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ABSTRACT
This article examines the role and the efficiency of nonconvex loss functions for binary classification prob-
lems. In particular, we investigate how to design adaptive and effective boosting algorithms that are robust
to the presence of outliers in the data or to the presence of errors in the observed data labels. We demon-
strate that nonconvex losses play an important role for prediction accuracy because of the diminishing
gradient properties—the ability of the losses to efficiently adapt to the outlying data. We propose a new
boosting framework called ArchBoost that uses diminishing gradient property directly and leads to boost-
ing algorithms that are provably robust. Alongwith the ArchBoost framework, a family of nonconvex losses
is proposed, which leads to the new robust boosting algorithms, named adaptive robust boosting (ARB). Fur-
thermore, we develop a new breakdown point analysis and a new influence function analysis that demon-
strate gains in robustness. Moreover, based only on local curvatures, we establish statistical and optimiza-
tion properties of the proposed ArchBoost algorithms with highly nonconvex losses. Extensive numerical
and real data examples illustrate theoretical properties and reveal advantages over the existing boosting
methods when data are perturbed by an adversary or otherwise. Supplementary materials for this article
are available online.

1. Introduction

Recent advances in technologies for cheaper and faster data
acquisition and storage have led to an explosive growth
of data complexity in a variety of scientific areas such as
high-throughput genomics, biomedical imaging, high-energy
physics, astronomy and economics. As a result, noise accumu-
lation, experimental variation, and data inhomogeneity have
become substantial. However, classification in such settings is
known to pose many statistical challenges and hence calls for
new methods and theories.

ArchBoost contributes to the literature of binary classifi-
cation algorithms and boosting algorithms in particular. It
applies to a wide range of loss functions including nonconvex
losses and is specifically designed to be robust and efficient
whenever the labels are recorded with an error or when-
ever the data are contaminated with outliers. ArchBoost tilts
or arches down the loss function to adapt to the unknown
and unobserved noise in the data by exploring nonconvexity
efficiently.

To design the new framework, we will amend the drawbacks
of the AdaBoost algorithm (Freund and Schapire 1997) in the
contaminated data setting. AdaBoost algorithm is based on an
iterative scheme, in which at each stage data are reweighed,
and a new weak classifier is found by minimizing the expo-
nential loss. A final estimate of the classification boundary is
found by summing up weak classifiers throughout all iterations.
AdaBoost’s sensitivity to outliers comes from the unbounded
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weight assignment on themisclassified observations. As outliers
are more likely to be misclassified, they are very likely to be
assigned large weights and will be repeatedly refitted in the
following iterations. This refitting will deteriorate seriously the
generalization performance, as the algorithm “learns” incorrect
data distribution. To achieve robustness, the algorithm should
be able to abandon observations that are on the extreme, incor-
rect side of the classification boundary. Here, we theoretically
and computationally investigate the applicability of nonconvex
loss functions for this purpose.We illustrate that the best weight
updating rule is to assign a weight of −φ

′
(yiF(xi)) to each data

point (xi, yi) with F (xi) denoting the current estimate of the
classification boundary. This assignment is only efficient if the
loss function φ is a nonconvex loss function. We develop a tilt-
ing argument for the nonconvex losses. It is shown that, if we use
a nonconvex loss, sufficiently tilted, that is, −φ

′
(v ) is small for

all v ≪ 0, then the outliers are eliminated successively. Hence, a
constant “trimming”—typically used in robust statistics—is not
sufficient for outlier removal in classification setting. In tilting
or “arching” the loss function, we are effectively preserving
as much fidelity to the data as possible, while redistributing
emphasis to different observations. We propose a new Arch-
Boost framework that implements the above tilting method
and adjusts for optimality by a new search of the optimal weak
hypothesis. Instead of relying only on gradient descent rules
(like LogitBoost or GradientBoost; Friedman 2001), ArchBoost
chooses the optimal weak hypothesis that is most orthogonal

©  American Statistical Association
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to the previous weak hypothesis, therefore improving the most
the accuracy of the next iteration.

We propose a sufficient set of conditions needed for a loss
function to allow for good properties of the ArchBoost. We
show that not every nonconvex function satisfies such condi-
tions; an example is the sigmoid loss. However, we propose a
family of loss functions, γ -loss, that balances both the benefits
of nonconvexity and the empirical risk interpretation of boost-
ing. Finally, the proposed family of ARB-γ algorithms is widely
applicable to a wide variety of problems related to non-Gaussian
observations and data that are mislabeled (maliciously or oth-
erwise). We address its robustness and statistical efficiency with
details. Although it is straightforward to provide such analysis
for parametric linear models, computations for the nonpara-
metric and classification boundaries are far more challenging.
We provide novel influence function (Hampel 1974) and finite-
sample breakdown point theory (Hampel 1968) that fill in the
gap in the existing literature on robustness of the boosting
algorithms.

In essence, this article designs a new boosting framework
that improves the prediction accuracy for the data observedwith
errors. In Section 2, we present the new ArchBoost framework.
Section 3 outlines a new family of nonconvex losses and presents
sufficient conditions for the nonconvex loss to be provably
robust. Theoretical analysis of Section 4 contains the numeri-
cal and statistical convergence in 4.1 and 4.3, respectively.More-
over, it contains robustness properties in Section 4.2—the influ-
ence function in Section 4.2.1 and the new breakdown point in
Section 4.2.2 . In Section 5, we demonstrate how to use these
methods in practice and illustrate the superiority to the state-
of-the art alternatives (see Section 5.1). Section 5.4 deals with
the famous Long/Servedio problem for which we show that
our ArchBoost method outperforms the RobustBoost (Freund
2009). We also discuss three real datasets in Section 5.6.

2. Methodology of the ArchBoost

Let X denote a p-dimensional domain, Y denote the class label
set {−1, 1}, {(Xi,Yi)}ni=1 ⊂ X × Y be iid data points (p ≤ n), φ
be a differentiable loss function, and F be a class of functions
from Rp to R. For any distribution P on X × Y , we wish to
find F ∈ F that minimizes EP[1{YF(X ) < 0}]. With Bartlett,
Jordan, and McAuliffe (2006)’s classification-calibration con-
dition on φ, this problem is equivalent to finding F∗ ∈ F
that minimizes the φ-risk Rφ(F ) = EP[φ(YF(X ))]. We sum-
marize F∗(x) = argminF∈F #(F(x)), x ∈ X where#(F(x)) :=
E[φ(YF(X ))|X = x] in Table 1.

