
1

Interleaving Channel Estimation and Limited

Feedback for Point-to-Point Systems with a

Large Number of Transmit Antennas
Erdem Koyuncu, Xun Zou, and Hamid Jafarkhani

Abstract

We introduce and investigate the opportunities of multi-antenna communication schemes whose

training and feedback stages are interleaved and mutually interacting. Specifically, unlike the traditional

schemes where the transmitter first trains all of its antennas at once and then receives a single feedback

message, we consider a scenario where the transmitter instead trains its antennas one by one and receives

feedback information immediately after training each one of its antennas. The feedback message may

ask the transmitter to train another antenna; or, it may terminate the feedback/training phase and provide

the quantized codeword (e.g., a beamforming vector) to be utilized for data transmission. As a specific

application, we consider a multiple-input single-output system with t transmit antennas, a short-term

power constraint P , and target data rate ρ. We show that for any t, the same outage probability as a

system with perfect transmitter and receiver channel state information can be achieved with a feedback

rate of R1 bits per channel state and via training R2 transmit antennas on average, where R1 and R2

are independent of t, and depend only on ρ and P . In addition, we design variable-rate quantizers for

channel coefficients to further minimize the feedback rate of our scheme.

Index terms: Interleaving, limited feedback, training, beamforming, partial CSIT and CSIR.

I. INTRODUCTION

The performance of a wireless communication system can be greatly improved by making

the channel state information (CSI) available at the transmitter and the receiver. In a massive

multiple-input single-output (MISO) system, having CSI at the transmitter (CSIT) is especially
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desirable as one can then fully exploit the performance gains promised by the large number of

transmit antennas via CSI-adaptive transmission strategies such as beamforming. A typical way

to acquire CSIT is channel estimation followed by (digital) feedback.

Channel training/estimation and feedback are traditionally viewed as two non-interleaving

processes, as shown in Fig. 1. According to this traditional viewpoint, for each channel state,

the transmitter first trains all of its antennas at once, so that the receiver acquires the entire

CSI (or, in general, an erroneous version thereof.). This initial training phase is followed by the

receiver feeding back a possibly-quantized version of the CSI. The receiver’s feedback is then

utilized at the transmitter side for data transmission (e.g., as a quantized beamforming vector.).

Designing such limited feedback systems is a fundamental problem of communication theory

and has been the subject of many publications [2]. In particular, limited feedback beamforming

[3] has been studied through several different approaches that utilize Grassmannian line packings

[4], vector quantization [5], combinations with orthogonal [6] or quasi-orthogonal [7] space-time

codes, variable-length coding [8], or other systematic constructions [9]. Conditions to achieve

full diversity in a finite feedback scheme has been discussed in [10], [11]. Various distributed

limited feedback schemes [12]–[16] provide generalizations to multi-user networks.

TX trains all

antennas

RX sends

feedback

TX begins data

transmission

Fig. 1: Conventional training and limited feedback. TX and RX stand for the transmitter and the receiver, respectively.

The conventional scheme in Fig. 1 appears to be infeasible in the case of a massive MISO

system. Even the channel training/estimation phase, by itself, would be very challenging to

realize due to the large number of transmit antennas that need to be trained. Moreover, even if

one assumes that the training stage somehow comes with no cost, feeding back the associated

large number of channel values to the transmitter appears to be infeasible. Conventional limited

feedback schemes also do not provide much hope in this context: The feedback rates required

for even the simplest of the limited feedback schemes such as antenna selection grow without

bound as the number of transmit antennas grows to infinity. In [17], it is analyzed in detail

how many antennas per user terminal are needed to achieve some percentage of the ultimate

performance limit with infinitely many antennas.
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There has been some work on channel estimation and CSI feedback in massive MIMO

systems; a survey can be found in [18]. In particular, [19] proposes a noncoherent trellis-coded

quantization scheme, whose encoding complexity scales linearly with the number of antennas.

In [20]–[22], compressive sensing techniques are utilized to reduce the feedback overhead of

the CSI estimation. In addition, several studies [23]–[26] have demonstrated that channel or

antenna correlation can be exploited to reduce the overhead of the downlink training phase. A

multi-beam selection scheme for massive MIMO is presented in [27]. The problem of designing

training sequences with low overheads have been studied in [28]. There are also several other

approaches proposed for resolving the challenges of training and limited feedback in the more

general context of multi-user MIMO; see e.g., [29]–[32].

Our proposed solution is to interleave the training and feedback stages as shown in Fig. 2.

Unlike the conventional scheme in Fig. 1, the transmitter trains its antennas one by one and

receives feedback information after training each one of its antennas. A feedback message may

ask the transmitter to train another antenna (and also provide side information about the channel

state), or it may result in the termination of the training phase, in which case it also provides

the quantized codeword to be utilized by the transmitter for data transmission.

TX trains

antenna #1

RX sends

feedback
· · · TX trains

antenna #(k−1)

TX begins data

transmission

RX sends

feedback

TX trains

antenna #k

RX sends

feedback

Fig. 2: Interleaved training and limited feedback. The number of trained antennas k varies from one channel state

to another, and is itself decided through the training and feedback phases.

An interleaved scheme offers the following unique opportunity: If the already-trained antennas

provide sufficiently favorable conditions for data transmission, one can then terminate the training

phase and thus avoid wasting more resources on training the rest of the antennas. One main

message of this paper is that in certain scenarios, we can make use of this opportunity to design

multi-antenna communication systems whose feedback and training overheads remain completely

independent of the number of transmit antennas, and which, at the same time, can achieve the

same outage performance as a system with perfect transmitter and receiver CSI. Specifically, we
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consider here a single-user point-to-point MISO system with the outage probability performance

measure. Note that, while the “mainstream” use case of a massive transmitter antenna array

is to support multiple users, a single-user system suffering from severe path loss may also

greatly benefit from beamforming over a large number of antennas. Extensions to multiple-input

multiple-output (MIMO) systems, or to multi-user scenarios with different performance measures

(such as ergodic capacity) will thus be left as future work. In fact, after the publication of a

preliminary version of this work [1], another paper [33] has studied the benefits of interleaving

in hybrid single-user and multiple-user massive MIMO systems. The work [33] also considers a

general channel model that can incorporate channel correlations. On the other hand, [33] ignores

the feedback overhead of the interleaved scheme: It is assumed that the trained channel gains

can be perfectly fed back to the transmitter, which requires an infinite number of feedback bits

in practice. In contrast, we design interleaved schemes to minimize the training overhead as well

as the feedback rate. In more detail, the main contributions of this paper are as follows:

• We propose a novel communication scheme which interleaves training and feedback stages.

In this scheme, the transmitter trains its antenna one by one while the receiver transmits

the feedback information immediately after training each antenna. The feedback message

may ask the transmitter to train another antenna or provide the quantized codeword to be

utilized for data transmission. The latter event occurs if the already trained antennas can

provide enough channel gain to avoid outage.

• We apply the interleaving scheme to a MISO system with t transmit antennas, a short-term

power constraint P , and target data rate ρ. We show that our scheme is able to achieve

the same outage probability as a system with perfect transmitter and receiver CSI while

keeping the average feedback rate and the average number of training antennas independent

of t and dependent only on P and ρ.

• We design a variable-rate quantizer to minimize the feedback rate in the MISO system

while keeping the same outage probability as a full-CSI system. It is achieved by allocating

a higher rate to a larger coefficient in a given channel state. We also discuss the latency

costs associated with interleaving, and study antenna grouping schemes as a solution.

Part of this work has been presented in a conference [1]. Compared to [1], the current paper

provides the proofs of technical results. It also describes a procedure to design optimal variable-
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TABLE I: Table of Symbols for Different Schemes.

Symbol Definition

F Full-CSI scheme

G Open-loop scheme

A Conventional antenna selection scheme

B Interleaved antenna selection scheme

B
′ Interleaved antenna selection scheme with antenna grouping

S Conventional beamforming scheme

D Interleaved beamforming scheme

Ci, i = 1, . . . , t Sub-blocks of interleaved beamforming scheme

rate quantizers of the feedback information. Here, we also provide numerical results that verify

our analysis, and a discussion on the latency costs associated with interleaving and grouping.

The rest of the paper is organized as follows: In Section II, we describe the system model,

and the full-CSI and open-loop systems. In Section III, we introduce the idea of interleaving

and construct a simple interleaved scheme based on antenna selection. In Section IV, we show

how to design an interleaved scheme that can achieve the full-CSI gains with low training length

and low feedback rate. In Section V, we describe a variable-rate quantizer to further reduce the

feedback rate. In Section VI, we discuss latency costs and study interleaved schemes with antenna

grouping. Finally, we present the simulation results in Section VII and conclusions in Section

VIII. Some of the technical proofs and extended discussions are provided in the appendices.

Notation: Cm×n is the set of all m× n complex matrices with C
m , C

m×1 and C , C
1. Im

is the m ×m identity matrix, and 0m×n is the m × n all-zero matrix. CN(K) is a circularly-

symmetric complex Gaussian random vector with covariance matrix K. P and E represent the

probability and the expected value, respectively. o, O, and Θ are the standard Bachmann-Landau

symbols. AT and A
† are the transpose and the conjugate transpose of matrix A. ◦ stands for

the entrywise product. For x ∈ R, x+ , x if x ≥ 0, and x+ , 0, otherwise. For reader’s

convenience, we show the symbols that we will use for various schemes in the paper in Table I.

