’H/3. The non-
dimensional wave speed c is thus defined as

c(y) =min(y >, ). (30)
The solution for 4, may be written as
B P+ 208\ 2

where, for simplicity, we have taken hgw = 0, although
the general results are not sensitive to this choice. There
are two integrated quantities, defined as

c= chy~4,ﬁ/2, S = Jhe(t—,u/c)cdy. (32)

The approximation for ¢ is valid as long as
w2 > L./Ly, L/Lg, that is, if the meridional extent of
the basin is such that Lg, Ly > v/3L,. In that case, half
of the contribution to ¢ comes from the equatorial
waveguide and half comes from off the equator.

The characteristic scales L., U, and T are used to
derive a nondimensional equation for the change in
meridional transport V¥ as a function of latitude [Eq. (13)
of Johnson and Marshall (2002b)],

% = 2Aclh,(t — plc) — h,(t)].

(33)

We present results as a function of A, u, and P to
provide a broad perspective on the system response. The
forcing is given by a mean inflow from the north, which
scales as S~ g H?*?2BLs= L, HU/2Au, and a periodic
oscillation of amplitude & = AS/S, written in nondi-
mensional form as

W, =1+8sin2mt/P). (34)

The nondimensional amplitude (scaled by 6 H) of the
layer thickness anomaly on the eastern boundary |k,| is
shown in Fig. 8a as a function of A and P. At higher-
frequency forcing, the amplitude of the variability on the
eastern boundary is small. This is consistent with the
calculations reported by Johnson and Marshall (2002a).
Small variations in 4, correspond to small variations in the
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outflowing dimensional transport at the southern bound-
ary since g = g'(h2 — hgy)/2fs. Figure 8a shows that the
amplitude of 4, increases with increasing P, but the values
of P that cause the increase in /4, depend on A. The tran-
sition is well predicted by the nondimensional closed form
solution [(28)] described in section 2. Larger values of
A have longer forcing periods P that cause 4, to increase.
This dependence is most easily understood by consider-
ation of the flow exchange between the western boundary
layer and the interior, now calculated from (33).

First, recall the discussion in section 2b regarding the
establishment of the circulation via the initial propaga-
tion of boundary waves and subsequent westward prop-
agation of Rossby waves. Note that the initial boundary
waves establish meridional pressure gradients about the
equatorial waveguide that are later weakened by Rossby
waves with propagation speeds that decrease with lati-
tude (Kawase 1987; Johnson and Marshall 2002b). When
there is little flow exchange between the western
boundary layer and the basin interior, most of the trans-
port exits the domain to the south, as discussed by
Johnson and Marshall (2002a,b). This requires that
the layer thickness on the eastern boundary have large-
amplitude fluctuations in order to support a non-
dimensional meridional transport W at y = —A\, allowing
flow to exit the domain. The total loss of transport from
the western boundary, integrated from the southern
boundary to the northern boundary, is shown, in non-
dimensional form, in Fig. 8b as a function of A and P. At
high-frequency forcing essentially all of the transport
anomaly in the western boundary layer is fluxed into the
basin interior. This is consistent with the weak signal seen
in Fig. 8a for k.. Since little variability reaches the
southern boundary, ¥y and Wy differ markedly. This is
evident from a comparison of (34) for ¥ and the non-
dimensionalized form of ¢ which, using (24) and ne-
glecting nonlinear effects, can be written as

