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Abstract 
Recent progress has increased our understanding of key controls on the productivity of shale reservoirs. 
The quantitative relations between regional Eagle Ford Shale production trends and geologic parameters 
were investigated to clarify which geologic parameters exercise dominant control on well production 
rates.  

Previously, qualitative correlations for the Eagle Ford Shale were demonstrated among depth, 
thickness, total organic carbon (TOC), distribution of limestone beds, and average bed thickness with 
regional production. Eagle Ford production wells are horizontal, but it was necessary to use vertical 
wells that penetrated the Eagle Ford to map reservoir properties. No wells in the data base had both 
production and geological parameters, thus geological parameters could not be directly related to 
individual well production. Therefore, spatial interpolation methods based on kriging and Bayesian 
method with Markov Chain Monte Carlo (MCMC) sampling algorithms were utilized to integrate data 
sets and predict geological properties at production well locations. The spatial Gaussian Process 
regression modeling was conducted to investigate the primary controls on production. 

Results suggest that the 6-month cumulative production from the Eagle Ford Shale, in barrels-of-oil 
equivalent (BOE), increases consistently with (a) depth, (b) Eagle Ford thickness (up to 180-ft 
thickness), and (c) with TOC (up to 7%). Also, when the number of limestone beds exceeds 12, 
production increases with the number of limestone beds. The corresponding significance code indicates 
that the parameters most significant to production are TOC and depth (which relates to pressure and 
thermal maturation). 

Concepts and models developed in this study may assist operators in making critical Eagle Ford 
Shale development decisions and should be transferable to other shale plays.  
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Introduction 
Shale gas and oil play significant roles in U.S. energy independence (EIA 2011; 2012; 2014; 2016). In 
2014, crude oil proved reserves reached 39.9 billion barrels, and proved reserve of U.S. natural gas 
increased to 38.8 trillion cubic feet, setting the highest historical records for the second consecutive year 
(EIA 2015). After successful development of Barnett Shale in Fort Worth Basin, Haynesville Shale in 
Louisiana and Texas, and Marcellus Shale in Pennsylvania, the Eagle Ford Shale became among the
most rapidly developing shale-gas plays in the U.S. (TRC 2014). In 2009, Eagle Ford Shale recoverable 
resources were estimated to be 21 trillion cubic feet natural gas and 3 billion barrels of shale oil (EIA 
2011).  

The Eagle Ford Shale dips southeastward from outcrop; depth exceeds 13,000 ft at the Sligo Shelf 
Margin (Fig. 1) (Hentz and Ruppel 2010; Tian, et al. 2012). The Eagle Ford Shale is divided into 3 
units. The Lower Eagle Ford is present throughout the study area; it is more than 275 ft thick in the 
Maverick Basin depocenter and thins to less than 50 ft on the northeast (Fig. 2) (Tian et al. 2012). The 
TOC of the lower Upper Eagle Ford Shale is greatest (7%) in Zavala and Frio Counties (Tian et al. 
2012). A strike-elongate trend of high TOC, high average gamma ray responses, and low bulk density 
extends from Maverick County northeast through Guadalupe County, parallel to and updip of the Sligo 
and Stuart City Shelf Margins (Fig. 3) (Tian et al. 2013). The numbers of both limestone and organic-
rich marl (ORM) beds, which together comprise the Eagle Ford Shale, increase from fewer than 2 near 
outcrop in the northwest to more than 20 on the southeast at the Sligo Shelf Margin (Fig. 4). Average 
thickness of limestone and ORM beds in the Lower Eagle Ford Shale is low (< 5 ft.) in the La Salle –
DeWitt trend, coincident with the most productive gas and oil regions, respectively (Fig. 5) (Tian et al. 
2014).  

Having characterized the key geological parameters that may affect Eagle Ford production, the 
questions remained: “Is there a quantitative relationship between production and the above parameters?” 
And, if so, “Which geological parameter has the dominant control on production?” 

The difficulty of relating geological parameters to production occurs because no wells in the data
base have both production and geological data. The wells used to calculate geological parameters are 
vertical wells that were drilled for reservoirs below the Eagle Ford Shale. However, the production wells 
are horizontal wells. Therefore, production data cannot be directly related to geological data at 
individual well locations. 
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Fig. 1  Structural Base of Lower Eagle Ford Shale (Tian et al. 2012). Republished by permission of the Gulf Coast Association of 
Geological Societies, whose permission is required for further publication use. 