II. PRELIMINARIES

We consider a MISO system with t transmit antennas. Denote the channel from transmit

antenna i to the receiver antenna by hi, and let h = [h1 · · ·ht]
T ∈ Ct represent the entire

channel state. We assume that h ≃ CN(It). The transmitted symbol s ∈ Ct and the received
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symbol y ∈ C have the input-output relationship y = s
T
√
Ph + η, where P is the short-term

power constraint of the transmitter, i.e., the total transmit power constraint over t antennas, and

the noise term η ∼ CN(1) is independent of h.

For a fixed h, suppose that input symbol s is distributed as CN(KT ), where K is a covariance

matrix with tr(K) ≤ 1. With perfect CSIR, the channel capacity under this strategy is log2(1 +

h
†
KhP ) bits/sec/Hz. In this work, we consider a delay-constrained system where it is necessary

and sufficient to sustain a certain fixed rate of data transmission at all times. Examples include

video streaming for teleconferencing. In these so-called block-fading scenarios, averaging out a

data codeword over infinitely many channel states is not feasible. The appropriate performance

metric is the outage probability, which is the probability that the system will not be able to

support a given target data rate [34], [35]. In our system, for a given target data transmission

rate ρ = log2(1 + αP ), where α > 0 can be chosen arbitrarily, an outage event occurs if

log2(1 + h
†
KhP ) < ρ, or equivalently if h

†
Kh < α. We refer to the special case where

K = xx
† for some x ∈ Ct with ‖x‖ ≤ 1 as “beamforming,” in which case the outage event

is |〈x,h〉|2 < α. We assume that both the transmitter and the receiver agree upon a common

transmission rate and power before any training or feedback communication takes place. This

ensures that both terminals have perfect knowledge of α. We also assume that there are no CSI

estimation errors: Once a transmitter trains a particular antenna, the receiver can acquire the

corresponding CSI error-free. The results of this paper will thus serve as upper bounds on the

performance of systems that take into account possible errors in CSI estimation.

For a random h, the transmitter can use different covariance matrices for different h. Let

M : Ct → Ct×t be an arbitrary mapping, so that given h, the input symbol is distributed as

CN([M(h)]T ). The outage probability with M is out(M) , P(h†
Mh < α). For a beamforming-only

system with mapping N : Ct → C
t, we define out(N) , P(|〈N(h),h〉|2 < α).

With perfect CSIT and CSIR (a “full-CSI” system), the optimal mapping is beamforming

along h [36]. In other words, the mapping F(h) , h

‖h‖ provides the minimum-possible outage

probability out(F) = P(‖h‖2 ≤ α). With perfect CSIR but no CSIT (an “open-loop” system),

it is shown in [38] that the optimal mapping is G(h) , 1
κ

(
Iκ 0κ×(t−κ)

0(t−κ)×κ 0(t−κ)×(t−κ)

)
, where κ ,

argmink P(
∑k

i=1 |hi|2 < kα). Hence, only κ out of the t antennas are used in general, and we

have out(G) = P(‖hκ‖2 < κα). Note that κ does not depend on the channel state h. Therefore,

the open-loop mapping is also independent of the channel state.
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Fig. 3: Outage probability as a function of the number of transmit antennas t for beamforming, open-loop, and

antenna selection schemes at α = 0.5 (left) and α = 2 (right). Note that a larger path loss exponent (due to

higher frequency of transmission) or a greater transmitter-to-receiver separation translates to a higher α in practice.

Therefore, using as many as a hundred antennas may be necessary to achieve an acceptable outage probability even

in a single-user system, as evidenced by the case α = 2 and antenna selection.

The outage performance of communication systems in terms of their α-asymptotic behaviors

for a fixed t has been studied in the literature. For example, a full-CSI and an open-loop system,

with t antennas, both provide a “diversity gain” of t [36]. In other words, given a fixed t, as

α → 0, we have out(F) ∈ Θ(αt) and out(G) ∈ Θ(αt) so that the outage probabilities of a

full-CSI and an open-loop system have the same α → 0 behavior. In contrast, in this work, we

are primarily interested in the t-asymptotic behavior of outage probabilities for a fixed α, i.e.,

the behavior of the system for a massive number of antennas. The following proposition, whose

proof can be found in Appendix A, provides a rough characterization in this context.

Proposition 1 As t → ∞, for a full-CSI system, we have out(F) ∈ Θ(α
t

t!
), ∀α > 0, whereas for

an open-loop system, we have out(G) ∈ Θ
( (tα)te−αt

t!

)
if 0 < α < 1, and out(G) ∈ Θ(1) if α ≥ 1.

As is shown in Fig. 3, the outage probability of an open-loop system decays much slower

than that of a full-CSI system. Proposition 1 brings both good and bad news. The good news

is that for a full-CSI system, one can transmit with an arbitrarily large data rate (by choosing

a sufficiently large α) with a fixed power consumption P and zero outage as t → ∞. The bad
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news is that it is not always possible to do the same in an open-loop system: When α ≥ 1, the

outage probability does not decay to 0 with increasing t, and in fact, it saturates to a certain

non-zero value. Also, for 0 < α < 1, even though we have out(G) → 0 as t → ∞, there is still

room for improvement: As t increases, the outage probability of a full-CSI system decays much

faster than that of an open-loop system.

In order to obtain a vanishing outage probability as t → ∞ for every α, one should thus

utilize CSIT. The full-CSI system is impractical as it requires an “infinite” rate of feedback

from the receiver to the transmitter. A more practical approach is to settle for quantized CSIT

via finite-rate receiver feedback [3]. Another issue that is common to both a full-CSI and an

open-loop system is the requirement of perfect CSIR, which may, by itself, not be feasible when

t is large. In the following, we thus consider the design of partial CSIT, partial CSIR schemes

that interleave the training and feedback processes as shown in Fig. 2.

III. INTERLEAVED TRAINING AND LIMITED FEEDBACK

We begin with a simple example of an interleaved scheme that is based on antenna selection.

We first describe its conventional non-interleaved counterpart.

A. The Conventional Antenna Selection Scheme

A well-known partial-CSIT scheme is what we shall refer to as the “conventional” antenna

selection scheme: Given h, the transmitter first trains all of its antennas so that the receiver

acquires the entire CSI. The receiver determines the antenna index τ , argmaxi |hi| with

the highest channel gain and sends ⌈log2 t⌉ feedback bits to the transmitter that can uniquely

represent τ . The transmitter recovers τ from the feedback bits and transmits over antenna τ .

This scheme can be characterized by the mapping A(h) , eτ , where ei = [01×(i−1) 1 01×(t−i)]
T ,

i = 1, . . . , t are the standard basis vectors for Ct. We have out(A) = (1− e−α)t, which implies

∀α > 0, limt→∞ out(A) = 0. Hence, for every α > 0, we can obtain a vanishing outage

probability as t → ∞, as desired, which is also shown in Fig. 3. Moreover, for any α and t, we

have out(A) ≤ out(G), and in fact, it can be shown (e.g. by applying Stirling’s approximation to

the asymptotic formulae in Proposition 1) that out(A) ∈ o(out(G)), ∀α ∈ (0, 1). Hence, relative

to an open-loop system, antenna selection improves the t-asymptotic behavior of the outage

probability for all α > 0. This is shown for two values of α in Fig. 3. On the other hand, to
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implement this scheme, one needs to train t scalar channels (one for each hi) and feed back

⌈log2 t⌉ bits for every channel. Clearly, this is not feasible in the t → ∞ regime.

B. A New Antenna Selection Scheme

The conventional antenna selection scheme is excessively precise in the sense that it always

tries to select the antenna with the highest gain. On the other hand, without any loss of optimality

in terms of the outage probability, we can in fact select any one of the antennas that avoids outage

(not necessarily the antenna that provides the highest channel gain) whenever there is one. We

use this observation to design an alternate antenna selection scheme that is based on the idea of

interleaving training and limited feedback.

Set i ← 0.

i ← i+ 1.

TX trains

antenna #i.

RX acquires hi,

sets b←1 if |hi|2≥α,

sets b←0 otherwise,

sends b as feedback.

TX begins data

transmission via ei.
b=0, i<t? TX receives b.