W =1+ 25h siné. (35)
As the period increases and #' increases, less of the vari-
ability is lost to the interior and the southward flow is able
to exit at the southern boundary. The transition takes place
roughly in accord with the increase in 4, (Fig. 8a). The
period at which this transition takes place is given by the
time it takes a baroclinic Rossby wave to cross the basin at
midlatitudes. For the southern latitude of the model do-
main and from (28), this is given by P = uA® = L2/31.2,
indicated in Fig. 8 by the white line. At forcing periods
longer than this, midlatitude Rossby waves have sufficient
time to propagate pressure anomalies from the eastern
boundary to the western boundary before the forcing
changes. This weakens the meridional pressure gradient
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FI1G. 8. (a) The nondimensional amplitude of the variability in /.,
(b) fraction of the inflowing transport variability that is lost from
the western boundary layer, and (c) latitude at which 75% of the
total loss of transport from the western boundary layer occurs as
a function of the nondimensional period of forcing and the geo-
metric parameter A = L,/L,. The white line marks the slope where
P = A%, and the red star marks the location for parameters typical
of the North Atlantic Ocean with a forcing period of 20 years.

on the offshore side of the deep western boundary layer,
consequently reducing the zonal flow and results in more
of the transport anomaly being transmitted to the south.
For very high frequency forcing, the amplitude of 4,
increases and slightly less transport is lost from the
boundary layer into the interior. This trend becomes
more pronounced for smaller values of A (not shown).
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This is a result of a resonance between the forcing fre-
quency and the time it takes a Rossby wave to cross the
equator. At P =1, the signal on the eastern boundary
and the western boundary within the equatorial wave-
guide are the same, meaning that the meridional flow
into the interior is weak and the transport remains along
the western boundary. The transition to this resonant
state begins at P =2, below which the amplitude of 4,
begins to increase. For typical North Atlantic parame-
ters, this occurs at a period of about 90 days, and so is not
really relevant for AMOC variability and begins to vi-
olate the approximation ¢ ~ , /u and the assumption that
Kelvin waves are fast compared to the forcing time
scale. This regime of high-frequency forcing has been
explored by Moore (1968) and Marshall and Johnson
(2013), where layer thickness is no longer y independent
and is shown to scale as 4, ~ y"2.

Johnson and Marshall (2002b) found that the flow
exchange between the western boundary layer and the
interior was concentrated on the equator for high-
frequency forcing but became more broadly distrib-
uted in latitude at lower frequencies. The degree of
equatorial trapping is indicated here by the latitude yjqs,
at which 75% of the total mass transport is lost from the
western boundary layer in the Northern Hemisphere
occurs. This is shown in Fig. 8c. Consistent with Johnson
and Marshall (2002b), the mass loss is concentrated near
the equator for high-frequency forcing and becomes
more uniform with latitude (y)oss increases) for low-
frequency forcing. It is largely independent of Lg (A).
However, somewhat unexpectedly, at very low fre-
quency forcing the exchange again becomes trapped
near the equator. This is explained by consideration of
(33). For forcing periods much longer than the basin-
crossing time scale, the layer thickness on the western
boundary is close to that on the eastern boundary at all
latitudes. However, the zonal transport is proportional
to the change in layer thickness times the wave speed c,
which is much larger near the equator than at higher
latitudes, thus refocusing the exchange near the equator.

An example of the meridional structure of the flow
exchange between the boundary layer and the interior
is shown in Fig. 9 for three forcing frequencies,
P = (10, 102, 2 X 10°). For P =10 the exchange is con-
centrated near the equatorial waveguide and shows the
influence of the phase shift just off the equator due to
slower high-latitude Rossby waves. The transport am-
plitude decreases at higher latitudes because ¢ « h,/f. At
P =102, the exchange is now broadly distributed over a
wider range of latitudes such that y,,is = 0.51. In both
these cases the direction of flow exchange between the
boundary layer and interior changes sign between the
equator and midlatitudes due to latitude dependence for
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Rossby waves to cross the basin. At P=2X10%, the
exchange is all of the same sign with latitude but decays
away from the equator. The same qualitative behavior
can be seen in the calculations of 9¥/dy computed from
numerical solutions to the reduced-gravity equations in
Fig. 10 where A =1, =19, and P = (5.5, 220).