 
Fig. 2  Thickness of Lower Eagle Ford Shale (Tian et al. 2012). Republished by permission of the Gulf Coast Association of 
Geological Societies, whose permission is required for further publication use. 
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Fig. 3  Average TOC of Lower Eagle Ford Shale (Tian et al. 2013). 

 
Fig. 4  Number of limestone beds of Lower Eagle Ford Shale (Tian et al. 2014). 
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Fig. 5  Average bed thickness of Lower Eagle Ford Shale (Tian et al. 2014). 

Methods 
As mentioned, one of the challenges of correlating the impact of geological parameters with production 
relates to the misalignment between horizontal producers and geological data from nearby vertical wells. 
Wells with complete measurements in our data base are quite limited. The data base has both vertical 
deeper well logs that penetrate Eagle Ford Shale but do not have Eagle Ford production, and Eagle Ford 
horizontal wells that do not penetrate the full formation but have production data. Therefore, 
interpolation of reservoir properties from vertical well locations to horizontal wells is required. An 
estimated spatial covariance function is crucial to achieving an accurate interpolation. Identifying the 
distribution pattern for each variable is the key to selecting the correct method to fit the covariance 
function. The following workflow was designed to characterize the distributional differences among 
various data sets. Coefficients and p-values obtained from a spatial Gaussian process model were 
analyzed to determine the relative significance of the geologic parameters to production. 

Input Parameter Selection 
 Previous publications have listed the screening criteria for shale oil and gas plays (Hill and Nelson 

2000; Wang and Gale 2009). Shale gas characterization plays a significant role in gas-in-place 
calculation and completion design, both of which have strong impacts on well overall productivity. 
Among the geologic factors that directly affect shale oil and gas production are thermal maturity, 
formation pressure, thickness, TOC, gas content, porosity, and brittleness (Hill and Nelson 2000; Curtis, 
2002; Bowker 2003, 2007; Montgomery et al. 2005; Jarvie et al. 2007; Pollastro et al. 2007; Rickman et 
al. 2008; Wang and Gale 2009; Spears and Jackson 2009; Passey et al. 2010; Cipolla et al. 2011). 

Researchers have divided those key parameters in two categories, including depth-depend and non-
depth dependent (Wang and Gale 2009). Temperature, pressure and thermal maturity increase with 
depth; therefore, the free gas and absorbed gas volume are strongly related to depth. Rock brittleness 
depends on a variety of parameters including effective stress, mineralogy, TOC, reservoir temperature, 
and diagenesis, many of which are functions of depth (Handin and Hagar 1957; Handin et al. 1963; 
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Davis and Reynolds 1996; Wang and Gale 2009). Thermal maturity increases with depth in the Eagle 
Ford Shale (Wang and Gale 2009; Tian and Ayers 2012). Organic richness (TOC) is a critical source 
rock quality parameter (Passey et al. 1990; Passey et al. 2011). TOC serves as an indicator of
hydrocarbon generation potential, which is regarded as excellent if TOC exceeds 4% (Peters and Cassa 
1994; Baskin 1997). In addition to controlling the hydrocarbon generation potential, TOC is important to 
reservoir quality by affecting absorption capacity, water saturation, and porosity (Passey et al. 2010; 
Dicman and Vernik 2013; Loucks and Reed 2014).  

The unique characteristics presented by the shale gas reservoirs leads to the major shift from the 
traditional petrophysical workflow. The challenges are mainly attributed to the presence of organic 
material, complex mineral composition, and the multiple pore types and complex distributions in both 
organic and inorganic constituents (Passey et al. 2010). Because core analyses provide the ground truth 
for validation of reservoir properties, XRD, crushed-core GRI, and TOC analysis are particularly 
indispensable in shale assessment (Quirein et al 2010; Passey et al. 2010; Sondergeld et al. 2010; 
Ramirez et al 2011; Sun et al. 2015). Full characterization of shale reservoirs requires a comprehensive 
set of logging suite and core data to fully capture the heterogeneity and complexity of the formation 
(Quirein et al 2010; Passey et al. 2010; Sondergeld et al. 2010; Ramirez et al 2011; Quirein et al 2013; 
Sun et al. 2015).  