AdaBoost (Freund and Schapire 1997) minimizes the empir-
ical φ-risk R̂φ,n(F ) = 1

n
∑n

i=1 φ(YiF (Xi)) with the exponential

loss, φ(v ) = e−v , in a stagewise manner. It approximates the
unknown Bayes classifier with a combination of weak classi-
fiers, ht , obtained by employing a weak learner at each itera-
tion t . It is critical to observe that minimization of the expo-
nential loss by itself is not sufficient to guarantee low general-
ization error of the AdaBoost (Shapire 2013). Its excellent per-
formance is based on the premise that at each iteration of the
algorithm, the method is forced to infer something new about
the observations. This amounts to reweighing the observations
by a weight vector w, so that the misclassified points gain more
weight in the next iteration. However, in the presence of out-
liers, such methodology will iteratively attempt to refit the out-
liers to one of the classes and hence effectively pull the decision
boundary away from the ground truth. Unfortunately, all convex
loss functions will inevitably keep upweighting the persistently
misclassified points, and as pointed out by Long and Servedio
(2010), they all lead to nonrobust boosting methods. Therefore,
new boosting principles need to be designed that allow the loss
to be nonconvex.ArchBoostmethod, which we propose below, is
such a framework that, equippedwith nonconvex losses, leads to
adaptive and robust algorithms that have provable guarantees.
By exploring the nonconvexity, ArchBoost is gradually drop-
ping out the persistent observations from the refitting proce-
dure at each new iteration of the algorithm. In this way, if the
observations are consistently being misfit, they are suspected of
being outliers and are steadily assigned less importance in the
risk minimization procedure. Thus, ArchBoost tilts (i.e., arches)
the weight distribution to the nonoutlying observations. As an
example of a weight updating rule that is effective at arching, we
consider the loss function and the weight function, respectively,
as

φ(v ) = 4/(1+ ev )2, w(v ) = ev/(1+ ev )3 (1)

with v = yF(x). To further illustrate this idea, we present graph-
ically (1) in Figure 1, together with the losses and weight distri-
butions of AdaBoost and LogitBoost.

The novel boosting framework ArchBoost is presented in
Algorithm 1. It iteratively builds an additive model FT (x) =∑T

t=1 αtht (x) where ht belongs to some space of weak classi-
fiers denoted byH (e.g., decision trees). Different fromGradient
boost and AdaBoost, ArchBoost finds the optimal weak learner
ht , the step size αt , and the weight updating vectorwt by explor-
ing the hardness condition defined as

Ewt+1 [Yht (X )|X = x] = 0, (2)

where Ew[g(X,Y )|X = x] := E[w(X,Y )g(X,Y )|X = x]/
E[w(X,Y )|X = x]. This condition means that, from iteration
t to t + 1, the weights on X are updated from wt to wt+1 such
that ht (X ) is orthogonal to Y with respect to the inner product

Table . The list of commonly used loss functions and its corresponding F∗ .

Population parameters

Classification method Loss function φ(v ) Optimal minimizer F∗(x)

Logistic log(1+ e−v ) (logP(y = 1|x) − logP(y = −1|x))
Exponential e−v 1

2 (logP(y = 1|x) − logP(y = −1|x))
Least squares (v − 1)2 P(y = 1|x) − P(y = −1|x)
Modified least squares [(1 − v )+]

2 P(y = 1|x) − P(y = −1|x)
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Algorithm 1 ArchBoost (φ)
Given training sample:(x1, y1), . . . , (xn, yn) initialize the
weights w0(xi, yi) = 1/n
for t = 1, . . . ,T do

3: (a) Normalize the weight by assigning wt =
wt/

∑
i wt (xi, yi)

(b) Fit the classifier to obtain a class probability estimate
Pwt (Y = 1|x) ∈ [0, 1]

using current weights wt on the training data.
6: (c) Set ht (x) to be the solution of estimating equation

(6).
(d) Find αt by solving the empirical counterpart of (7).
(e) Set Ft (x) = Ft−1(x)+ αtht (x).

9: (f) Update the weights wt = −φ
′
(yFt (x)).

end for
Output the classifier: sign (FT (x)) .

defined on the reweighed data. Thus, the weak hypothesis ht
behaves like a random guess on the reweighed data, and hence,
the ht+1 will be a good supplement to ht .

Provided that F includes all measurable functions, we
observe that F∗(x) can be defined by the first-order optimality
condition E[Yφ

′
(YF∗(X ))|X = x] = 0, where φ′ is defined as

the first-order derivative d
dv φ(v ). In classification problems, the

parameter v of loss function φ is v = YF(X )—that is, the mar-
gin of a classifier F applied to a data point (X,Y ). Rewriting the
expectation in terms of the class probabilities, we obtain the fol-
lowing representation of the first-order optimality conditions:

φ
′
(−F∗(x))

φ
′
(F∗(x))

= P(Y = 1|X = x)
P(Y = −1|X = x)

. (3)

We aim to mimic equation above in each of the iteration steps
of the proposed framework. In more details, at iteration t , with
the current estimate Ft−1(x) = h1(x)+ · · · + ht−1(x) at hand,
wewish to find a newweak hypothesis ht ∈ H, such that Ft (x) =
Ft−1(x)+ ht (x) with ht (x) solving the following equation:

φ
′
(−Ft−1(x) − ht (x))

φ
′
(Ft−1(x)+ ht (x))

= P(Y = 1|x)
P(Y = −1|x)

. (4)

Next, we aim to explore (4) and build an estimating equation
to find the optimal ht . The method of estimating equations is a

way of specifying how the optimal ht should be estimated. This
can be thought of as a generalization of many classical methods
including the framework ofM-estimation. Estimating Equation
(4) involves an unknown quantity P(Y = 1|x). One may substi-
tute P with Pwt , but this coarse estimation could be very biased,
especially when the data have outliers. Therefore, we propose to
estimate the right-hand side of (4) by introducing a bias correc-
tion functionCt−1(x) that depends on both the current estimate
Ft−1 and x, and is such that

P(Y = 1|x)
P(Y = −1|x)

= Ct−1(x)
Pwt (Y = 1|x)
Pwt (Y = −1|x)

. (5)

Here, the conditional probability Pwt (Y = 1|x) :=
Ewt [1[Y=1]|X = x]. Now, we observe that P(Y = 1|x) and
Pwt (Y = 1|x) satisfy

φ
′
(Ft−1(x))

φ
′
(−Ft−1(x))

P(Y = 1|x)
P(Y = −1|x)

= E[1[Y=1]φ
′
(YFt−1(X ))|x]

E[1[Y=−1]φ
′
(YFt−1(X ))|x]

= Pwt (Y = 1|x)
Pwt (Y = −1|x)

.

Hence, with the bias correction function defined as Ct−1(x) =
φ

′
(−Ft−1(x))/φ

′
(Ft−1(x)), Equations (5) and (4) lead to

φ
′
(−Ft−1(x) − ht (x))

φ
′
(Ft−1(x)+ ht (x))

= φ
′
(−Ft−1(x))

φ
′
(Ft−1(x))

Pwt (Y = 1|x)
Pwt (Y = −1|x)

. (6)

Therefore, the estimating equation principle of ArchBoost
selects the optimal ht as a solution to the estimating Equa-
tion (6). For the loss function (1), for example, Ct−1(x) =
eFt−1(x). Additionally, note that Pw can always be estimated as
long as we use a weak learner that is capable to give class
probabilities. One example is decision tree in which case in
each terminal region Rj , one can estimate Pwt (Y = 1|x) by∑

xi∈Rj,yi=1 w(xi, yi)/
∑

xi∈Rj
w(xi, yi).

Observe that we can explicitly solve Equation (6) for many
commonly used loss functions. For the robust loss (1) in
Figure 1, (6) becomes

eFt−1(x)+ht (x) = eFt−1(x) Pwt (Y = 1|x)
Pwt (Y = −1|x)

,

leading to ht = logPw(Y = 1|x) − logPw(Y = −1|x). The
results for existing losses are summarized in Table 2. Observe

Figure . AdaBoost, LogitBoost, ArchBoost loss functions, and the corresponding normalized weight updating rules.
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Table . The list of commonly used loss functions and their weak hypotheses h.