Yes

No

Fig. 4: The new antenna selection scheme. Note that the variable i, i.e., the antenna number, can be thought to be

“naturally available” to both the transmitter and the receiver: At both terminals, it can be initialized and updated

throughout the multiple training and feedback stages without any extra overhead. Also note that the receiver is

always aware of what the next action (training a new antenna or beginning the data transmission) of the transmitter

is going to be so that there is no inconsistency. This is because it is the receiver itself that provides the feedback

message, which uniquely determines the transmitter action.

Our new antenna selection scheme operates as shown in Fig. 4: The transmitter first trains

the channel h1 corresponding to the first antenna and waits for receiver feedback. The receiver,

having acquired the knowledge of h1, sends the one-bit feedback message “1” if |h1|2 ≥ α, i.e.

if selecting the first antenna avoids outage. Otherwise, it feeds back a “0,” which indicates

that selecting the first antenna will result in an outage. Now, if the transmitter receives a

“1,” the training and feedback process can end; the transmitter starts data transmission over

the first antenna only (without the need of training the remaining antennas) and outage is

avoided. Otherwise, if the transmitter receives a “0,” it proceeds to training the channel state h2
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corresponding to its second antenna. The process continues in the same manner until an antenna

(selection vector) that avoids outage is found. If all the antennas result in an outage, then the

transmitter can simply transmit over an arbitrary antenna.

Clearly, the new scheme achieves the same outage probability (1− e−α)t as the conventional

scheme discussed in Section III-A. Now, given 1 ≤ i ≤ t − 1, the transmitter trains only the

first i antennas with probability e−α(1− e−α)i−1, and it trains all the t antennas with probability

(1− e−α)t−1. The training length, which we define as the average number of antennas that are

trained per channel state, is thus

∑t

i=1 ie
−α(1− e−α)i−1 + t(1− e−α)t = eα(1− (1− e−α)t).

A similar calculation reveals that the feedback rate of the scheme, which we define as the average

number of bits that are fed back per channel state, is actually (numerically) equal to its training

length. Hence, the training and the feedback rates of the new scheme are both given by the

formula eα(1 − (1 − e−α)t). Note that for any t, the two rates are both upper bounded by eα,

which is independent of t.

The significance of the new scheme is that it provides a vanishing outage probability as t → ∞
with t-independent training length and feedback rate. One can thus obtain the benefits of having

infinitely many antennas with finite training and feedback overheads. For example, setting α = 1,

we can observe that if the transmitter has infinitely many antennas, then for any given power

constraint P , we can transmit with rate log(1 + P ) bits/sec/Hz outage-free via training only

e < 3 antennas and feeding back 3 bits on average. Comparison with an open-loop system (a

system with perfect CSIR but no CSIT) leads to the following conclusion: It is much better to

have a little bit of CSIT and a little bit of CSIR rather than to have perfect CSIR but no CSIT.

We note that our interleaved antenna selection scheme can also be applied to the orthogonal

frequency division multiplexing (OFDM) systems. The main challenge is that the best selection

of antennas is likely to change with frequency. As is shown in [37], the antenna selection problem

can be formulated as finding the antenna with the best channel averaged over all sub-carriers.

As a result, we may use the average channel gain over all sub-carriers to determine whether a

specific antenna is outage-avoiding or not.

Several variations on our interleaved antenna selection scheme can be considered. For example,

in order to avoid the possible implementation complexities and delays of training the antennas
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one by one, the transmitter may train all t antennas at once as in conventional antenna selection.

On the other hand, the receiver may now use variable-length feedback instead of the ⌈log2 t⌉
bits of fixed length feedback in conventional antenna selection. In detail, suppose that selecting

any of the first υ antennas results in an outage, but selecting Antenna υ + 1 avoids outage,

where υ ∈ {0, . . . , t}. We let υ = t if selecting any of the t antennas results in outage. The

receiver then feeds back the binary codeword 1 · · ·10, where there are υ ones. The transmitter

can recover the outage-avoiding antenna from the feedback information if such an antenna exists.

This scheme, which utilizes fixed-length training and variable-length feedback, lies in between

the two extremes of conventional antenna selection (that uses fixed-length training and feedback),

and interleaved antenna selection (that uses variable-length training and feedback). It is a special

case of the variable-length beamforming schemes in [8] for full-CSIR systems. It achieves the

same outage probability as conventional antenna selection with training length t, and feedback

rate eα(1 − (1 − e−α)t). Note that the feedback rate of the scheme equals that of interleaved

antenna selection and thus remains bounded as t → ∞. As discussed in [8], the feedback rate

may possibly be reduced further with a better codeword assignment; e.g., by using Huffman’s

algorithm. Nevertheless, the training length of the scheme grows without bound as t → ∞. Later

in Section VI, we shall consider other variations that rely on training a subset of antennas at a

time instead of training all antennas at once or training them one by one.

C. General Description of an Interleaved Scheme

So far, we have discussed many seemingly-different scenarios including non-interleaved or

interleaved schemes, the full-CSI and the open-loop systems, and so on. All of these scenarios can

in fact be viewed as manifestations of a single unifying framework of a generalized beamforming

scheme, which describes the rules of how the tasks of training and feedback are to be performed.

The advantage of this viewpoint is that it will allow us to more meaningfully compare different

scenarios with respect to their outage probabilities, training lengths, and feedback rates. We call

this generalized beamforming scheme, as defined below, Scheme S.

One task of Scheme S is to specify the quantized covariance matrix S(h) to be utilized

given channel state h. By the definitions in Section II, the outage probability with S is thus

given by out(S). Scheme S also describes which antennas are to be trained in which order, the

corresponding feedback messages of the receiver, and how these messages are decoded at the
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transmitter. Obviously, different choices result in different schemes and different performances.

An example of these “inner workings” of Scheme S can be found in Section III-B for the special

case of our new antenna selection scheme. As such, while we use Scheme S to represent the

general structure of our beamforming scheme, when the details of training, feedback, transmission

and decoding are defined, i.e., a specific scheme is defined in details as done in Section III-B, we

will use a specific name for the specific scheme. The two important figures of merit of Scheme

S is its training length tl(S) and its feedback rate fr(S), which can be defined in the same

manner as we have done in Section III-B.

We can now view a full-CSI system, called Scheme F, as an example of Scheme S. Opera-

tionally, a full-CSI system trains all its antennas and performs the optimal beamforming along

the direction h

‖h‖ . As a result, we will have out(F) = P(‖h‖2 < α) and tl(F) = t. Since

representing an arbitrary beamforming vector requires an infinite rate of feedback, we have

fr(F) = ∞. Similarly, the open-loop scheme G trains the first κ antennas. Since there is no

feedback, fr(G) = 0 and the transmitter sends independent Gaussian symbols with equal energy

over the first κ antennas. Therefore, we have out(G) = P(‖hκ‖2 < κα) and tl(G) = κ. Also, as

shown in Section III-A, the conventional antenna selection system, called Scheme A, will have

out(A) = (1− e−α)t, tl(A) = t, and fr(A) = ⌈log2 t⌉.

Clearly, Scheme S provides a framework to extend the previous definitions in a consistent

manner and offers a set of quantities to compare the performance of different schemes. For

example, we can summarize the performance metrics of our new antenna selection scheme in

Section III-B, called Scheme B, in the following theorem:

Theorem 1 Scheme B, defined in Section III-B, provides out(B) = out(A) = (1 − e−α)t and

tl(B) = fr(B) = eα(1− (1− e−α)t) < eα.

These results lead to the following question: What is the best-possible outage probability

for given constraints on training length and feedback rate? Unfortunately, this problem appears

to be difficult in general, and we thus leave a detailed treatment as future work. In a related

direction, Theorem 1 shows the existence of a “good” scheme that can achieve a vanishing

outage probability as t → ∞ with t-independent feedback and training lengths. One fundamental

question that immediately comes to mind is then to determine whether one can achieve the

ultimate limit out(F) with again t-independent training length and feedback rate. The answer is
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yes, and the construction of such a scheme will be provided next. Meanwhile, we note that even

though antenna selection provides a reasonable performance, we still have out(F) ∈ o(out(A))

as t → ∞. In other words, the outage probability with a full-CSI system decays much faster than

the one with antenna selection. While we have shown this fact analytically, Fig. 3 demonstrates

it numerically as well. This also provides a “practical motivation” for construction of schemes

that achieve the full-CSI gains.

IV. ACHIEVING THE FULL-CSI GAINS BY INTERLEAVING

Our construction here relies on our earlier work [8], which introduced the idea of variable-

length feedback for a MISO system with perfect CSIR. We thus first recall some of the relevant

technical tools and results.