However, neither laboratory measurements nor dipole sonic were available for this study, which 
made it impossible to achieve porosity or water saturation to determine the fluid volumetrics. 
Furthermore, rock mechanical properties such as Young’s modulus, Poisson’s ratio, and Brittleness 
index were unavailable (Rickman et al. 2008; Mullen et al. 2010; Quirein et al 2010; Passey et al. 2010; 
Sondergeld et al. 2010; Ramirez et al 2011; Cipolla et al. 2011; Wan et al. 2013; Huang et al. 2013; Yu 
et al. 2014; Huang and Torres-Verdin 2015; Sun et al. 2015). Therefore, we used alternative methods to 
represent such properties. In our study, TOC was employed to represent the reservoir quality, assuming 
its correlation with water saturation and porosity will hold true for the entire Eagle Ford play (Passey et 
al. 2010). Lithologic variability was used to indirectly characterize completion quality and potential for 
successful hydraulic stimulation. The Lower Eagle Ford consists of cyclic, interbedded organic-rich 
marl and limestone. The high gamma ray interval is regarded as good source rock and, potentially, good 
reservoir rock (Rickman et al. 2008; Mullen et al. 2010; Cipolla et al. 2011; Wan et al. 2013). Low 
gamma ray (brittle carbonate) intervals are better completion targets, which is key to successful 
development (Richman et al. 2008; Mullen et al. 2010; Cipolla et al. 2011). The number of limestone 
beds and average bed thickness were chosen to define the potential of for quality completions. 

The reservoir parameters of depth, thickness, TOC, number of limestone beds, and average bed 
thickness of Lower Eagle Ford were selected for analysis. Mapping these properties and integrating 
them with the first 6 months production showed qualitative correlations among geologic parameters and 
production volumes in the highly production regions. 

 
Data Preparation 
Figure 6 summarizes the data preparation steps. The first step is to identify the distribution pattern. A
histogram and a Q-Q plot (Q = quartile) plot were used to determine the type of distribution of each 
observed variable. The skewness was checked and the Box-Cox transformation was applied to transform 
the continuously distributed data into perfect Gaussian distributions (Box and Cox 1964). Spatial 
covariance models were then applied to fit these data and conduct spatial interpolation using kriging.
Otherwise, the discretely distributed number of limestone beds were assumed to follow a Poisson 
distribution. Bayesian method with Markov Chain Monte Carlo (MCMC) sampling algorithms were 
utilized to integrate Poisson distribution data sets and predict geological properties at production well 
locations. 
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Fig. 6  Schematic workflow for quantifying influences on production from various geological parameters. 

Skewness Identification 
Distributions identified as Gaussian may need additional processing. A Q-Q plot is a graphical 
diagnostic tool used to analyze the shape of the distribution and skewness of the data by comparing the 
quantiles of two different distributions (Wilk and Gnanadesikan 1968). The geological parameters were 
plotted against randomly generated normal distribution data. If the distributions are similar, then a unit 
slope results (Fig. 7). Curvature on the Q-Q plot suggests that the distribution is skewed and requires 
normalization (Fig. 7) (Wilk and Gnanadesikan 1968). 

Data Normalization  
After skewness was identified with the Q-Q plot, a Box-Cox conversion was used to transform the data 
into a perfect Gaussian distribution. A Box-Cox transformation is defined as a continuous function with 
the power parameter, �, which can transform the original data into Gaussian distribution (Eq.1) (Box 
and Cox 1964). A list of power parameters, �, is generated and a profiled log-likelihood vector is 
computed, then the most likely � can be determined by the maximum correlation coefficient (Box and 
Cox 1964; Scott 2008). A power parameter, �, close to 1 suggests a Gaussian distribution, thus does not 
require the data to be transformed. If the value of � from the Box-Cox analysis is close to zero, a log 
transformation will modify the data into a Gaussian distribution (Gelfand et al. 2010): 

��
���

�

��
�
� �

�
� ���� � �

��� �� � ��� � �

�� (1) 
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Fig. 7  (a) Unit slope on Q-Q plot for Gaussian distribution; (b) Curved pattern on Q-Q plot, suggesting skewness (Skbkekas 2009). 