Population parameters

Classification method Loss function φ(v ) Optimal weak hypotheses h(x)

Logistic log(1+ e−v ) logPw(Y = 1|x) − logPw(Y = −1|x)
Exponential e−v 1

2 (logPw(Y = 1|x) − logPw(Y = −1|x))
Least squares (v − 1)2 C(1 − F(x))(1+ F(x))/(CF (x)+ 1)
Modified least squares [(1 − v )+]

2 C(1 − F(x))(1+ F(x))/(CF (x)+ 1)

NOTE: *C = Pw(Y = 1|x) − Pw(Y = −1|x).

that for different choices of the weight vector wt , the resulting
ht changes. The hardness condition works as the guideline of
updating the weights wt . To ensure that αtht indeed decreases
the φ-risk, we consider an additional line search step

αt = argmin
α∈R

E
[
φ
(
YFt−1(X )+Yαht (X )

)]
. (7)

We observe that for

wt+1(X,Y ) := −φ
′
(YFt (X )), (8)

the αt , (7), satisfies Ewt+1 [Yαtht (X )] ∝ E[−φ
′
(YFt−1(X )+

Yαtht (X )) ·Yαtht (X )] = 0. For the robust loss (1), w(v ) =
ev/(1+ ev )3 is proportional to −φ

′
(v ) = 8ev (1+ ev )−3 up to

a constant. Therefore, by updating weights according to (8), the
hardness condition (2) is satisfied.

Finally, we emphasize that throughout the above derivation,
we did not put any convexity restriction on the loss function.
The only assumption we made is that #(F(x)) has only one
critical point that is the global minimum, a condition satisfied
by many nonconvex functions, for example, invex functions
of Ben-Israel and Mond (1986). In this way, the ArchBoost
algorithm can be applied to a broad family of nonconvex
loss functions (see Section 3). Moreover, note that the weak
hypotheses of the least-square loss and modified least-square
loss (Table 2) depend on the current estimate F (x) and the
weighted conditional probability Pwt (Y = 1|x), which is differ-
ent from that of Gradient boosting (Friedman 2001). Observe
that the Gradient boosting effectively fits a least-square method
on pseudo-responses (see step 4 of Gradient boost that approx-
imates Equation (9) therein), and hence the optimal weak
learner is not chosen robustly. ArchBoost is an improvement
as it designs a fully robust algorithm. Moreover, Gradient boost
does not define the weights w and hence has a very different
viewpoint. Although it can be applied to nonconvex losses using
the simple steepest descent, the solution is unstable and the cor-
responding algorithms using our nonconvex losses (Section 3)
behave even worse than LogitBoost.

3. Robust Nonconvex Loss Functions

Not every nonconvex function is a valid candidate for the devel-
oped ArchBoostmethod. Any binary classification problem can
be written as

min
v∈R

[
P(Y = 1|x)φ(v )+ P(Y = −1|x)φ(−v )

]
, (9)

where v := YF(x) is the margin. We assume that (9) has a
unique optimal solution in R for every x ∈ X . Note that this
condition is not equivalent to the convexity of φ but rather to
the local convexity around the true parameter of interest.

Definition 1. A function φ is an ArchBoosting loss function if it is
differentiable and (i) φ(v ) ≥ 0 for all v ∈ R and infv∈R φ(v ) =
0; (ii) for any 0 < α < 1, αφ(v )+ (1 − α)φ(−v ) has only one
critical point v∗, which is the global minimum; (iii) for any 0 ≤
α ≤ 1 and α ̸= 1

2 , inf{αφ(v )+ (1 − α)φ(−v ) : v(2α − 1) ≤
0} > inf{αφ(v )+ (1 − α)φ(−v ) : v ∈ R}.

Conditions (i) and (iii) together imply that φ is an upper
bound of the 0–1 loss up to a constant scaling. Condition
(iii) is called “classification calibration” (Bartlett, Jordan, and
McAuliffe 2006) and is satisfied as long as φ is convex, differen-
tiable andφ

′
(0) < 0. It is considered theweakest possible condi-

tion for the resulting classifier to be Bayes-consistent. However,
when considering nonconvex losses, the set of regularity condi-
tions does not exists in the current literature.
Lemma 1. All continuously differentiable convex functions φ :
R → R+ such that φ

′ is not a constant satisfy Condition (ii).
Moreover, all positive, continuously differentiable functions φ

such that φ
′
(v ) ̸= 0 for all v ∈ R, satisfy Condition (ii) as

long as the function g : (0,∞) → (0, 1), defined as g(v ) :=
φ

′
(−v )/φ

′
(v ) is strictly increasing and surjective.

By Lemma1, the logistic, exponential, least-square, andmod-
ified least-square losses are all valid ArchBoosting losses. Differ-
entiability of the loss is a noncrucial, technical condition and the
hinge loss can be shown to satisfy Conditions (i)–(iii). However,
the sigmoid loss φsig(v ) = (1+ ev )−1 does not satisfy Condi-
tion (ii).

Observe that the right-hand side of (4) does not depend on
the loss function φ and can take values in the positive real line
R+. Hence, we can parameterize it with any strictly increasing
surjective function g : R → R+, that is, φ

′
(−v )/φ

′
(v ) = g(v ).

The classical motivation for reparameterization (McCullagh
and Nelder 1989)—often called link functions—is that one uses
a parametric representation that has a natural scalematching the
desired one. One such function satisfying second part of Lemma
1 is g(v ) = e(γ−1)v with constant γ > 1. This parameterization
is not unique but it admits a solution to the differential equation
φ

′
(−v )/φ

′
(v ) = e(γ−1)v . The solution (see supplement) is a

family of nonconvex losses, which we name γ -robust losses,

φγ (v ) = 2γ (1+ ev )−γ , γ > 1. (10)

We plot the γ -robust losses and the corresponding normalized
weight updating functions in Figure 2. Parameter γ is not a
tuning parameter, but rather an index of a family of nonconvex
losses much like Huber and Tukey’s biweight losses. All φγ

are bounded functions (≤ 2γ ) and hence the effects of the
outliers are necessarily bounded. Moreover, the weight updat-
ing rules down-weights the largely misclassified data points.
When γ = 1, the weight updating curve is equivalent to the
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Figure . γ -robust losses, φγ , and the corresponding normalized weight updating rules.

sigmoid loss φ(v ) = 1 − tanh(λv ) when λ = 1/2 (Mason et al.
1999). Moreover, for γ = 2, the loss φ2 is similar to the Savage
loss φ(v ) = (1+ e2v )−2 of Mesnadi-Shirazi and Vasconcelos
(2009), in which they used the probability elicitation technique.
The following Lemma 2 allows us to use φγ together with the
ArchBoost method. The resulting family of robust boosting
algorithms, named Adaptive Robust Boost-γ (ARB-γ ), are
presented in Algorithm 2.

Lemma 2. For all γ > 1, φγ is an ArchBoosting loss function.