A similar analysis of (29) and (33) has been carried out
by fixing A =0.6 and varying u between 10 and 10,
as summarized in Fig. 11. In general, increasing
@ decreases the variability of 4., with the transition from
weak to strong variability occurring for periods longer
than uA® (white line). The equatorial trapping at high
frequencies is found to be stronger for larger u, although
the reemergence of trapping at low frequencies is only
weakly dependent on u.

These results from the delay equations of Johnson and
Marshall (2002a) are in broad agreement with the closed
form solution [(28)] provided here for the average layer
thickness. This demonstrates the applicability of the
layer-average approach to understanding the time-
dependent response and validates the simple inter-
pretation of the results derived from the closed form
solutions.

5. Conclusions

We have presented a study of southward flowing
North Atlantic Deep Water (NADW) at middepths.
This study focuses on NADW dynamics in a framework
that treats water masses above and below the NADW
as motionless. While such a framework is a great sim-
plification of the vertical structure of the meridional
overturning circulation in the real ocean, numerical
simulations of two-layer reduced-gravity equations with
(and without) wind stresses and with buoyantly-driven
upper and lower layers display the same behavior as the
theory and model configuration presented here, so we
feel that this is a useful approximation. The present
study details a simplified and parallel description of the
propagation of NADW anomalies to that provided by
the work of Johnson and Marshall (2002a). The theory
presented here permits closed-form solutions that are
consistent with the numerical solutions to the delay
equation provided by Johnson and Marshall (2002a) and
numerical simulations of reduced-gravity equations for
laminar, diabatic, and moderately turbulent regimes.

The theory for domain-averaged layer thickness of
North Atlantic Deep Water derived from the continuity
equation is valid in the limit of slow time-scale vari-
ability of the layer thickness on the eastern boundary 4,
to the relatively fast time scale for a Rossby wave to
propagate across the basin, permitting the approxima-
tion h, = 1. This allows closed form analytic solutions,
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FI1G. 9. The meridional gradient of the transport streamfunction
along the offshore edge of the western boundary layer vs time and
latitude for (a) P = 10, (b) P = 10%,and (c) P =2 X 103 with . = 10?
and A =0.6.
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which are provided when the southward volume flux at
the northern boundary is constant or sinusoidal and both
northern and southern boundary conditions are geo-
strophically balanced. However, numerical simulations and
analytic solutions with high-frequency forcing predict a
small-amplitude response for layer thickness; therefore,
any errors incurred in this high-frequency limit by assuming
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FIG. 10. The nondimensional meridional gradient of the transport
streamfunction computed from numerical solutions to the reduced-
gravity equations for A =1 and pu =19 for (a) P = 5.4 showing the
concentration of meridional transport loss about the equator and
(b) P =220 showing the weaker transport loss that extends beyond
the equatorial band to the northern and southern boundaries.
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h.=h" do not diminish the predictions of the theory.
To allow a detailed examination of the effect on the
circulation, a southward transport signal with a fixed fre-
quency is imposed at the northern boundary and is solely
responsible for driving fluid motions. The imposed forcing
is meant to mimic waters that downwell at high latitudes
through surface buoyancy forcing or entrainment into de-
scending overflows. Although the periodic forcing provides
convenient analytic solutions, in the linear limit any time
series of transport variability could be reproduced by the
theory through a Fourier series.

The choice of northern and southern boundary con-
ditions in our theoretical model permits closed analytic
solutions; however, more general boundary conditions
may be used to incorporate forcing due, for example, to
Ekman transports that may still yield simple analytic
solutions. In fact, the inclusion of a southward Ekman
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FI1G. 11. (a) The nondimensional amplitude of the variability in
h,, (b) latitude at which 75% of the total loss of transport from the
western boundary layer, and (c) latitude at which 75% of the total
loss of transport from the western boundary layer occurs as
a function of the nondimensional period of forcing and the geo-
metric parameter A = Lg/L,. The white line marks the slope where
P = pA?, and the red star marks the location for parameters typical
of the North Atlantic Ocean with a forcing period of 20 years.

transport for the southern boundary condition is a trivial
modification to the differential equation governing /7
and its solutions. At the same time these boundary
conditions place limitations on the nature of the solu-
tions for & since their analytic forms determine the
tractability of the domain-averaged continuity equation.
If the choice for these boundary conditions yield a
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tractable differential equation for %", then analytic
solutions amenable to analysis may be obtained. We
claim that the closed-form solutions for 7 are signifi-
cant to the extent that their expressions are simple,
compact, and readily analyzed.