 
Covariance Function Fitting and Spatial Prediction for Gaussian Data 

After transforming the Eagle Ford datasets into normally distributed variables, the spatial Gaussian 
process covariance models for spatial interpolation were adopted. The Maximum likelihood estimation 
method was used to fit the covariance models to obtain estimates of key covariance parameters. 
Specifically, a Gaussian data set can be modeled as below (Eq.2) (Gelfand et al. 2010): 

 
� � � � � � � � � �  (2) 

 
where x denotes a spatial location, �(x) is the mean value of the data set, Y(x) is the observed geological 
data, S(x) is a spatial random effect modeled by a Gaussian process with a covariance function to 
capture spatial dependence, and e is the error term. A commonly used covariance function takes the 
following form (Eq.3) (Gelfand et al. 2010): 

� � � �
�

�

�

��

�

�
� (3) 

  
where K(x) is the covariance function, � is the sill, � is the spatial range, � is the smoothness parameter, 
and��� is the Bessel function of second kind (Gelfand et al. 2010). Maximum likelihood estimations 
were used to estimate sill, range, and the smoothness parameters. By plugging in the estimated 
covariance parameters, an estimated covariance function for specific data set was obtained.  

Kriging, the best linear unbiased prediction for spatial statistics (Krige and Kleingeld 2005; Rivoirard 
2005; Gelfand et al. 2010), is widely applied in the oil and gas industry in building approximations of 
certain attributes from known points to wider areas. For the Gaussian distribution data set, conventional 
kriging was used to predict the geological data for production (horizontal) well locations, on the basis of 
nearby vertical wells. After fitting the data with the covariance model described, we can use 
conventional kriging to make spatial predictions of thickness at the production locations (horizontal 
wells), on the basis of the thickness controls of nearby vertical wells. 

 
Poisson Distribution Data Prediction 

Previous studies used covariance models for fitting and spatially predicting Gaussian data. However, 
many non-Gaussian spatial variables such as the number of limestone beds have been represented as
discrete counts (Boham and Zech 2010; Gelfand et al. 2010). For non-Gaussian spatial variables, 

a b 
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covariance functions will not directly apply (Finley and Banerjee 2010). Instead, a hierarchical model 
serves as an alternative.  

For example, a hierarchical model can be used to predict the number of limestone beds for horizontal 
well locations. The hierarchical model consists of two stages given by the following Eqs. 4 and 5 
(Gelfand et al. 2010). In the first stage, the number of limestone beds at location S is modeled as a 
Poisson distribution with intensity �(s). In the second stage of the model, the non-Gaussian data �(si) at 
specific site, Si, is transformed to a Gaussian latent process �(si) plus a variable (�). In the Gaussian 
process �(si) has a mean of zero, a variance of �2, and a latent spatial range of �: 

  
� �� �� �� ���� � � (4) 

��� � �� � � � � �� � (5) 

The hierarchical model uses a Bayesian method to estimate the parameters and make predictions. The 
Bayesian method draws samples from the posterior of the distributions for parameters �, �2, and �. Then 
values at new locations are inferred from the posterior model parameter samples. We proceeded with the 
Bayesian inference for the hierarchical model using the rigorous Markov Chain Monte Carlo (MCMC) 
method for the essential sampling process. The MCMC method is a computationally intensive yet robust 
sampling algorithm to generate samples based on a certain posterior distribution. Three chains of data 
with different starting values were generated for each set of values for �, variance of �2, and the latent 
spatial range of �. The goal is to construct sample chains that converge to the desired distribution 
(Robert and Casella 2004; Zhang and Srinivasan 2005; Gelfand et al. 2010).  

The computation above was carried out by the R statistical software platform. Available functions 
and tool packages in R enable specifying input data and prior models for model parameters without 
lengthy codes and subsequent fitting and prediction using a non-Gaussian regression model. Finley and 
Banerjee (2013) introduced the spatial generalized linear model (SPGLM) function specifically designed 
for hierarchical modeling for non-Gaussian spatial data in R. Their function fits the univariate Bayesian 
generalized linear spatial regression model and obtains �, �2, and � by generating model parameters with 
MCMC methods (Banerjee, et al. 2004; Banerjee et al. 2008; Finley et al. 2015). With the posterior 
samples of �, �2, and � obtained from SPGLM, we predict the number of limestone beds for new 
location with SPpredict, the function designed by Finley and Banerjee to collect the posterior and 
generate predictive samples at new locations (Banerjee et al. 2004; Finley et al. 2015). Banerjee et al. 
2004; Roberts and Rosethal 2006; Banerjee et al. 2008; Finley et al. 2008; Finley et al. 2015 provided 
comprehensive descriptions of these algorithms. 

Application 
The primary production data set is the barrel of oil equivalent (BOE) of Eagle Ford first six months of 
production. It includes data from approximately 3,000 wells in 13 counties (Fig. 8). There is a northeast 
to southwest trend of production. Maximum production is in the central area of the production belt (Fig. 
8).  