Algorithm 2 Adaptive Robust Boost (ARB)-γ
Given: (x1, y1), . . . , (xn, yn), initialize the weight vectorw0,
for example, w0(xi, yi) = 1/n
for t = 1, . . . ,T do

3: (a) Normalize the weight vector wt = wt/
∑

i wt (xi, yi)
(b) Compute the weak classifier to obtain a class proba-

bility estimate Pwt (Y = 1|x) ∈ [0, 1],
using weights wt on the training data.

6: (c) Set ht (x) = log Pwt (Y=1|x)
Pwt (Y=−1|x) ∈ R̄.

(d) Find αt by solving empirical counterpart of (7).
(e) Set Ft (x) = Ft−1(x)+ αtht (x)

9: (f) Set wt+1 = eyFt (x)(1+ eyFt (x))−γ−1

end for
Output the classifier: sign (FT (x))

4. Theoretical Considerations

Despite the substantial body of existing work on boosting classi-
fiers (e.g., Freund 1995; Friedman, Hastie, and Tibshirani 2000;
Koltchinskii and Panchenko 2002; Breiman 2004; Zhang and Yu
2005; Bartlett, Jordan, and McAuliffe 2006), research on robust
boosting has been limited to methodological proposals with lit-
tle supporting theory (e.g., Littlestone 1991; Kearns and Li 1993;
Gentile and Littlestone 1999; Nock and Lefaucheur 2002; Kalai
and Servedio 2005; Rosset 2005; Lutz, Kalisch, and Bühlmann
2008; Bootkrajang and Kaban 2013; Miao et al. 2015; Martinez
and Gray 2016).

4.1. Numerical Convergence

In this section, we discuss the numerical convergence of the
ArchBoost algorithm whenever the loss φ belongs to the class
of ArchBoosting loss functions. The main difference from the

existing work (e.g., Koltchinskii and Panchenko 2002; Zhang
and Yu 2005) is that they used the gradient descent rule in the
first article or an approximate minimization in the second one,
while we only use the hardness condition to select the weak
hypothesis h. Here,FT is a set ofT-combinations of functions in
H, more precisely, FT = {F : F =

∑T
t=1 αtht ,αt ∈ R, ht ∈ H}.

Then every f ∈ ∪∞
T=1FT can be represented as

∑
h∈Hf

αhh for
an appropriate subset H f ⊂ H, and its l1-norm is defined as∑

h∈Hf
|α(h)|, and its l2-norm as

∑
h∈Hf

√
|α(h)|2. Finally, let { f̄t}

be a sequence of reference functions with empirical risk con-
verging to R∗

φ,n = infF∈∪∞
T=1FT R̂φ,n(F ).

Condition 1. (i) φ is Lipschitz differentiable; (ii) µ̂(ht ,wt ) =
(1/n)

∑n
i=1Yiht (Xi)wt (Xi,Yi) → 0 as t → ∞; (iii) the step

sizes αt satisfy
∞∑

t=1
αt = ∞,

∞∑

t=1
α2
t < ∞,

∞∑

t=1

αt+1ξt log t
tct

< ∞,

for some ξt = o(1), ξt ≥ 0; (iv) f̄t satisfies || f̄t − Ft ||1 =
o(log t ), || f̄t − Ft ||22 ≤ || f̄t−Ft ||21

tct where ct → 0 and tct → 1 as
t → ∞.
Theorem 1. Let φ be an ArchBoosting loss function and assume
the weak learner is able to divide the domain X into disjoint
regions and give the class probability estimations (e.g., deci-
sion tree). Let FT be the ArchBoost classifier, then R̂φ,n(FT )
will converge in R as T → ∞. In addition, under Condition 1,
R̂φ,n(FT ) → R∗

φ,n as T → ∞.

Unlike existing results, Theorem 1 does not require any addi-
tional algorithmic tuning parameters (see Theorem 3.1 of Zhang
and Yu 2005 and choices of εt ,(t ). It is worth mentioning again
that the proof techniques in the existing literatures do not extend
to nonconvex losses. We bridge the gap by developing new anal-
ysis. Results in Bartlett and Traskin (2007) (e.g., Theorem 6)
hold under an assumption of a positive lower bound on theHes-
sian of the empirical risk, which is strictly violated by any non-
convex loss. Furthermore, Theorem 1 allows the approximate
minimization step (7) to be inexact (by contrast, see Theorem 6
of Bartlett and Traskin 2007).

Remark 1. The reference sequence { f̄t} needs to be in a local
neighborhood of Ft . For all f̄t such that || f̄t ||1 = o(log(t )), the
condition further reduces to || f̄t − Ft ||1 ≤ || f̄t − 0||1, that is, the
distance between f̄t and Ft is smaller than the distance between
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f̄t and a random guess. This can be achieved by shrinking the
step sizes αt at a constant rate over every iteration.Moreover, the
effects of the second constraint regarding f̄t can be explained as
a nonsparsity assumption on the difference between Ft and f̄t ,
and is asymptotically negligible because tct → 1 when t → ∞,
which leads to the trivial inequality between l1 and l2 norms.

Remark 2. The classical conditions that are guarding against
infinitely small step sizes are now supplemented with an addi-
tional constraint

∑∞
t=1 t−ctαt+1ξt log t < ∞. For example, if

ξt = O(t−1), then we can choose αt = O(t−b−ct ) where b is
any positive constant and ct can converge to 0 at any speed.
However, if ξt = O((log t )−1), we need ct → 0 slowly (e.g.,
O((log log t )−1)) andαt can be chosen asO(t−1). The additional
constraint on the step size choice acts as a penalty on allowing
nonconvex loss functions (Zhang and Yu 2005).

4.2. Robustness

In this section, we quantify and justify the robustness of Arch-
Boost Algorithm 1 through the point of view of the influence
function, as well as that of the finite-sample breakdown point.

... Influence Function
The richest quantitative robustness measure is provided by the
influence function (Hampel 1974) u → IF(u;T,G) of T at G.
It is defined as the first Gâteaux derivative of a functional T at
a distribution P, that is, IF (z;T,P) = limϵ→0+[T ((1 − ϵ)P+
ϵ*z) − T (P)]/ϵ,where*z is theDirac distribution at the point
z such that*z({z}) = 1. It gives the effect that an outlying obser-
vation may have on an estimator. To simplify the analysis, we
consider a subclass of binary classification models, in which the
true boundary F∗ is assumed to belong to a class of functionsH .
Here,H is defined as a reproducing kernelHilbert space (RKHS)
with a bounded kernel k and the induced norm || · ||H . Observe
that ArchBoost is consistent only if it is properly regularized
(stopped after a certain number of steps; see Theorem 5). Hence,
to study its robustness properties we consider a regularized
criterion

fP,λ = argmin
f∈H

{
EP

[
φ(Y, f (X ))

]
+ λ|| f ||2H

}
.

The loss φ is a function of tuple (Y, f (X )) only for convenience
of analysis.

The feature map is + : X → H with +(x) = k(x, ·).