A. Variable-Length Limited Feedback with Perfect CSIR

We begin by defining a simple deadzone scalar quantizer. For any given integer ℓ ≥ 0 and

x ∈ [−1,+1], let q(x; ℓ) , sign(x) 1
2ℓ+1 ⌊|x|2ℓ+1⌋. We can easily calculate q(x; ℓ) by taking the

most significant ℓ + 2 bits (b0.b1b2 · · · bℓ+1)2 of the binary representation (b0.b1b2 · · · )2 of |x|,
while preserving the sign of x. For example, we have q(±(0.101)2; 1) = ±(0.10)2.

We extend the definition of the deadzone quantizer q to an arbitrary beamforming vector

x = [x1 · · ·xt]
T ∈C

t with ‖x‖ ≤ 1 by setting q(x; ℓ) , [ q(ℜx1; ℓ) + jq(ℑx1; ℓ) · · · q(ℜxt; ℓ) +

jq(ℑxt; ℓ) ]
T ∈ Ct. We refer to the parameter ℓ as the “resolution” of q. Note that by construction,

‖q(x; ℓ)‖ ≤ 1, and therefore, q(x; ℓ) is itself a feasible beamforming vector. Moreover, for a fixed

ℓ and t, each quantized vector q(x; ℓ) can be uniquely represented by 2t(ℓ + 3) bits (For each

of the 2t complex dimensions of x, we spend one bit for the sign, and ℓ + 2 bits for the most

significant ℓ+ 2 binary digits.).

Now, for an arbitrary channel state h with ‖h‖2 > α, let L(h),max{⌈log2(4t)⌉, ⌈log2 4tα
‖h‖2−α

⌉},

and −→
h , F(h) = h

‖h‖ . We have the following proposition.

Proposition 2 ([8, Proposition 4]) Let h ∈ Ct with ‖h‖2 > α for some t ≥ 1. Then,

|〈q(−→h;L(h)),h〉|2 > α. (1)

This result has the following interpretation. Suppose ‖h‖2 > α, and thus outage is avoidable

with the beamforming vector −→h. By construction, the sequence of quantized beamforming vectors
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q(−→h; ℓ), ℓ ≥ 0 (which are feasible since ‖q(−→h; ℓ)‖ ≤ ‖−→h‖ = 1) provides an increasingly finer

approximation of −→
h as the resolution ℓ grows to infinity. The proposition shows that for every

given h with ‖h‖2 > α, there is in fact a “sufficient resolution” L(h) (that depends only on

‖h‖) such that the quantized beamforming vector q(−→h; ℓ) can avoid outage.

As discussed in [8], Proposition 2 leads to the following limited feedback scheme under

the assumption of perfect CSIR: If ‖h‖2 > α, the receiver calculates the required resolution

L(h) to avoid outage, and sends 2t(L(h) + 3) feedback bits that represent the corresponding

outage-avoiding beamforming vector q(−→h;L(h)). The transmitter, which we assume can perfectly

know the length of the feedback codeword that it has received, first recovers L(h), and then

the beamforming vector q(−→h;L(h)). Otherwise, if ‖h‖2 ≤ α, outage is unavoidable except

for channel states ‖h‖2 = α with zero probability. In this case, the receiver sends the one-bit

feedback message “0” so that the transmitter can transmit with an arbitrary but fixed beamforming

vector, say e1. We refer to this scheme as Scheme Ct, where the subscript indicates the number

of transmit antennas. We have Ct(h) = q(−→h;L(h)). By construction, Scheme Ct achieves the

full-CSI outage probability with the feedback rate

fr(Ct) = P(‖h‖2 ≤ α) +
∑∞

ℓ=⌈log2(4t)⌉ 2t(ℓ+ 3)pℓ, (2)

where pℓ , P(L(h) = ℓ, ‖h‖2 > α). As ℓ → ∞, pℓ can be shown to decay fast enough so that

the resulting feedback rate is finite; we refer the interested reader to [8] for the details and formal

calculations. Intuitively, instead of trying to pick the best beamforming vector that maximizes

the signal-to-noise ratio in some given codebook, one spends just enough bits to describe a

beamforming vector that avoids outage. This allows us to achieve the full-CSI performance with

a finite feedback rate under the assumption of perfect CSIR.

B. Achieving out(F) by Interleaving

We now return to our main goal of designing a scheme that can achieve the full-CSI outage

probability with finite training length and feedback rate. Scheme Ct as described above is not

immediately applicable for our purposes as (i) it requires perfect CSIR and thus induces a

training length of t, and (ii) according to (2), its feedback rate grows at least as Θ(t) (We have

fr(Ct) ≥ 6t
∑∞

ℓ=⌈log2(4t)⌉ pℓ = 6tP(‖h‖2 > α) ∈ Θ(t).).

We can however incorporate the sequence of Schemes Ci, i = 1, . . . , t as sub-blocks of an

interleaved training and limited feedback Scheme D as shown in Fig. 5. In the figure, we use the
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notation hi , [h1 · · ·hi]
T , i = 1, . . . , t to represent the first i components of the channel state

h. Given h and a value of the variable i ∈ {1, . . . , t} in the figure, suppose that the transmitter

has “just” trained its ith antenna, so that the receiver has acquired the knowledge of hi. At

this stage, the receiver knows the channel values h1, . . . , hi corresponding to the first i antennas

of the transmitter, or equivalently, it knows hi. We consider the following two cases for the

receiver’s feedback and the corresponding transmitter action.

Set i ← 0.

i ← i+ 1.

TX trains

antenna #i.

RX acquires hi,

sets b ← 0 if ‖hi‖2 ≤ α,

sets b ← Ci(hi) otherwise,

sends b as feedback.

TX sets x ← e1 if i = t, b = 0, and

x←
[
[Ci(hi)]

T
01×(t−i)

]T otherwise.

It begins data transmission via x.

b=0, i < t? TX recovers b.

Yes

No

Fig. 5: Operation of scheme D. Due to the equivalence between Ci(hi) = q(
−→
hi;L(hi)) and its binary description

(see Section IV.A), we use the same notation “Ci(hi)” for the codeword of 2i(L(hi)+3) bits that represent Ci(hi).

If ‖hi‖2 ≤ α, as far as the channels that have been made available to the receiver are concerned,

outage is unavoidable with probability 1. The receiver thus requests the transmitter to train the

next antenna by sending the feedback bit “0,” and the transmitter complies. The case i = t is

an exception: Outage is unavoidable with any beamforming vector with probability 1 (we have

‖ht‖2 = ‖h‖2 ≤ α), and thus the transmitter transmits via the (arbitrarily chosen) vector e1.

On the other hand, if ‖hi‖2 > α, the receiver feeds back the i-dimensional vector Ci(hi) =

q(−→hi;L(hi)) using 2i(L(hi) + 3) feedback bits. By Proposition 2, we have |〈Ci(hi),hi〉|2 > α.

This implies that the actual t-dimensional beamforming vector utilized at the transmitter, which

is simply constructed by appending t− i zeroes to Ci(hi), will also avoid outage.

By construction, Scheme D avoids outage for any channel state h with ‖h‖2 > α. Hence, it

achieves the full-CSI outage probability out(F). Calculations for the training length and feedback

rate of Scheme D are slightly more involved. We present the final results by the following theorem,

whose proof can be found in Appendix B.

Theorem 2 We have out(D) = out(F) with tl(D) ≤ 1 + α and fr(D) ≤ 92(1 + α3).
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We shall emphasize that Theorem 2 should be interpreted as “just” an achievability result. Its

main message is that the full-CSI performance can be achieved with t-independent training

length and feedback rate. Hence, the α-dependent bounds in the statement of Theorem 2 are not

necessarily the best-possible as far as a general scheme that can achieve out(F) is concerned.

As can be observed from the proof of the theorem, we have not tried to optimize the bounds.

Let us now also compare the results of Theorem 2 with what we have achieved by Theorem

1 using the antenna selection Scheme B. For Scheme B, we have tl(B), fr(B) ∈ Θ(eα) as

α → ∞, while for Scheme D, we have tl(D) ∈ O(α) and fr(D) ∈ O(α3). Hence, there are

certain values of t and α where Scheme D improves upon Scheme B in every aspect. It should

be clear why Scheme D provides a better outage performance. Regarding the training lengths,

note that Scheme B terminates only if the most-recently trained antenna avoids outage. On the

other hand, Scheme D terminates whenever the joint contribution of all trained antennas avoids

outage. Therefore, for every channel state, Scheme D always terminates before Scheme B does,

and thus, in fact, tl(D) ≤ tl(B). The efficiency of Scheme D in terms of training also positively

affects its feedback rate: The fewer the amount of antennas that one needs to train, the fewer

the feedback messages spent requesting these antennas to be trained. In both cases, same outage

probability results in the same diversity.