We evaluated five geological parameters: structural elevation (Fig. 1), thickness (Fig. 2), TOC (Fig. 
3), number of limestone beds (Fig. 4), and average bed thickness (Fig. 5). We divided the geological 
parameters into two types of distributions: Gaussian distributions and Poisson distributions. Depth, 
thickness, average layer thickness, and TOC follow a Gaussian distribution, whereas the number of 
limestone beds follow a Poisson distribution. The criterion for selecting these five parameters was their 
qualitative correlation with the first 6 months cumulative production.  
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Fig. 8  Spatial map of first 6 months of production (BOE) of Eagle Ford Shale in South Texas. Coordinates uses North American 
Datum 1927 (NAD27) in meters. 

Gaussian Data Group Prediction 
The histogram and Q-Q plot show that depth data generally follow a Gaussian distribution (Fig. 9), 

and  Box-Cox analyses indicate that � is approximately 0.93. The histogram and Q-Q plot show that 
thicknesses, TOC, and average bed thickness in the Lower Eagle Ford generally follow power normal 
distribution (Fig. 10). The approximate Box-Cox analysis � value of 0.2 for thickness suggests that log 
transformation of the original thickness can effectively eliminate the skewness, thereby following a 
Gaussian distribution (Fig. 10) confirmed by the unit slope of the Q-Q plot after the transformation (Fig. 
11). Both TOC and average bed thickness show skewness on the Q-Q plots (Fig. 11). The skewness 
shown by average bed thickness was eliminated by power transformation using 0.75, whereas TOC was 
transformed by log transformation (Fig. 11). After transforming the data to Gaussian distribution 
without skewness, we used the Likfit function in the R software to estimate the spatial covariance model 
including sill, range, and smoothness parameters by achieving the maximum likelihood value. Ribeiro 
and Diggle (2016) introduced full details of the algorism employed in the Likfit function in their R 
software package geoR. After specifying sill, spatial range, and smoothness parameters from the vertical 
well locations for each Gaussian dataset, we predicted depth, thickness, average bed thickness, and TOC 
for Eagle Ford horizontal wells (Figs. 12 through 19). 
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Fig. 9  Histogram and Q-Q plot of Eagle Ford Shale depth data. 

 
Fig. 10  (a) Histogram of thickness of Lower Eagle Ford Shale, (b) Q-Q plot of thickness, (c) Box-Cox transformation result, and (d) 

Q-Q plot of thickness data after Box-Cox transformation.  



SPE-185025-MS 12

 
Fig. 11  Skewness elimination workflow by Q-Q plots and Box-Cox transformation.  

  

Fig. 12 Depth of Lower Eagle Ford Shale base by stratigraphic 
analyses on vertical wells. 

Fig. 13 Depth of Lower Eagle Ford Shale base predicted for 
Eagle Ford production wells locations by kriging. 
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Fig.  14 Thickness of Lower Eagle Ford Shale by stratigraphic 
analyses on vertical wells. 

Fig. 15  Thickness of Lower Eagle Ford Shale predicted for Eagle 
Ford production well locations by kriging. 

 
Fig. 16  Average bed thickness of Lower Eagle Ford Shale 
calculated at vertical wells. 

Fig. 17  Average bed thickness of Lower Eagle Ford Shale 
predicted for Eagle Ford well locations by kriging. 

  
Fig. 18  TOC calculated at vertical wells by petrophysical analyses Fig. 19  TOC predicted for Eagle Ford well locations by kriging.   
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Poisson Distribution Prediction 
The Q-Q plot of the number of limestone beds indicates the discrete and discontinuous character of 

limestone beds and, therefore, a Poisson distribution (Fig. 20). The MCMC chain trace plots illustrated 
the convergence of multiple chains within our proposed number of iterations. The convergence of three 
chains and the narrow density distribution demonstrated that the sampling results provided sufficiently 
reliable posterior results of �, �2, and � (Fig. 21). With these posterior results we then predicted the 
number of limestone beds for Eagle Ford production wells from the vertical well data (Figs. 22 and 23).  

 
Fig. 20  Histogram and Q-Q plot of number of limestone beds.   

 
Fig. 21  MCMC sampling of intercept (�), variance (�2), and spatial range (�) for the number of limestone beds. 
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Fig. 22  Number of limestone beds at vertical wells. Fig. 23  Bayesian prediction of number of limestone beds at 

Eagle Ford production well locations.  