Theorem 2. The influence function of fP,λ takes the form
IF(z;T,P) = −S−1 ◦ J, where ◦ is defined to mean S−1

acting on J and operators S : H → H and J ∈ H are
defined as S = EP[φ

′′
(Y, fP,λ(X ))⟨+(X ), ·⟩+(X )]+ 2λidH ,

J = φ
′
(zy, fP,λ(zx))+(zx) − EP[φ

′
(Y, fP,λ(X ))+(X )], where

idH : H → H is the identitymapping and z = (zx, zy) ∈ X × Y
is the contamination point. In the above display, the derivative
is defined as φ

′
(u, v ) := ∂

∂v φ(u, v ).

For a nonconvex loss function φ, φ ′′ is not guaranteed to be
nonnegative. However, we show that it is sufficient to have the
nonnegativity of the expectation (locally around F∗) rather than
of the second derivative itself.

Lemma 3. For a binary classification problem, given any distri-
bution P, whenever φ is a twice continuous differentiable Arch-
Boosting loss function, then EP[φ

′′
(Y, F∗(X ))q2(X )] ≥ 0 for

any measurable function q : X → R. Furthermore, if P and X
are such that P(Y = 1|X = x) ∈ [δ, 1 − δ] for some 0 < δ < 1

2 ,
and if pφ ′′

(1, v∗
p)+ (1 − p)φ ′′

(−1, v∗
p) > 0 at the global mini-

mum v∗
p for all p ∈ [δ, 1 − δ], then there exists r > 0 such that

EP[φ
′′
(Y,G(X ))q2(X )] ≥ 0 for all measurable function G with

||G − F∗||∞ < r.

Conditions of the above lemma are satisfied for all
γ -robust loss function. With γ = 2 and any x, EY
[φ ′′

(Y, F∗(X ))q2(X )|X = x] = 2p2x(1 − px)2q2(x) ≥ 0 where
px = P(Y = 1|X = x). Thus, EPφ

′′
(Y, F∗(X ))q2(X ) ≥ 0.

Furthermore, if px ∈ [δ, 1 − δ] for some δ ∈ (0, 1
2 ), then

pxφ
′′
(1, F∗(x))+ (1 − px)φ

′′
(−1, F∗(x)) = 2p2x(1 − px)2 ≥

2δ2(1 − δ)2 > 0 for all px ∈ [δ, 1 − δ]. (Observe that the con-
dition of px ∈ [δ, 1 − δ] for some δ ∈ (0, 1

2 ) restricts our setting
to the “low-noise” setting where the true probability of the class
membership is bounded away from 0 or 1.)

Theorem 3. For a binary classification problem, let φ : R →
[0,∞) be a twice continuously differentiable ArchBoosting loss
function and letH be an RKHS with bounded kernel k. Assume
P is a distribution on X × Y such that for all x ∈ X , P(Y =
1|X = x) ∈ [δ, 1 − δ] for some 0 < δ < 1

2 , and pφ ′′
(1, v∗

p)+
(1 − p)φ ′′

(−1, v∗
p) > 0 at the global minimum v∗

p for all p ∈
[δ, 1 − δ]. Then there exists r > 0 such that for all || fP,λ −
F∗||∞ < r,

||IF(z; fP,λ,P)||H ≤
√
Cφ

λ
+

Mk|φ
′
(zy, fP,λ(zx))|

2λ
, (11)

whereMk is the upper bound of the kernel k andCφ = φ(0, 0).

Theorem 3 shows that the robustness mainly comes from
the diminishing property of |φ ′ |. In fact, for any noncon-
vex ArchBoosting loss function, due to Assumption 2, we
have |φ ′

(zy, fP,λ(zx))| → 0 when |zy f (zx)| → ∞. If we plot
∥IF (z; fP,λ,P)∥H versus zy fP,λ(zx), then it will decrease toward
a constant far from the origin, much alike the redescendingM-
estimators.Moreover, Theorem 3 implies that ∥IF (z; fP,λ,P)∥H
is unbounded for the exponential loss (AdaBoost), bounded but
not diminishing for the logistic loss (LogitBoost) and diminish-
ing for the γ -robust losses (ArchBoost).

... Breakdown Point
Empirical robustness property defined as breakdown point
by Donoho and Huber (1983) has proved most successful in
the context of location, scale, and regression problems (e.g.,
Rousseeuw 1984; Stromberg and Ruppert 1992; Tyler 1994).
This success has sparked many attempts to extend the con-
cept to other situations (e.g., Ruckstuhl and Welsh 2001; Gen-
ton and Lucas 2003; Davies and Gather 2005). However, very
little work has been done in the classification context. The
breakdown point, as defined by Hampel (1968), is roughly the
smallest amount of contamination that may cause an estima-
tor to take on arbitrarily large aberrant values. The break-
down points of 1/n for the mean and 1/2 for the median
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do reflect their finite-sample behavior. However, an alterna-
tive view is desired in the classification context as the mag-
nitude of an estimator may not relate to necessarily bad
classification—that is, the size of the weak hypothesis is not
crucially related to the classification boundary. Instead, in the
context of boosting, we look for the estimator that keeps
the gradient of the risk minimization in the oracle direction.
The meaning of oracle direction will be further explained
in Remark 3. To that end, let Sn = {(X1,Y1), . . . , (Xn,Yn)}
be a set of observed, contaminated samples among which
Om:n = {(Xm+1,Ym+1), . . . , (Xn,Yn)} being a set of outliers.
Let ht be the weak hypothesis and denote the vectors
ht = (ht (X1), . . . , ht (Xn)). Let−gt = (−gt (X1), . . . ,−gt (Xn))

stands for the negative gradient of the empirical risk R̂φ,n
on Sn, whereas−go = (−gt (X1), . . . ,−gt (Xm), 0, . . . , 0) is the
embedding of the negative gradient of the empirical risk on the
sample without outliers Sn \Om:n into Rn.

Theorem 4. For every region Rj, define η j := |p j −
1
2 |/min(p j, 1 − p j), where p j ∈ (0, 1) and p j ̸= 1

2 . Then
at iteration t , if any ArchBoost algorithm, conditional on the
realizations {(Xi,Yi) = (xi, yi)}ni=1, satisfies that for all Rj,

∑

i:xi∈Om:n∩Rj

wt (xi, yi) ≤ η j
∑

i:xi∈Rj\Om:n

wt (xi, yi), (12)

then the gradient descent direction is preserved, that is,
−⟨go, ht⟩ ≥ 0.

Conditions of the above theorem are very mild. Theorem 4
suggests that any ArchBoost algorithm that satisfies the above
conditions preserves the descending direction of the noncon-
taminated empirical φ-risk, hence it minimizes the oracle risk
while disregarding the outliers.

Remark 3. Theorem 4 establishes that whenever (12) holds h
will have a direction along which the oracle empirical risk of
the noncontaminated data decreases. Figure 2 clearly illustrates
that (12) is more likely to be satisfied for the ARB-γ than for
the AdaBoost or the LogitBoost algorithm. For example, if yi =
−1 and P(Y = −1|X = xi) = 0.001, then for Real AdaBoost,
w(xi, yi)/wb ≃ 32, and for ARB-2,w(xi, yi)/wb ≃ 0.008 where
wb is the weight for a data point (xb, yb) such that F∗(xb) = 0. It
can be seen that AdaBoost puts 4000 times more weight on this
outlier data than ARB-2, and hence violates (12).

