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We address the challenge in assessing the crystal structure and reconstruction inputs in atom probe
tomography (APT) through the application of a machine learning analysis. Particularly, the use of
topological data analysis will be applied to characterize the atomic scale morphology and corresponding
structural effects in APT, which provides a powerful approach for characterizing nanoparticle surface
chemistry and surface structure at the atomic/ nanostructural scale. Quantitative analysis of atom probe
data aided by machine learning leads to a new understanding and utilization of the information
measured. For example, we have applied persistence diagrams to characterize the structure based on
packing density and relative atomic positions (Figure 1). By tracking changes in neighborhoods, where
the neighborhoods are characterized by the topological measures, where the bar sizes define groupings
of atoms and define the structural regions which otherwise are hidden in the massive data space [1].
This further allows us to assess the data systematics and connect the data across a larger length scale.

To further understand the role of noise and uncertainty in data, particularly as related to chemical
identification, we employ a new approach to discriminate isotopes which have overlapping mass-to-
charge ratios (m/n), resulting due to the complex evaporation physics which we have previously
explored [2], as well as the uncertainty. We previously developed an approach which captured the
kinetic energy behavior of the atoms through a multi-tier data dimensionality reduction analysis,
allowing us to discriminate the isotopes [3]. However, further assessment and understanding of the data
systematics is required. To address this challenge, we have tested multiple unsupervised clustering
algorithms and Gaussian mixture models (GMM) to cluster each row of the APT data into groups
corresponding to a single isotope. Since the ground truth (true isotope identity for each row) is unknown,
we evaluate our algorithms by measuring the distribution of isotopes obtained and comparing them to
natural isotope distributions (Figure 2). The presented work highlights the utility of machine learning
and data driven analyses for extracting and understanding information from the atomic to
microstructural scale, while accounting for complexity in data uncertainty and noise [4].
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Figure 1. Demonstration of Persistent Homology. Each entry corresponds to a unique value of disk
radius. The 0-th homology classes are represented by the orange bars and the 1st homology class is
represented by the green bar. All the bars for the 0-th homology class are sorted in the order of their
death time. This provides a unique approach to define topological features and allow us to characterize
atomic scale morphology and capture microstructural features that are otherwise difficult to extract.
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Figure 2. The logic developed for defining atom types through machine learning analysis. As an
example, the isotopes of Mg and Al overlap when plotted versus TOF. By incorporating the APT data

with clustering and GMM algorithms, we are able to correctly assign the atom label.
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