Similar to findings by Johnson and Marshall (2002b),
basin geometry and stratification are found to set the
intrinsic time scale 7 and equilibrium layer thickness H.
Moreover, when forcing at the northern boundary is si-
nusoidal, analytic solutions yield a closed form expression
for the amplitude /4’ of domain-averaged layer thickness
anomalies. A nondimensional analysis generalizes the
dynamic behavior observed and relates the theory de-
veloped here to that of Johnson and Marshall (2002a,b).
The nondimensional parameters related to basin geom-
etry are the aspect ratios A = Lg/L,, w=L?/3L%, and
a = Ly/Lg, while P describes the nondimensional forcing
period. These parameters are used to understand the
system response to a range of forcing frequencies and
aspect ratios, including values relevant to NADW. Par-
ticularly, loss (gain) of meridional transport to (from) the
basin interior about the equator is explained within this
nondimensional framework. Roughly speaking, if forcing
periods are less than the time it takes a Rossby wave to
cross the basin at the latitude of the southern boundary,
the variability in average layer thickness is weak while for
longer forcing periods the variability is large.
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APPENDIX

Analytic Solutions to the Domain-Averaged
Reduced-Gravity Continuity Equation

Here we outline the derivation of the analytic solutions
to the domain-averaged continuity equation and provide
the associated intrinsic time scales and equilibrium
thicknesses. To begin, note that variability of volume
transport drives variability of layer thickness. We assume
variability of volume transport into the domain be such
that resulting layer thickness variability is small com-
pared to the equilibrium thickness. This assumption can
be expressed by introducing the dimensional parameter

8E§T<<H, (A1)

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 48

where AS is the amplitude of the imposed volume
transport variability, A is the area of the domain, 7 is
some time scale to be determined, and H is the asymp-
totic (¢t — =) equilibrium thickness. The parameter
€ represents the characteristic scale for layer thickness
perturbations due to the transport variability AS. We
pose a solution to (14), using & as the expansion pa-
rameter, of the form

R =hy+eh, + O(e*/H). (A2)
Equation (A2) is dimensional where Ay = (?(H); however,
the second term in the sum represents layer thickness
perturbations that scale as &, and thus £, is nondimensional

and h; = (1). Substitution of (A2) in (14) yields
@ = sm( t) + =2 (h2 +2ehyh, + *h?)
i AT @ 2fA e €
g,héw h1 3172
- —(hy—H,)——+
7 (h H) " a(1H"), (A3)

where, for the moment, we allow y = (1), solely to il-
lustrate that the method of solution is similar when y >
7. At leading order, (&%), the governing equation is

dh, S

= S W ha) (). (Ad

and describes nonadiabatic flow in the presence of
steady forcing. If y > 7 the damping term becomes a
higher-order effect and the flow is adiabatic to leading
order. To first order, 7(¢), the governing equation is

h, 1
—t=—sin(w) +
-

7 (A5)

h,
=

This captures the effects of time-dependent volume
transport at the northern boundary, the @(¢) effect of
outflow at the southern boundary, and the (&) non-
adiabatic effects.