4.3. Statistical Consistency

Consistency of gradient boosting algorithms has been estab-
lished in the case of convex losses (Jiang 2004; Zhang and Yu
2005; Bartlett, Jordan, and McAuliffe 2006). We develop the
consistency for bounded nonconvex loss functions by explor-
ing local curvatures. By dropping convexity requirement, we add
the boundedness condition on the loss functions, and hence our
theory is exclusively for bounded nonconvex functions.

Condition 2. Let the class of weak hypothesis H satisfy
limT→∞ inf f∈FT Rφ( f ) = R∗

φ for a VC-dimension dVC{H} <
∞. Moreover, the function φ is a decreasing ArchBoosting loss
function that is also bounded and Lipschitz.

For a rich classH, the first part of Condition 2 is true (Bartlett
and Traskin 2007). The class T of binary trees with the number
of terminal nodes larger or equal to d + 1, where d is the dimen-
sion ofX (Breiman 2004) satisfies it. If a loss function φ satisfies
the second part of this condition, then both limv→∞ φ(v ) and
limv→−∞ φ(v ) exist in R, and the first derivative converges to
zero away from the origin. This lessens the effect of gross out-
liers and in turn leads to good robust properties of the resulting
estimator.
Theorem 5. Let Lφ and Mφ be the Lipschitz constant and
the maximum value of φ, respectively. Let V = dVC(H), c =
24

∫ 1
0

√
log 8e

µ2 dµ. Then, under Condition 2, (a) for sequences
Tn, ζn → ∞ and δn → 0 as n → ∞, there exists a sequence
En(ζn) → 0 such that, with probability at least 1 − δn,

sup
f∈FTn

|R̂φ,n( f ) − Rφ ( f )| ≤ cζnLφ

√
(V + 1)(Tn + 1) log2(

2(Tn+1)
log 2 )

n

+Mφ

√
log 1

δn

2n
+ En;

(b) sup f∈FTn |R̂φ,n( f ) − Rφ( f )| → 0 a.s. if Tn = n1−ε , ε ∈
(0, 1); (c) with the same Tn, Rφ( f ∗

n ) → R∗
φ a.s. where f ∗

n =
argmin f∈FTn Rφ,n( f ).

Theorem 5 illustrates the uniform deviation between the
φ-risk and the empirical φ-risk. Note that we want Tn →
∞ as n → ∞ but not too fast (slower than O(n)). More-
over, from part (b), there exists a sequence of samples {S∗

n}∞n=1
such that Rφ( f̃n) → R∗

φ as n → ∞. Here, f̃n is the opti-
mal classifier obtained by minimizing the empirical risk on
S∗
n. Given any sample Sn, the misclassification error of any
classifier f on Sn is L( f ) = P( f (X ) ̸= Y |Sn). The Bayes
risk is then defined as L∗ = inf f∈M L( f ) = EX [min(η(X ), 1 −
η(X ))], where η(X ) = P(Y = 1|X ) andM stands for the fam-
ily of all measurable functions. Next we state the intermediary
lemma that connects the reference sequence f̃n to theArchBoost
estimator FTn .

Lemma 4. For the above reference sequence { f̃n}∞n=1 and a non-
negative sequences Tn = n1−ε , ε ∈ (0, 1), and with the choice
of αt as in Theorem 1, we have as n → ∞, (a) (R̂φ,n( f̃n) −
Rφ( f̃n))+ → 0 a.s. and (b) (R̂φ,n(FTn ) − R̂φ,n( f̃n))+ → 0 a.s.

Theorem 6. Assuming conditions of Theorem5hold. Then, with
the stopping time Tn as in Theorem 5 and the step size αt as in
Theorem 1, the ArchBoost classifier FTn satisfies L(sign(FTn )) →
L∗ a.s. as n → ∞.

5. Numerical Experiments

In this section, we provide an extensive simulation and real
data analysis illustrating superior performance of theArchBoost
framework and ARB-γ algorithms in particular.

5.1. Gaussian–StudentMixture

In this section, design X ∼ N (0,0p), and we define the ellipti-
cal boundary according to the median of ∥X∥22, that is, Y = 1
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Figure . Comparison of average test errors of ARB-γ , AdaBoost, and LogitBoost.

if and only if XT0−1X ≥ median(X 2
p ). In the first example,

p = 10 and 010 = I10 with n = 12,000 and 2000 of them are
used as a training sample (Hastie et al. 2005). In the second and
third example, we let [0p]i j = (0.3)|i− j| be a Toeplitz matrix
with p = 10 and p = 100, respectively. In the third example,
n = 36,000 with 6000 used for training. In all experiments, we
use fivefold cross-validation and use decision tree as the weak
learner with the tree depth set to be 1 (decision tree stump) for
p = 10 and tuned to be 3 when p = 100. For RobustBoost, the
maximum stopping times are set to be 1000 when p = 10, and
3000 when p = 100. Additional noise in observations is gener-
ated from t-distributionwith 4 degrees of freedom andwith cor-
relation structure that parallels the one of X .

Figure 3 implies several observations. First, the test errors
of the ARB-γ algorithms are all less than that of the Real
AdaBoost or LogitBoost for correlated and uncorrelated fea-
ture space and low and higher dimensional problems. Second,
when the percentage of outliers is small, the performances of
ARB-2 are the best. When the noise level is higher, ARB-1.5
behaves the best. Hence, if we were to “tune” γ for ARB-γ algo-
rithms, for example, choose ARB-2 when noise level is less than

25% and ARB-1.5 otherwise in Figure 3(a), then ARB-γ is uni-
formly better than both AdaBoost and LogitBoost. At last, the
performances of ARB-γ is very similar to the performance of
AdaBoost or LogisticBoost when γ gets larger, allowing cer-
tain flexibility in the hardness of the robustness belief. If one is
more certain of the cleanliness of the data, larger γ may provide
a compromise between robustness and nonrobustness. There-
fore, in practice, we recommend to choose γ to be 1.5 or 2.
Choosing γ too large will depress the robustness of the algo-
rithm, and choosing γ too close to 1 will lead to unnecessary
instability.

5.2. Comparisonwith Nonconvex Gradient Boost

To illustrate that nonconvexity is not the only feature that
enables ArchBoost to have great performance, we showcase
that it behaves much better than the Gradient boost with a
1.5-robust loss function (10). It is worth pointing out that
such Gradient boosting must be implemented using steep-
est descent methods and that nonconvexity of the loss leads
to high instability of estimates over iterations. We contrast

Figure . Comparisons with nonconvex gradient boost and consistency.
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Figure . Comparison of ARB-γ on Long/Servedio problem with different ϵ.

the methods by generating samples from the model as in
Figure 3(a).

From Figure 5(a), we immediately observe that for every
choice of γ , the ARB-γ achieves lower test error than the cor-
responding Gradient boost with γ -robust loss with the differ-
ence being larger for larger number of outliers and larger γ .
We observe that similarly as before ARB-2 achieves smallest
error (5%,9%) if the percentage of outliers is smaller than 20%
whereas ARB-1.5 achieves smallest error (9%,11%) if the per-
centage of outliers is larger than 20%. The corresponding test
errors for Gradient boost with 2 and 1.5-robust loss are much
higher (ranging from (11%,19%) to (21%,35%), respectively).