An interesting special case of Theorem 2 is to assume P is large (but still fixed), and choose

α = Pm−1 for some m > 1. Then, if the transmitter has infinitely many antennas (for a simpler

discussion, we put the physical impossibility of such an assumption aside), Theorem 2 tells

us that we can transmit with rate log(1 + Pm) ∼ m logP (as P → ∞) outage-free, and thus

achieve a multiplexing gain of m. In other words, one can achieve “the MIMO effect” from

a MISO system with a very large number of antennas. The price to pay however is a training

length of O(Pm) and a feedback rate of O(P 3m), which are both much larger than the data

transmission rate m logP . Ideally, we would like the feedback and training lengths in Theorem

2 (or in another scheme with a t → ∞ vanishing outage probability) to be o(logα) as α → ∞.

Whether this is possible or not will remain as an interesting open problem and shows the need

for proving converse results for general interleaved schemes.

On the other hand, regarding the data rate log(1 + αP ), when P is small (a typical case of a

low-power system), even slight increase in α significantly improves the data transmission rate.

For example, for P = 1, increasing α from 1 to 3 doubles the data rate. For such scenarios with
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small P , tighter bounds on the training lengths, feedback rates and/or custom-made numerically-

designed interleaved schemes are a necessity. In this context, tighter bounds are desirable as they

will provide a more accurate estimate on the required training and/or feedback rates to achieve

a certain outage probability. On the other hand, numerical designs are desirable as they may

outperform the analytically-constructed schemes. Finding an efficient algorithm for the numerical

design of interleaved schemes would prove to be a challenging network vector quantization

problem [39], where one has to design several interdependent vector quantizers managing the

multiple feedback phases of the interleaved scheme. In particular, given t transmitter antennas,

one has to design t vector quantizers, Q1, . . . , Qt, where the domain of Qi depends the range of

Qi−1. An alternating optimization approach may then be taken where, for the infinite sequence

i = 1, . . . , t, 1, . . . , t, . . ., one optimizes Qi while fixing Qj , j 6= i.

V. QUANTIZATION RATE ALLOCATION

We now discuss how to further reduce the feedback rate of our proposed schemes using an

optimized rate allocation strategy. Recall that in the construction in Section IV-A, one spends a

fixed 2(L(h)+3) bits per antenna to encode each component of the beamforming vector. Different

components of a beamforming vector have different weights in the array gain which is given as

|〈q(−→h;L(h)),h〉|2. A component with higher weight should be quantized more accurately, i.e.,

assigned a higher rate, to provide a better overall performance [40].

For a given beamforming vector x, we assign the optimal quantization rate to each component.

To accommodate a variable-rate for different components, we need to adjust the resolution ℓ of

the deadzone quantizer. Instead of using the fixed resolution ℓ for all components, resulting in

a fixed-rate system, we use the resolution ℓij (i = 1, · · · , t, j = 1, 2) for the real (if j = 1)

or imaginary (if j = 2) part of xi. This will result in a variable-rate deadzone quantizer qv

to be defined for an arbitrary beamforming vector x = [x1 · · ·xt]
T ∈ Ct with ‖x‖ 6 1 as

qv(x; ℓ) , [ q(ℜx1; ℓ11) + jq(ℑx1; ℓ12) · · · q(ℜxt; ℓt1) + jq(ℑxt; ℓt2) ]
T ∈ C

t, where q is the

deadzone scalar quantizer and ℓ is a t × 2 matrix representing the resolution of q for real

and imaginary parts of different components in x. Note that by the definition of the deadzone

quantizer q, |q(x; ℓ)| ≤ |x| for any x ∈ [−1, 1] and any positive ℓ. Therefore, ‖qv(x; ℓ)‖ ≤ 1,

which means qv(x, ℓ) is also a feasible beamforming vector.
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Algorithm 1 Rate-Allocation Algorithm

1: Set ℓ to be the k × 2 all-zero matrix, −→hk =
hk

‖hk‖ , and count = 0.

2: Set L(hk) = max{⌈log2(4k)⌉, ⌈log2 4kα
‖hk‖2−α

⌉}.

3: while count < 2k(L(hk) + 3) and |〈qv(−→hk; ℓ),hk〉|2 < α do

4: e = qv(
−→
hk; ℓ+∆)−qv(

−→
hk; ℓ), where ∆ , ∆Jk×2, and Jk×2 is the k×2 all-one matrix.

5: d1 = ℜ−→hk ◦ ℜe, d2 = ℑ−→hk ◦ ℑe.

6: Find the indices i and j corresponding to the maximum values of d1 and d2, respectively.

7: If d1[i] > d2[j], then ℓ[i, 1] = ℓ[i, 1] + ∆, else ℓ[j, 2] = ℓ[j, 2] + ∆.

8: count = count+∆.

9: return qv(
−→
hk; ℓ).

To formulate it as a classic rate-allocation problem in a rate-distortion set-up, we define

Ra ,
∑k

i=1

∑2
j=1 ℓij , and Da , |〈qv(−→hk; ℓ),hk〉|2 > α. The optimal rate-allocation will be

achieved by assigning the appropriate quantization rate ℓ to each component of −→hk to minimize

Ra while satisfying the constraint on Da. This rate-allocation problem is the dual of the bit-

allocation problem in data compression, which is well studied [41]–[43]. Typically, the bit-

allocation problem is to minimize the overall distortion under some constraint on the total bit

rate while the proposed rate-allocation problem is to minimize the total bit rate under some

constraint on the overall distortion. As a result, the generalized Breiman, Friedman, Olshen, and

Stone (BFOS) algorithm [43] can be utilized to solve our rate-allocation problem. We design

Algorithm 1, based on the generalized BFOS algorithm in [43], to find the optimal rate-allocation

to quantize a beamforming vector. The main idea behind the algorithm is as follows. At each step

of the algorithm, we assign additional ∆ bits to the beamforming vector component that results

in the maximum distortion reduction among all possible vector components. This will result in

an increase of ∆ bits to the total quantization rate and a reduction in the total distortion, i.e.,

an increase in the array gain. After updating the rate and distortion of the chosen component,

we continue the iterations until the overall distortion satisfies the constraint Da ≥ α or the total

quantization rate is greater than that of the fixed-rate deadzone quantizer.
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VI. LATENCY CONSIDERATIONS AND ANTENNA GROUPING

Our formulations so far ignore the extra latency incurred by dividing the training and feedback

stages to multiple stages, as in the proposed interleaved schemes. In this section, we study

the latency/performance tradeoffs of interleaving by assuming that every stage of training and

interleaving consumes an extra ǫ-fraction of the time that would otherwise be spent on data

transmission. This ǫ-cost may, for example, stem from the propagation delays between the

transmitter and the receiver during the training and feedback phase.

In such a scenario, training the antennas one by one, as in the previous sections, may be too

costly, and thus suboptimal. For this reason, we consider an interleaved antenna selection with

antenna grouping that trains antennas K by K, where K ≥ 1. For simplicity, we assume T is a

multiple of K. The transmitter trains the first K antennas and the receiver acquires the CSI for

the first K antennas h1, . . . , hK . The receiver sends ⌈log2(1 +K)⌉ bits of feedback that either

selects the antenna that can avoid outage or tells the transmitter to train the next K antennas if

no such antenna exists. The process continues in the same manner until an antenna that avoids

outage is found. If all antennas result in an outage, then the transmitter can simply transmit

over an arbitrary antenna. We call this Scheme B
′. For the special case of K = 1, Scheme B

′ is

exactly the same as the interleaved antenna selection B in Section III-B.

Now, suppose that each training/feedback stage costs ǫ-fraction of the channel codeword time.

There are totally t
K

stages in Scheme B
′ so that the channel capacity is (1 − t

K
ǫ)+ log2(1 +

|〈B′(h),h〉|2P ). Given the target data transmission ρ = log2(1 + αP ) as before, the outage

probability is given by Prob (|〈B′(h),h〉|2 ≤ β), where β , 1
P

(

(1 + αP )
1

(1− t

K
ǫ)+ − 1

)

can

be considered to be a “modified outage threshold” that takes into account cost effects of the

training/feedback stages. By the definition of Scheme B
′, it follows that an outage occurs if and

only if |hi|2 ≤ β, ∀i, and therefore, we have out(B′) = (1− e−β)t. After some straightforward

calculations, we can also obtain the training length and the feedback rate of the scheme

tl(B′) = K
1− (1− e−β)t

1− (1− e−β)K
, fr(B′) = ⌈log2(1 +K)⌉ 1− (1− e−β)t

1− (1− e−β)K
.

in closed form. For the special case of K = 1, and β replaced by α, the formulae boil down to

the ones provided in Section III-B. Formally analyzing the tradeoffs between out(B′), tl(B′), and

fr(B′) for given K and ǫ is not a straightforward task due to the complicated algebraic nature

of expressions. Numerical results in the next section, however, suggest that training antennas
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Fig. 6: Training length as a function of t for different schemes in Section III.
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Fig. 7: Feedback rate as a function of t for different schemes in Section III.

one by one is not an optimal strategy in general, and there is an optimal number of antenna

groupings K that should be considered.