Fitting Regression Models 
The results from the previous steps gave geological data for the Eagle Ford horizontal production 

well locations (Fig. 24). Next, we fit the results with a regression model and quantified the linear 
relations between production and geologic parameters. After testing several models, we used a linear 
regression model to evaluate the relations between geological parameters and production. The model 
uses latitude and longitude positions reported in public databases containing  the geological and 
production data values. The linear regression satisfies 

� � �� � �, (6) 
where � is a vector containing the regression model coefficients, X denotes a regressor matrix, � is error 
term, and Y is the matrix containing known outputs, in this case six month cumulative production.  If the 
linear regression model is a second order polynomial, the regressor matrix can be written as  

� � ������������, (6) 
where geo denotes the geological data parameters (Gelfand et al. 2010). The � vector values are 
quantified using the Levenberg-Marquardt (LM) algorithm available in the R software. 

The following steps were necessary to achieve a more accurate model for production data: 
Step 1. Polynomial Model: Production initially increases with depth, but after a certain level, 

production decreases with increasing depth as the formation enters the over-mature gas window. A 
polynomial model is required to capture these typical production data behaviors.  

Step 2. Normalized Production Polynomial Model: As for previous parameters, the production data is 
normalized using the Box-Cox method, resulting in � = 0.4. The Q-Q plots indicate that the production 
data are skewed before transformation and are symmetrical afterward (Fig. 24).  

Step 3. Scaled Geological Data Normalized Production Polynomial Model: Because the values of the 
five geological parameters that had primary control on the regional production variations have very 
different ranges, it is not straightforward to know which parameters exert the greatest influence on 
cumulative production simply by comparing the magnitudes of the regression coefficients. To address 
this point, the geological parameters are normalized by dividing by the largest value thereby scaling all 
of them between 0 and 1.  

With this regression model, we predicted the cumulative 6 month BOE (Fig. 25) and calculated the 
residuals between the predicted production and the observed production. Justification for these steps is 
easily seen by comparing the residuals resulting without and with them, which were 2 bbl and 600 bbl, 
respectively.  
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The regression also produces a p-value for each parameter. The p-value is the probability of obtaining 
a test statistic at least as extreme as the one that was actually observed, and have value 1 when t the null 
hypothesis is true, that is when there is no correlation. The p-value can be used to reject the null 
hypothesis when it is less than a certain significance level, often 0.05 (Gelfand et al. 2010). Therefore, 
small p-value implies a strong correlation.  

  
Fig. 24  Transformation of production data for Gaussian distribution without skewness. 

Regression Result Interpretation 
The regression fit for the data provides p-values and coefficients listed in Table 1. Both provide 
meaningful analysis.  

P-value Analyses 
In this project, p-values are important to understanding the significance level of the data and measuring 
the weight of the geological data. The longitude and latitude coordinates have high p-values, which 
indicates there is no relationship between production and these parameters. Depth, thickness, limestone 
bed number, and average bed thickness have low p-values, which suggests statistical significance of the 
relationship between production and these parameters. Table 1 shows significance codes for each 
parameter with *** indicating highest correlation significance.  

The p-value analysis indicates that the most significant parameters to production are TOC and depth. 
The number of limestone beds also plays an important role, but it is less significant than other 
properties. Thickness plays a moderate role in production.  

Coefficient Analysis  
The coefficients of depth, thickness, average bed thickness, TOC, and number of limestone beds from 
the regression model are compared in Table 2. The coefficients could be used to analyze the relative 
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importance on production of each geological parameter since the geological parameters have been 
converted and range from 0 to 1. 

 
Fig. 25  First 6 months’ production prediction (BOE). 

 
TABLE 1  P-VALUES AND SIGNIFICANT CODES OF GEOLOGICAL PARAMETERS  

 p-Value Significance Code 

Depth < 2e-16 *** 

Depth2 4.10E-09 *** 

Thickness 6.63E-07 *** 

Thickness2 2.08E-06 *** 

TOC < 2e-16 *** 

TOC2 5.65E-15 *** 

Number of Limestone Beds 3.62E-11 *** 

Number of Limestone Beds2 5.67E-12 *** 

Average Bed Thickness 1.21E-04 ** 

Average Bed Thickness2 5.57E-04 ** 

X Coordinate 0.168047  

Y Coordinate 0.105604  
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TABLE 2 THE COEFFICIENTS OF GEOLOGICAL PARAMETERS FROM REGRESSION 
Depth 2.37E+03 