5.3. Consistency

To show consistency of the proposed ArchBoost algorithms, we
generate iid data from the model as in Figure 4(a) but now vary-
ing sample sizes exp(k)+ 20,000, for k = 5, 6, . . . , 13. Thenwe
use exp(k) data for training and the rest 20,000 for testing. In
Figure 4(b), we can see that the test error is indeed decreasing to
0 for various percentages of outliers. The higher the number of
outliers, the larger the sample size n should be for the algorithm
to converge. This is not unexpected as the outliers are effectively
eating up (shrinking) the sample size (the algorithm is discard-
ing them successively in each iteration).

5.4. The Long/Servedio Problem

Long and Servedio (2010) constructed a challenging experi-
mentwithX ∈ R21 with binary featuresXi ∈ {−1,+1} and label
yi ∈ {−1,+1}. First, the label y is chosen to be −1 or +1 with
equal probability. Then for any given y, the featuresXi are gener-
ated according to the followingmixture distribution: Large mar-
gin: With probability 1

4 , set Xi = y for all 1 ≤ i ≤ 21. Pullers:
With probability 1

4 , set Xi = y for 1 ≤ i ≤ 11 and Xi = −y for
12 ≤ i ≤ 21. Penalizers:With probability 1

2 , randomly choose 5
coordinates from the first 11 features and 6 from the last 10 to
be equal to y. The remaining features are set to −y. We gener-
ate 800 samples and flip each label with probability ϵ ∈ [0, 0.5).
The data from this distribution can be perfectly classified by
sign(

∑
i Xi). The classifiers are trained using the noisy data and

tested on the original clean data (Freund 2009). In total, 20
datasets are generated, and on each of them, 10% of the labels
were flipped. Stopping times of the algorithms are T ≤ 800.
The average test errors and sample deviations are reported in
Table 3, from which we conclude that the ARB-2 outperforms
Real AdaBoost and LogitBoost, and is even better than Robust-
Boost (target parameter θ = 0.15).

Figure 5 shows the average test errors and the 95% con-
fidence intervals of different ARB-γ algorithms. The conclu-
sion is that ARB-1.5 behaves uniformly better than all the
other algorithms. The breakdown point will get higher when
γ → 1+, implying that smaller γ leads to better robustness
properties.

5.5. Outlier Detection

In this experiment, we generate 2000 data points as in
Section 5.1, and add noise to the first ϵ percentage. After
800 iterations, we record the times that each data point is
misclassified, and count how many of the points that are mis-
classified more than 600 times (denoted as T ) actually belong
to the noisy set (denoted as To). The ratio To/T and the results
are shown in Table 4. When the percentage of outliers is less
than 15%, for the ARB-2, more than 99% of the points that
have been misclassified for more than 600 times are indeed
the outliers, but for the Real AdaBoost, this number is only
around 31%. Informally, for ARB-2, when ϵ ≤ 15%, we have
more than 99% “confidence” to conclude that a data point,
which is misclassified for more than 600 times, is indeed an
outlier.

5.6. Real Data Application

We consider the Wisconsin (diagnostic) breast cancer data
(https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisco-
nsin+(Diagnostic)) with ten real-valued features computed for
each cell nucleus (radius, texture, perimeter, area, smoothness,
compactness, concavity, concave points, symmetry, fractal
dimension) for 569 individuals, with 357 benign and 212
malignant cells.

The training set has 150 benign samples and 150 malignant
samples, randomly obtained. The maximum stopping time is
set to be 200. We use tree stump as the weak learner in all
three problems. Results are reported in Table 5 and in Figure 6.
Observe thatARB-2 behaves the best on the original dataset, and
ARB-1.5 outperforms others in the presence of noise. Compared
to Stefanski, Wu, and White (2014) and their test error rate of
4%, ourmethods uniformly achieve smaller and comparable test
error rates on the clean and perturbed datasets.

Next, we consider a dataset that is part of the “MicroArray
quality control II” project with accession number GSE20194
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20194).

The dataset contains 278 newly diagnosed breast cancer
patients, aged from 26 to 79 years spanning all three major
races and their mixtures. Estrogen-receptor status helps guide
treatment for breast cancer patients. Of 278 patients, 164 had
positive estrogen-receptor status (PERS) and 114 have negative
estrogen-receptor status (NERS). Each sample includes 22,283
biomarker probe-sets.
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Figure . Comparison of ARB-, ARB-., RobustBoost, and Real AdaBoost on the GSE gene dataset, from left to right are the boxplots for the test errors of ARB-,
ARB-., RobustBoost, and AdaBoost.

Figure . Comparison of ARB-, ARB-., RobustBoost, and Real AdaBoost on the UCI sensorless drive diagnosis dataset. In each subfigure, from left to right are the boxplots
for the test errors of ARB-, ARB-., RobustBoost, and AdaBoost.



670 A. H. LI AND J. BRADIC

Table . Long/Servedio problem.

Data type Real AdaBoost LogitBoost RobustBoost (θ = 0.15) ARB-

noise(ϵ = 0.1) 28.24%(1.53%) 26.61%(1.51%) 11.04%(0.67%) 9.82%(0.43%)
clean 25.07%(1.92%) 22.59%(1.74%) 0.21%(0.35%) 0.02%(0.04%)

Table . Outliers detection. The x-axis stands for the index of the training points
ranging from  to , and the y-axis stands for the times a point is misclassified,
ranging from  to .

ϵ ARB- AdaBoost

.

To/T 100% 30.49%

.

To/T 99.04% 37.38%

0.1

To/T 100% 32.22%

.

To/T 85.48% 44.40%

We choose 3000 probe-sets with the smallest p-values in the
two-sample t-test (e.g., Zhang et al. 2014). We randomly choose
50 samples with PERS and 50 samples with NERS for a train-
ing set. Then the labels of the training samples are randomly
flipped. The stopping time is set to be at most 100. Results are
summarized in Table 6 and in Figure 6. The best test errors of
15% and 9% were achieved by Deshwar and Morris (2014) and
Zhang et al. (2014), respectively. However, our methods achieve

Table . Comparison of the average test errors and sample deviation (over  rep-
etitions and using five-fold cross-validation) of four algorithms on the Wisconsin
breast cancer dataset.

Methods
Percentage of
flipped labels ARB- ARB-. RobustBoost

% 3.47%(1.41%) 3.43%(1.34%) 4.71%(1.70%)

% 4.80%(1.79%) 4.47%(1.75%) 4.82%(1.66%)

% 5.85%(1.82%) 5.11%(1.79%) 5.44%(1.81%)
% 6.67%(2.18%) 5.92%(2.22%) 6.53%(2.20%)

GradientBoost-. LogitBoost AdaBoost

% 5.44%(1.76%) 4.82%(1.85%) 4.06%(1.58%)
% 6.29%(1.81%) 5.64%(1.97%) 5.43%(2.04%)
% 7.34%(1.99%) 6.19%(1.81%) 6.33%(1.85%)
% 8.11%(2.46%) 6.83%(2.28%) 7.07%(2.37%)

errors comparable to those even when the labels were randomly
perturbed.