While the order-by-order solution below continues to
assume y = 7(1), adiabatic solutions can be recovered
by setting y~! = 0. More precisely, adiabatic flow re-
quires the time scale for imposed thickness relaxation,
that is, vy, be sufficiently slow such that nonadiabatic
effects are negligible. To enforce this in the context of
adiabatic flow, we assume y > 7, where 7 is the intrinsic
time scale of the flow. Otherwise, adiabatic effects may
be considered by allowing y < 7. This adiabatic regime
is most comparable to the weak damping case studied
by Kawase (1987); however, when vy > 7 damping via
nonadiabatic effects is sufficiently weak such that
Rossby waves propagate virtually unhindered.
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a. @ (&"): Nonadiabatic flow, steady forcing

The leading-order equation [(A4)] is separable with the
right-hand side that can be written as a quadratic, that is,

dh
—=ahg + bh, +c,

o (A6)

with real constant coefficients

/ 1
g b=—, ¢

a= :E_g,h§W+H7
2fA”° v A

24 Ty

When f <0 (which is the case for a southern boundary
residing south of the equator), then a <0, ¢ >0, and it
follows that b> — 4ac >0 and (A6) may be written as

dh _
d—;):a(ho—H )(hO—H+). (A7)
The values H~ and H™ are the real and distinct roots of
the quadratic in (A6). Integration of (A7) along with the

initial condition /((0) yields the solution

H~ {tanh(r - CO) N H* + H’}
27 H*—H"|’
where Co = Tln{[h()(o) - H+]/[H7 - h()(o)]}, and 7 is the
intrinsic time scale for the saturation of layer thickness
to its equilibrium value H ™. The roots H= correspond to
layer thicknesses for which dh/dt = 0 and obtain in the

limits ¢t — *o, respectively. The time scale 7 and the
equilibrium layer thicknesses H* are given by

+_
h=H

= (A8)

r=(b*— 4ac)_”2,

_ —b T (b — 4ac)'”
2a '

(A9)

H* (A10)

In the absence of imposed variability of volume
transport into the domain, that is, when & =0, (AS8)
solves the domain-averaged reduced-gravity continuity
equation [(A3)].

b. @(g): Nonadiabatic flow, periodic forcing

In the presence of imposed variability of volume
transport into the domain, that is, small but nonzero &,
the solution to (AS) provides the dynamic response.
While Ay is now known, the solution for #; may be
simplified by Taylor-expanding A at large ¢ in (AS)
rendering the following linear equation

h,

d 1 h
—b~—sin(wt) — -1,
T T

. (A11)

with initial condition /4, (z = 0) = 0. The first term on the
right-hand side results from the applied volumetric flux
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prescribed as a time-dependent condition that varies sinu-
soidally with amplitude AS > 0, frequency w; = 27/Ty > 0.
Recalling that € is the characteristic scale for layer thickness
perturbations, the order-one variable /; is dimensionless
and has solution

1
W1+ (a)fT)2

where 6 =wst—¢ and ¢ = tan '(rws) and 7 is de-
termined by (A9). The domain-averaged layer thickness
for nonadiabatic flow with imposed periodic volume
transport has solution

- HY—H~ t—c
y & A 0 +
h 5 {tanh( > )

TAS/A
+ —
1+ (o f7')2

h, = [sin(8) + sin(p)e "], (A12)

HY*+H
H*—-H~

[sin(6) + sin(¢)e "]. (A13)

Note that in the limit 7y — 0", &y decreases, and solu-
tions with time-dependent forcing resemble those with
steady forcing.

c. Adiabatic flow, steady or periodic forcing

The adiabatic solutions follow as a special case of the
nonadiabatic flow. The flow may be considered adia-
batic when vy > 7, which may be accomplished by setting
the formally order-one quantity y~! to zero. Doing so
leaves the coefficient a unchanged, while b =0 and
¢ = S/A. This case has solution of the form given in (AS8),
however, with modified time scale and equilibrium
thicknesses given by

1 _
T= 5(—ac) 12 , (A14)

. I 12
H: =+ (——) .
a

In the case of periodic forcing, the solution has these
same values for time scale and equilibrium thickness,
but the solution is of the form given in (A13).

(A15)
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