Depth2 -1.06E+03 

Thickness 1.19E+03 

Thickness2 -1.03E+03 

TOC 1.72E+03 

TOC2 -1.30E+03 

Number of Limestone Beds -9.01E+02 

Number of Limestone Beds2 9.84E+02 

Average Bed Thickness 2.60E+03 

Average Bed Thickness2 -1.66E+03 

The maximum coefficients are from depth and average bed thickness of the Lower Eagle Ford, which 
suggests that these two parameters play the most significant roles in production. The following 
discussion holds the other parameters constant, and shows plots of each geological parameter against 
production using the coefficient. This allowed further investigation into the relationships between 
production and these parameters. 

Depth vs. BOE Production 
Plotting the first 6 months’ production against depth (elevation, subsea level) using the coefficient 
achieved from regression shows that production increases with structural depth throughout the entire 
study area (Fig. 26). 

 

Fig. 26  Depth vs. production correlation of regression. 

Thickness vs. BOE 
Production increases with thickness until the thickness reaches 180 ft. Where the Lower Eagle Ford is 
thicker than 180 ft, production declines (Fig. 27). This is reasonable and consistent with observations, 



SPE-185025-MS 19

because thickness exceeds 180 ft mainly in the Maverick basin depocenter (Fig. 2), where production is 
relatively low, compared to the rest of the study area (Fig. 8).  

 

Fig. 27  Total thickness of Lower Eagle Ford Shale vs. production correlation of regression. 
 
TOC vs. BOE Production 
Production from initial 6 months increases with TOC until TOC exceeds approximately 7%. Where

TOC exceeds 7%, production decreases with TOC (Fig. 28). Several factors may result in such a 
relationship. TOC greater than 7% may suggest low thermal maturity or highly ductile rock, both of 
which have a negative role in overall production.  

 
  

Fig. 28  Average TOC of Lower Eagle Ford Shale vs. production correlation of regression. 

Number of Limestone Beds vs. BOE Production 
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A plot of production against the number of limestone beds showed a decreasing and an increasing 
pattern (Fig. 29). In the study area, oil production increases with the number of limestone beds. In the 
northern study area where the total number of limestone beds is less than 12, the correlation between 
production and number of limestone beds is quite complex, and overall, it negatively impacts the 
production, regionally. In the southern study area, where the number of limestone beds exceeds 12, 
production is higher (Fig. 28). 

 

Fig. 29 Number of limestone beds in Lower Eagle Ford Shale vs. production correlation of regression.
 
Average Bed Thickness vs. BOE Production 

Production increases with average bed thickness, up to bed thickness of approximately 7 ft (Fig. 30). 

 
Fig. 30  Average bed thickness of Lower Eagle Ford Shale vs. production correlation of regression. 

 



SPE-185025-MS 21

Kriging Limitations 
Kriging may be used with nearby data to predict geological parameters at locations where no measured 
values are available. It is especially useful when limited well control is present. However, kriging based 
on a stationary covariance function has limitations when applied to a large area. Kriging interpolates 
values for unknown locations without considering the possible local heterogeneity in geological 
parameters. Without sufficient sample density, local geological variability will not be accurately 
detected, and thus, considerable geological details may be lost during kriging.  

Discussion 
This paper provides quantitative analyses of which geological parameters exert dominant controls on 
regional hydrocarbon production trends in the Eagle Ford Shale play. The results are geologically 
intuitive and consistent. 

Depth is the dominant control on the first 6 months production of the Eagle Ford Shale. Productivity 
of Eagle Ford shale increases with depth, which in turn, is related to increasing formation temperature, 
pressure, and thermal maturity. With increasing thermal maturity and temperature, more organic 
material is converted to hydrocarbon, hydrocarbon viscosity decreases, and more water was expelled 
from the source rock, leading to higher hydrocarbon saturation and lower water saturation (Baskin 1997; 
Curtis 2002; Zhao et al. 2007; Wang and Gale, 2009; Passey et al. 2010;). Increasing depth and 
temperature contributed to higher level of diagenesis and TOC conversion, which enhanced formation 
brittleness (Wang and Gale 2009).  In the gas window, although the absorbed gas content and free gas 
content are also related to TOC and porosity, at greater depth in the Eagle Ford, the higher reservoir 
pressure contributes to production by increasing the absorption capacity and free gas compressibility.  