VII. SIMULATION RESULTS

In this section, we provide simulation results to compare the performance of different schemes

and quantizers. Using rate-allocation results in variable rates for different components of the

beamforming vector. We use a Huffman code to send the length of each beamforming vector

component. In other words, each resolution, ℓij , is Huffman coded and the corresponding prefix-
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Fig. 8: Outage probability as a function of t for fixed-length and variable-length deadzone quantizers.

free binary codeword representation is sent to the transmitter. In addition, ℜxi is quantized by

q(ℜxi; ℓi1) and ℑxi is quantized by q(ℑxi; ℓi2), as explained in Section V.

We first present the numerical simulation results of training length and feedback rate as

functions of the number of transmit antennas t for different schemes in Section III in Figs.

6 and 7, respectively. We abbreviate antenna selection by AS in both figures. In our simulations,

we set α = 1. Fig. 6 shows that as t increases, the average training length of the interleaving

antenna selection scheme in Section III-B saturates and is lower than those of the full-CSI

system, the open-loop system, and the conventional antenna selection scheme in Section III-A.

The full-CSI system, the open-loop system, and the conventional antenna selection scheme need

to estimate all t channels. Fig. 7 reveals that as t increases, the average feedback rate of the

interleaving antenna selection scheme saturates and is lower than those of the full-CSI system

and the antenna selection scheme. Note that the feedback rate of the full-CSI system is infinite.

For the interleaving antenna selection scheme in both figures, the simulation results align well

with the analytical results provided in Theorem 1.

We provide simulation results of the outage probability, the feedback rate, and the average

feedback rate as functions of t in Figs. 8, 9, and 10, respectively. We consider the deadzone

quantizer q(−→h; ℓ) and the deadzone quantizer with rate-allocation qv(
−→
h; ℓ). The average feedback

rate is calculated as the feedback rate divided by the number of transmit antennas. We set

∆ = 1 in the rate-allocation algorithm. Fig. 8 demonstrates that the interleaving scheme for both
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Fig. 10: Average feedback rate as a function of t for fixed-length and variable-length deadzone quantizers.

quantizers can achieve the same outage probability as the full-CSI system. Fig. 8 also shows that

the outage probability of the interleaving scheme is better than the outage probabilities of the

antenna selection schemes, which is further better than the outage probability of random vector

quantization [44] with 2 quantization bits per antenna. A smaller outage threshold α leads to a

lower outage probability. Fig. 9 exhibits several important features: First, the feedback rate with

interleaving saturates as t increases. Second, the variable-rate deadzone quantizer qv reduces the

total feedback rate compared to the fixed-rate deadzone quantizer q. Third, for the interleaving

scheme, the feedback rate decreases as α decreases. This is because a lower resolution for the
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beamforming vector is acceptable if the outage threshold decreases. According to Fig. 10, as the

number of transmit antennas t increases, the average feedback rate increases when t is small

and deceases when t is large. It is shown that the average feedback rates per antenna for both

quantizers are approximately equal to or less than 2 bits/antenna when t is large.

According to Figs. 9 and 10, the feedback rates of both deadzone quantizers saturate as the

number of transmit antennas increases. This is a key difference compared to the conventional CSI

quantization techniques for massive MIMO systems. For example, using the method proposed

in [19], the receiver sends back a binary feedback sequence of length Bt + q where B is the

number of quantization bits used per transmit antenna and q is a small positive constant, which

scales linearly with the number of transmit antennas. As a result, compared to the conventional

CSI quantizers, the proposed deadzone quantizers can save a large amount of feedback overhead

when the number of transmit antennas is large.

For Scheme B
′ of Section VI, we present the outage probability, the training length, and the

feedback rate as functions of the number of trained antennas at a time, K, in Figs. 11, 12,

and 13, respectively. We can observe that the analytical results match with the simulations in

all cases. In Fig. 11, the outage probability decreases with K since the SNR threshold β is a

decreasing function of K, and out(B′) decreases as β decreases. As expected, as the per-stage

cost ǫ increases, the outage probability increases. Also, according to Fig. 12, as K increases

from 1 to 30, the training length decreases at first but then increases. The optimal value of K

that minimizes the training length is 2 for ǫ = 0.01 and 3 for ǫ = 0.02. According to Fig. 13,

the optimal value of K that minimizes the feedback rate is 3 for ǫ = 0.01 and 6 for ǫ = 0.02.

According to these results, it is suboptimal to train the antennas one by one for the particular

choices of the system parameters in Figs. 11, 12, and 13. Depending on design requirements,

one should consider grouping the antennas in the training and feedback phases.

VIII. CONCLUSION

We introduced and analyzed multi-antenna communication schemes whose training and feed-

back stages are interleaved and mutually interacting. We applied the interleaving scheme to

MISO systems to achieve the same outage probability as the full-CSI system using partial CSIT

and partial CSIR. We designed a deadzone quantizer and a rate-allocation algorithm to send

the feedback messages by a limited number of feedback bits. With t transmit antennas, the



24

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
10-6

10-5

10-4

10-3

10-2

10-1

100

O
ut

ag
e 

Pr
ob

ab
ili

ty

Fig. 11: Outage probability as a function of K for Scheme B
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interleaving scheme with the deadzone quantizer can achieve a t-independent finite feedback

rate which only depends on the power constraint and the target data rate. In addition, the rate-

allocation algorithm can further reduce the feedback rate by assigning distinct quantization rates

to different components in a beamforming vector.

The idea of interleaving can also be used in conjunction with rate adaptation. Suppose the

rate-adaptive system can support a number of rates, say, ρ1, . . . , ρn, that one can choose from.

Receiver feedback will then be used to choose the beamforming vector as well as the transmission

rate. An outage can be declared if the system cannot even support the minimum mini∈{1,...,n} ρi

of data rates. Given a certain outage probability, one can then study the tradeoff between the
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Fig. 13: Feedback rate as a function of K for Scheme B
′ when t = 30, α = 1, P = 1, ǫ = 0.01 or 0.02.

feedback rates, training lengths, and the average data transmission rate. For example, supporting

high rates typically requires more CSI, and thus larger feedback rates and/or training lengths.

Also, in this work, we have only considered a total power constraint across all antennas. The

performance of interleaved training and limited feedback schemes with the additional per-antenna

power constraints is another direction for future research. Another interesting topic is the design

and analysis of interleaved beam selection schemes for multi-carrier systems such as OFDM.

APPENDIX A

PROOF OF PROPOSITION 1

We first determine the t → ∞ asymptotic behavior of out(F). For this purpose, note that

out(F) = P(‖h‖2 ≤ α) =

∞∑

i=t

αie−α

i!
, (3)

which leads to an easy lower bound (by considering only the i = t term) out(F) ≥ αte−α

t!
. For

an upper bound, we can rewrite (3) as

out(F) =
αte−α

t!

∞∑

i=0

αi

(t+ 1) · · · (t + i)
. (4)

Since (t + 1) · · · (t + i) ≥ i!, we obtain P(‖h‖2 ≤ α) ≤ αt

t!
. Combining the upper and lower

bounds, we have out(F) ∈ Θ(α
t

t!
), as desired.

We now determine the outage probability of an open-loop system as t → ∞. We recall that

out(G) = P(‖hκ(t)‖2 ≤ κ(t)α), where κ(t) , argmink∈{1,...,t} P(‖hk‖2 ≤ kα) with ties broken
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in favor of k with the smallest index. Then, either κ(t) = t for infinitely many t or ∃t0 ≥ 1, ∀t ≥
t0, κ(t) = t0. For values of α that satisfy the latter scenario, we have out(G) = Θ(1).

Suppose 0 < α < 1. It follows from (3) that P(‖h‖2 ≤ tα) ≥ (tα)te−tα

t!
. On the other hand,

substituting tα instead of α to the expansion in (4), and using the bound (t+1) · · · (t+i) ≥ ti for

the denominator of the fraction in summation, we obtain P(‖h‖2 ≤ tα) ≤ (tα)te−tα

t!(1−α)
. Combining

the upper and lower bounds, it follows that we have out(G)=Θ( (tα)
te−tα

t!
) for 0 < α < 1.

Now, suppose α ≥ 1. In this case, the Berry-Esseen theorem provides the estimate |P (‖h‖2 ≤
tα)− Φ((α− 1)

√
t)| ≤ C√

t
for some constant C > 0, where Φ(·) is the cumulative distribution

function of the normal distribution with mean 0 and variance 1. It follows that P (‖h‖2 ≤ t) → 1
2

when α = 1, and P (‖h‖2 ≤ tα) → 1 whenever α > 1. Hence, out(G) = Θ(1) for α ≥ 1.

APPENDIX B

PROOF OF THEOREM 2

The fact that out(D) = out(F) follows immediately. We thus first calculate the training length

tl(D) of Scheme D. Let A1 , {h ∈ Ct : |h1|2 > α}, Ai , {h ∈ Ct : ‖hi‖2 > α, ‖hi−1‖2 ≤
α}, i = 2, . . . , t, and B , {h ∈ Ct : ‖ht‖2 ≤ α}. Note that the sets A1, . . . ,At,B form a

partition of Ct. For any i ∈ {1, . . . , t}, if h ∈ Ai, the transmitter trains only the first i channels

h1, . . . ,hi. If h ∈ B, the transmitter trains all the t channels. The training length is thus

tl(D) =

t∑

i=1

iP(h ∈ Ai) + tP(h ∈ B), (5)

We have P(h ∈ A1) = e−α. For i ∈ {2, . . . , t− 1}, we have

P(h ∈ Ai) =

∫ α

0

∫ ∞

α−x

e−y e
−xxi−2

(i− 2)!
dydx = e−α

∫ α

0

xi−2

(i− 2)!
dx =

αi−1e−α

(i− 1)!
. (6)

Also, since tP(h ∈ B) =
∑∞

i=t t
αie−α

i!
≤

∑∞
i=t

αie−α

(i−1)!
= α

∑∞
i=t−1

αie−α

i!
, we have

tl(D) ≤ e−α





t∑

i=1

i
︸︷︷︸

=(i−1)+1

αi−1

(i− 1)!
+ α

∞∑

i=t−1

αi

i!





= e−α

(
t∑

i=2

αi−1

(i− 2)!
+

t∑

i=1

αi−1

(i− 1)!
+ α

∞∑

i=t−1

αi

i!

)

= e−α

(

α

∞∑

i=0

αi

i!
︸ ︷︷ ︸

=eα

+

t∑

i=1

αi−1

(i− 1)!
︸ ︷︷ ︸

≤eα

)

≤ 1+α,

as claimed in the statement of the theorem.
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We now calculate the feedback rate fr(D) of Scheme D. Note that for any i = 1, . . . , t, if

h ∈ Ai, the receiver sends a total of (i− 1) bits for requesting the transmitter to train the first

i− 1 antennas (via i− 1 one-bit binary codewords “0”). In addition, it sends 2i(L(hi) + 3) bits

for the outage avoiding quantized beamforming vector, for a total of 2iL(hi) + 7i− 1 feedback

bits. For h ∈ B, there are only t feedback bits. The feedback rate is thus given by

fr(D) =
t∑

i=1

∫

Ai

(2iL(hi) + 7i− 1)f(h)dh+ tP(h ∈ B)

= 2
t∑

i=1

∫

Ai

iL(hi)f(h)dh+
t∑

i=1

(7i−1)P(h∈Ai)+tP(h∈B),

where f(h) represents the probability density function of h. According to (5), the sum of the

last two terms can be upper bounded by 7tl(D) ≤ 7(1 + α). Therefore,

fr(D) ≤ 7(1 + α) + 2
t∑

i=1

∫

Ai

iL(hi)f(h)dh.

We now evaluate the sum. For this purpose, we partition A1, . . . ,At via A′
i , {h ∈ Ct : α <

‖hi‖2 < 2α, ‖hi−1‖2 ≤ α} and A′′
i , {h ∈ Ct : ‖hi‖2 ≥ 2α, ‖hi−1‖2 ≤ α}, with the convention

that h0 = 0 is deterministic. Note that for any i ∈ {1, . . . , t}, if h ∈ A′
i, then

L(hi) =

⌈

log2
4iα

‖hi‖2 − α

⌉

≤ 1 + log2
4iα

‖hi‖2 − α

= 3 +
1

log 2
︸ ︷︷ ︸

≤2

log
iα

‖hi‖2 − α
≤ 3 + 2 log i+ 2 log

α

‖hi‖2 − α
, (7)

while if h ∈ A′′
i , then L(hi) = ⌈log2(4i)⌉ ≤ 3 + 2 log i. Thus,

fr(D) ≤ 7(1+α)+6

t∑

i=1

iP(h∈Ai)

︸ ︷︷ ︸

,S1

+4

t∑

i=1

i log iP(h∈Ai)

︸ ︷︷ ︸

,S2

+4

t∑

i=1

∫

A′
i

i log
α

‖hi‖2−α
f(h)dh

︸ ︷︷ ︸

,S3i

. (8)

We now find upper bounds on S1, S2, and
∑t

i=1 S3i. Regarding S1 and S2, note that we have

already evaluated the probabilities P(h ∈ Ai), i = 1, . . . , t in (6). Hence,

S1 = e−α

︸︷︷︸

≤1

+αe−α

t∑

i=2
︸︷︷︸

≤∑∞
i=2

i

i− 1
︸ ︷︷ ︸

≤2

αi−2

(i− 2)!
≤ 1 + 2α, (9)

S2 = e−α

t∑

i=2

i log i
αi−1

(i− 1)!
= e−α

t∑

i=2
︸︷︷︸

≤∑∞
i=2

i

i− 1
︸ ︷︷ ︸

≤2

log i
αi−1

(i− 2)!
≤ 2αe−α

∞∑

i=0

log(i+ 2)
αi

i!
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=
2α

eα

( ⌈α⌉
∑

i=0

log(i+ 2)
︸ ︷︷ ︸

≤log(⌈α⌉+2)

αi

i!
+

∞∑

i=⌈α⌉+1

log(i+ 2)

i
︸ ︷︷ ︸

≤ log(⌈α⌉+2)
⌈α⌉

αi

(i− 1)!

)

≤ 2αe−α log(⌈α⌉+ 2)
︸ ︷︷ ︸

≤log(α+3)

( ⌈α⌉
∑

i=0

αi

i!
+

α

⌈α⌉
︸︷︷︸

≤1

∞∑

i=⌈α⌉+1

αi−1

(i− 1)!

)

≤ 2αe−α log(α+ 3)

( ⌈α⌉
∑

i=0

αi

i!
︸ ︷︷ ︸

≤eα

+
∞∑

i=⌈α⌉+1

αi−1

(i− 1)!
︸ ︷︷ ︸

≤eα

)

≤ 4α log(α + 3). (10)

For an upper bound on
∑t

i=1 S3i, we consider S31, S32, and
∑t

i=3 S3i separately. We have

S31=

∫ 2α

α

log
α

x− α
e−x

︸︷︷︸

≤1

dx ≤
∫ 2α

α

log
α

x− α
dx=α, (11)

S32 = 2

∫ α

0

∫ 2α−x

α−x

log
α

x+ y − α
e−ye−x

︸ ︷︷ ︸

≤1

dydx ≤ 2

∫ α

0

∫ 2α−x

α−x

log
α

x+ y − α
dydx=2α2, (12)

t∑

i=3

S3i =
t∑

i=3

i

∫ α

0

∫ 2α−x

α−x

log
α

x+ y − α
e−y x

i−2e−x

(i− 2)!
dydx

=

∫ α

0

x

∫ 2α−x

α−x

log
α

x+ y − α
e−y

t∑

i=3
︸︷︷︸

≤
∑∞

i=3

i

i− 2
︸ ︷︷ ︸

≤3

xi−3e−x

(i− 3)!
dydx

≤ 3

∫ α

0

x

∫ 2α−x

α−x

log
α

x+ y − α
e−y

︸︷︷︸

≤1

∞∑

i=3

xi−3e−x

(i− 3)!
︸ ︷︷ ︸

=1

dydx

≤ 3

∫ α

0

x

∫ 2α−x

α−x

log
α

x+ y − α
dydx = 3α

∫ α

0

xdx =
3

2
α3. (13)

Substituting the bounds in (9), (10), (11), (12), and (13) to (8), we obtain fr(D) ≤ 13 + 23α+

16α log(3+α)+8α2+6α3. Using the bound log(3+α) ≤ α+2, we obtain fr(D) ≤ 13+55α+

24α2 + 6α3. Finally, the inequalities α2 ≤ 1 + α3 and α ≤ 1 + α3 lead to fr(D) ≤ 92 + 85α3 ≤
92(1 + α3), and this concludes the proof.

REFERENCES

[1] E. Koyuncu and H. Jafarkhani, “Interleaving training and limited feedback for point-to-point massive multiple antenna

systems,” IEEE Intl. Symp. Inf. Theory, June 2015.

[2] D. J. Love, R. W. Heath, Jr., V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An overview of limited feedback in

wireless communication systems,” IEEE J. Select. Areas Commun., vol. 26, no. 8, pp. 1341–1365, Oct. 2008.



29

[3] A. Narula, M. J. Lopez, M. D. Trott, and G. W. Wornell, “Efficient use of side information in multiple antenna data

transmission over fading channels,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1423–1436, Oct. 1998.