TOC is a critical productivity parameter for the Eagle Ford Shale. Previous workers have 
demonstrated strong correlation between TOC and the total porosity as well as gas content, using core 
data from more than 10 shale-gas formations worldwide (Passey et al.2010; Dicman and Vernik, 2013; 
Wang and Carr, 2013; Wang et al.2013). However, our results show the correlation between TOC and 
productivity is not monotonic, which suggests in the Eagle Ford Shale there is an upper limit beyond 
which more organic material would not contribute positively with productivity. When the TOC exceeds 
certain value, 7% in Eagle Ford Shale, the ductile nature of organic material causes the reservoir 
unfavorably responding to hydraulic fracture propagation, and thus, excessively high organic richness 
would significantly negatively impact stimulation efficiency and well productivity (Baruch et al.2012; 
Clarke et al.2016).  

Thickness exercises control of shale oil and gas  production by controlling the volume of 
hydrocarbons in place. The maximum number of limestone beds coincides with the most productive 
Eagle Ford Shale regions. Previous researchers have thoroughly investigated the correlation between the 
stimulation efficiency and mineral composition, especially the composition of the brittle minerals. A 
positive correction between permeability and calcite composition (limestone) was found in Eagle Ford 
Shale (Kosanke and Warren, 2016). Sufficient amount of calcite is crucial to Eagle Ford shale 
production (Jarvie et al.2007; Rickman et al.2008; Sondergeld et al.2010; Baruch et al.2012; Wang and 
Carr, 2013). However, our results show an initial trend of decreasing productivity of first 6 months 
production and the number of limestone beds. High concentration of calcite leads to more efficient 
fracture simulation; however, it also reduces the volume of hydrocarbon-saturated  pay zone while 
holding the total volume constant (Baruch et al.2012; Clarke et al.2016). These results suggest that 
optimum productivity may be expected where there is a balance of sufficient organic-rich intervals with 
higher porosity (hydrocarbons storage capacity) and brittle limestone beds that facilitate hydraulic 
fracturing.  

Finally, the parameters selected in our study are restricted to regional geological parameters. We did 
not account for the effects of local faults, folds, or stress variations. We that realize the completion and 
stimulation strategies change with time and operator, even within the same shale play. However, the first 
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production date of the wells used in this study is concentrated in 2011 and 2012. We compared the 
cumulative first 6 months of production among wells with different initial production dates, and even 
though there are a few outliers in late 2012 showing high production, the limited number of such 
samples should have little statistical impact on our regional analysis. Individual well failure or success 
would not affect the overall regional trend. However, because the completion and stimulation designs 
vary among operators within the same time window, it would be worthwhile to include these parameters 
in the next stage of analysis. 

Conclusions 
Statistical methods were used to infer geological properties at horizontal well locations on the basis of 
those properties of nearby vertical wells; then, statistical analyses successfully demonstrated regional 
geologic controls on horizontal well productivity. The 6-month cumulative production (BOE) of the 
Eagle Ford Shale increases consistently with depth, lower Eagle Ford thickness (up to 180-ft thickness), 
and TOC (up to 7%). The corresponding significance code levels indicates that the most significant 
parameters to production are TOC and depth (which relates to pressure). The number of limestone 
(brittle) beds also plays an important role, but it is less significant than other properties. In the 
northwestern region, where the total number of limestone beds is fewer than 12, cumulative production 
is low. In the southeastern region, where the number of limestone beds exceeds 12, production increases 
with the number of limestone beds. P values analyses suggest high certainty of the relationship between 
the production and five reservoir parameters tested in the regression model. 

  The sustained low equity price since 2015 has created a challenging economic environment for 
shale development. However, organic-rich shale plays will continue to be a vital source of energy for the 
U.S. and to the rest of the world in the future. The approach developed in this study may assist operators 
in making critical Eagle Ford Shale development decisions, and this approach may be transferable to 
other shale plays. 

Nomenclature 
�  = power transformation parameter 
Y(x) = the observed data at spatial location x 
� = the mean value of the data set  
S = spatial random effect modeled by a Gaussian process 
e = error term 
K = covariance function  
� = sill 
� = the spatial range 
� = smoothness parameter 
�� = the Bessel function of second kind 
� = the non-Gaussian data 
Si = specific site 
� = a Gaussian latent process  
� = random variable  
�

2 = variance 
�  = latent spatial range 
�  = vector containing the regression model coefficients 
X = denotes a parameter matrix 
� = error term 
Y = the matrix containing known outputs 
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