[4] D. J. Love, R. W. Heath, Jr., and T. Strohmer, “Grassmannian beamforming for multiple-input multiple-output wireless

systems,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2735–2747, Oct. 2003.

[5] J. C. Roh and B. D. Rao, “Transmit beamforming in multiple antenna systems with finite rate feedback: A VQ-based

approach,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1101–1112, Mar. 2006.

[6] G. Jongren, M. Skoglund, and B. Ottersten. “Combining beamforming and orthogonal space-time block coding,” IEEE

Trans. Inf. Theory, vol. 48, no. 3, pp. 611-627, Mar. 2002.

[7] L. Liu and H. Jafarkhani, “Application of quasi-orthogonal space-time block codes in beamforming," IEEE Trans. Signal

Process., vol. 53, no. 1, pp. 54–63, Jan. 2005.

[8] E. Koyuncu and H. Jafarkhani, “Variable-length limited feedback beamforming in multiple-antenna fading channels,” IEEE

Trans. Inf. Theory, vol. 60, no. 11, pp. 7140–7165, Nov. 2014.

[9] K. K. Mukkavilli, A. Sabharwal, and E. Erkip, “On beamforming with finite-rate feedback for multiple antenna systems,”

IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2562–2579, Oct. 2003.

[10] L. P. Natarajan and B. S. Rajan, “Full-rate full-diversity finite feedback space-time schemes with minimum feedback and

transmission duration,” IEEE Trans. Wireless Commun., vol. 12, no. 10, pp. 5022–5034, Oct. 2013.

[11] R. Rajashekar, Marco Di Renzo, K. V. S. Hari, and L. Hanzo, “A generalized transmit and receive diversity condition for

feedback-assisted MIMO systems: theory and applications in full-duplex spatial modulation,” IEEE Trans. Signal Process.,

vol. 65, no. 24, pp. 6505–6519, Dec.15, 2017.

[12] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE Trans. Inf. Theory, vol. 52, no. 11, pp. 5045–5060,

Nov. 2006.

[13] E. Koyuncu, Y. Jing, and H. Jafarkhani, “Distributed beamforming in wireless relay networks with quantized feedback,”

IEEE J. Select. Areas Commun., vol. 26, no. 8, pp. 1429–1439, Oct. 2008.

[14] E. Koyuncu and H. Jafarkhani, “Distributed beamforming in wireless multiuser relay-interference networks with quantized

feedback,” IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4538–4576, July 2012.

[15] M. R. A. Khandaker and Y. Rong, “Precoding design for MIMO relay multicasting,” IEEE Trans. Wireless Commun., vol.

12, no. 7, pp. 3544–3555, July 2013.

[16] E. Koyuncu, C. Remling, X. Liu, and H. Jafarkhani, “Outage-optimized multicast beamforming with distributed limited

feedback,” IEEE Trans. Wireless Commun., vol. 16, no. 4, pp. 2069–2082, Apr. 2017.

[17] J. Hoydis, S. T. Brink, and M. Debbah, “Massive MIMO in the UL/DL of cellular networks: how many antennas do we

need?” IEEE J. Select. Areas Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.

[18] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE

Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.

[19] J. Choi, Z. Chance, D. J. Love, and U. Madhow, “Noncoherent trellis coded quantization: a practical limited feedback

technique for massive MIMO systems,” IEEE Trans. Commun., vol. 61, no. 12, pp. 5016–5029, Dec. 2013.

[20] X. Rao and V. K. N. Lau, “Distributed compressive CSIT estimation and feedback for FDD multi-User massive MIMO

systems,” IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3261–3271, June 2014.

[21] P.-H. Kuo, H. T. Kung, and P.-A. Ting, “Compressive sensing based channel feedback protocols for spatially-correlated

massive antenna arrays,” Proc. IEEE WCNC, Shanghai, China, Apr. 2012, pp. 1–6.

[22] M. S. Sim, J. Park, C.-B. Chae, and R. W. Heath, Jr., “Compressed channel feedback for correlated massive MIMO

systems,” J. Commun. Net., vol. 18, no. 1, pp. 95–104, 2016.



30

[23] J. Choi, D. J. Love, and P. Bidigare, “Downlink training techniques for FDD massive MIMO systems: open-Loop and

closed-Loop training with memory,” IEEE J. Select. Topics Signal Process., vol. 8, no. 5, pp. 802–814, Oct. 2014.

[24] J. Nam, J.-Y. Ahn, A. Adhikary, and G. Caire, “Joint spatial division and multiplexing: realizing massive MIMO gains

with limited channel state information,” Proc. IEEE CISS, Pacific Grove, CA, USA, pp. 1–6, Nov. 2013.

[25] B. Lee, J. Choi, J.-Y. Seol, D. J. Love, and B. Shim, “Antenna grouping based feedback compression for FDD-based

massive MIMO systems,” vol. 63, no. 9, pp. 3261–3274, Sept. 2015.

[26] Z. Gao, L. Dai, Z. Wang, and S. Chen, “Spatially common sparsity based adaptive channel estimation and feedback for

FDD massive MIMO,” IEEE Trans. Signal Process., vol. 63, no. 23, pp. 6169–6183, Dec. 2015.

[27] Y. Ren, Y. Wang, C. Qi, and Y. Liu, “Multi-beam selection with limited feedback for hybrid beamforming in massive

MIMO systems”, IEEE Access, vol. 5, pp. 13327–13335, Feb. 2017.

[28] S. Noh, M. D. Zoltowski, and D. J. Love, “Training sequence design for feedback assisted hybrid beamforming in massive

MIMO systems,” IEEE Trans. Commun., vol. 64, no. 1, pp. 187–200, Jan. 2016.

[29] L. Liu and H. Jafarkhani, “Transmit beamforming for a large reconfigurable antenna array,” IEEE Global Commun. Conf.,

Nov. 2005.

[30] M. Kobayashi, N. Jindal, and G. Caire, “Training and feedback optimization for multiuser MIMO downlink,” IEEE Trans.

Commun., vol. 59, no. 8, pp. 2228–2240, Aug. 2011.

[31] U. Salim, D. Gesbert, and D. Slock, “Combining training and quantized feedback for multiantenna reciprocal channels,”

IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1383–1396, Mar. 2012.

[32] J. Kang, O. Simeone, J. Kang, and S. Shamai, “Joint signal and channel state information compression for the backhaul

of uplink network MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1555–1567, Jan. 2014.

[33] C. Zhang, Y. Jing, Y. Huang, and L. Yang, “Interleaved training and training-based transmission design for hybrid massive

antenna downlink,” IEEE J. Select. Topics Signal Process., vol. 12, no. 3, pp. 541–556, June 2018.

[34] E. Biglieri, G. Caire, and G. Taricco, “Limiting performance of block fading channels with multiple antennas,” IEEE Trans.

Inf. Theory, vol. 47, no. 5, pp. 1273–1289, May 2001.

[35] E. Koyuncu and H. Jafarkhani, “Delay-limited and ergodic capacities of MIMO channels with limited feedback,” IEEE

Trans. Commun., vol. 64, no. 9, pp. 3682–3696, July 2016.

[36] H. Jafarkhani, Space-Time Coding: Theory and Practice, Cambridge University Press, 2005.

[37] X. Gao, O. Edfors, F. Tufvesson, and E. G. Larsson, “Massive MIMO in real propagation environments: Do all antennas

contribute equally?” IEEE Trans. on Commun., vol. 63, no. 11, pp. 3917-3928, July 2015.

[38] E. Abbe, S.-L. Huang, and E. Telatar, “Proof of the outage probability conjecture for MISO channels,” IEEE Trans. Inf.

Theory, vol. 59, no. 5, pp. 2596–2602, Apr. 2013.

[39] M. Fleming, Q. Zhao, and M. Effros, “Network vector quantization,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1584–1604,

Aug. 2004.

[40] R. Gray and D. Neuhoff, “Quantization,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2325–2383, Oct. 1998.

[41] P. H. Westerink, J. Biemond, and D.E. Boekee, “An optimal bit allocation algorithm for sub-band coding,” Proc. IEEE

ICASSP, New York, NY, USA, Apr. 1988, pp. 1–6.

[42] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set of quantizers (speech coding),” IEEE Trans.

Acoustics, Speech, Signal Procss., vol. 36, no. 9, pp. 1445–1453, Sept. 1988.

[43] E. A. Riskin, “Optimal bit allocation via the generalized BFOS algorithm,” IEEE Trans. Inf. Theory, vol. 37, no. 2, pp.

400-402, Mar. 1991.

[44] W. Santipach and M. L. Honig, “Capacity of multiple-antenna fading channel with quantized precoding matrix,” IEEE

Trans. Inf. Theory, vol. 55, no. 3, pp. 1218–1234, Mar. 2009.