Finally, we compare ARB-2, ARB-1.5, RobustBoost, and
Real AdaBoost on the sensorless drive diagnosis dataset
(https://archive.ics.uci.edu/ml/datasets/Dataset+for+Sensorless+
Drive+Diagnosis).

We have 58,509 samples and each with 49 features and 11
different classes; 14,000 points are chosen and then from these,
2000 are used for training and 2000 for validation. The stopping
times are set ≤ 3000. The test errors on clean data are summa-
rized in Table 7 and Figure 7. RobustBoost behaves worse and
the best for 10% or 15% and 0% of the labels flipped, respec-
tively. With higher levels of the noise, the test errors of ARB-1.5
andRobustBoost are very closewithARB-1.5 not needing tofine
tune any target parameters.

5.7. Literature Review

There have been considerable efforts focused on designing
methods that adapt to the error in the data: outliers and/or mis-
labeling of the observations. In the existing work, algorithms
of Grünwald and Dawid (2004) achieve provable guarantees
(Kanamori et al. 2007; Natarajan et al. 2013) when contamina-
tion model (Blanchard et al. 2016) is known or when multiple

Table. Comparison of the average test errors and sample deviation (over  repe-
titions andusing five-fold cross-validation) of four algorithms on theGSEgene
dataset.

Methods
Percentage of
flipped labels ARB- ARB-. RobustBoost

% 9.40%(1.89%) 9.31%(1.96%) 10.19%(2.05%)
% 10.02%(2.64%) 9.88%(2.67%) 11.21%(2.89%)
% 12.04%(4.92%) 11.97%(4.67%) 12.39%(4.11%)
% 15.72%(6.91%) 15.70%(6.56%) 14.58%(5.93%)

GradientBoost-. LogitBoost AdaBoost

% 9.87%(1.91%) 9.54%(2.31%) 9.63%(2.22%)
% 10.16%(2.40%) 10.21%(3.32%) 10.17%(3.07%)
% 12.31%(3.35%) 12.14%(5.16%) 12.34%(5.07%)
% 16.12%(5.94%) 16.32%(7.20%) 16.79%(7.07%)

Table . Comparison of the average test errors and sample deviation (over
 repetitions) of four algorithms on the Sensorless drive diagnosis dataset.

Methods
Percentage of
flipped labels ARB- ARB-. RobustBoost

% 5.79%(0.50%) 5.21%(0.41%) 6.82%(0.42%)
% 9.49%(0.69%) 8.06%(0.83%) 8.74%(0.67%)
% 12.21%(0.79%) 10.80%(0.91%) 10.69%(0.85%)
% 14.34%(1.01%) 12.85%(0.89%) 12.81%(1.10%)

GradientBoost-. LogitBoost AdaBoost

% 12.52%(1.45%) 6.18%(0.48%) 6.77%(0.50%)
% 13.98%(1.30%) 10.30%(0.67%) 11.86%(0.79%)
% 16.00%(1.41%) 12.10%(0.72%) 13.99%(0.80%)
% 19.31%(1.61%) 14.97%(0.88%) 17.34%(0.89%)
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noisy copies of the data are available (Cesa-Bianchi, Shalev-
Shwartz, and Shamir 2011), good generalization errors in the
test set are by no means guaranteed. This problem is com-
pounded when the contamination model is unknown, where
outliers need to be detected automatically. Despite progress on
outlier-removing algorithms, significant practical challenges
(due to exceedingly restrictive conditions imposed therein)
remain. Hence, a classification method that does not rely on
the specified model of the corruption in the observations is still
unavailable.

As boosting algorithms use observed data distribution over
iterations, they may provide a robust alternative to the exist-
ing classification methods. Among the boosting algorithms, the
most famous one is AdaBoost (Freund and Schapire 1997) that
averages simple estimators (classifiers) from reweighed data
over a sequence of iterations. It is the first adaptive boosting
algorithm because the update at each iteration is a direct func-
tion of the classification error of the previous step. AdaBoost
then attracted much attention from statistics community, and
has proven to be simple and effective (Zhang and Yu 2005).
Breiman (1998, 1999) showed that AdaBoost is a gradient
descent method in function space and Friedman, Hastie, and
Tibshirani (2000) viewed AdaBoost as a gradient-based incre-
mental search for an additive model using the exponential loss
function. By observing that the exponential criterion is equiv-
alent to the binomial log-likelihood criterion to the second
order, Friedman, Hastie, and Tibshirani (2000) also proposed
the LogitBoost algorithm. All these algorithms depend on stan-
dard convex optimization techniques like the Newton method.
The descent method viewpoint then extends the usage of boost-
ing to the context other than classification. For example, Fried-
man (2001) developed gradient boosting method for regression
using squared error loss, andMason et al. (1999) generalized the
boosting idea to wider families of loss functions.

Nevertheless, in the presence of the label noise and/or
outliers, the existing methods face significant challenges (Diet-
terich 2000). AdaBoost is known to be very sensitive to noise
(Freund and Schapire 1996; Maclin and Opitz 1997; Dietterich
2000) because of the exponential criterion it uses. The weights
on repeatedly misclassified data increase exponentially fast,
which leads AdaBoost to overfit the noises. Algorithms like
LogitBoost, MadaBoost (Domingo and Watanabe 2000), Log-
lossBoost (Collins, Schapire, and Singer 2002) are able to better
tolerate noise than AdaBoost because they use loss functions
that give much slower weights growth rate than ex. However,
they are still not insensitive to outliers or provably robust. In
fact, any boosting algorithm with convex loss is highly suscepti-
ble to a random label noise as pointed out by Long and Servedio
(2010).

Boost by majority (BBM; Freund 1995) follows a very dif-
ferent mechanism and can give up on repeatedly misclassified
observations because it has a preassigned number of boosting
iterations. Hence, the weights updating rule of BBM is non-
convex. However, the nonadaptiveness of BBM prevents its
practical usage because the uniform bound 1/2 − γ (γ > 0)
on the errors of weak learners are hard to achieve. BrownBoost
(Freund 2001) combines the nonconvexity of BBM and the
adaptiveness of AdaBoost, and RobustBoost (Freund 2009) is
developed based on BrownBoost and further adapts to the idea

of margin maximization which is believed to be the reason for
the good generalization performance of AdaBoost (Freund and
Schapire 1999; Rätsch, Onoda, and Müller 2001; Shapire 2003).
However, BrownBoost hinders upon an extra tuning parameter,
target error ϵ, and RobustBoost depends on both target error ϵ

and maximum margin θ . These tuning parameters make both
algorithms highly inconsistent with respect to minor changes in
the population parameter settings. Furthermore, both Brown-
Boost and RobustBoost do not fit in the mainstream boosting
algorithms that analytically minimize a convex loss function.
They solve two differential equations for two unknowns at each
iteration, and the loss function (which they call potential func-
tion) changes after every iteration and converges to the 0–1 loss.
Although stable in simulations, the statistical properties and
robustness are unknown. Therefore, a natural question is: how
do we formally develop an adaptive, mainstream and robust
boosting algorithm that has a nonconvex loss function and has
provable robustness properties? In this article, we address this
question and propose a fully automatic estimator, ArchBoost,
with no tuning parameters, that has provable robustness guar-
antees. Since ArchBoost does not require the knowledge of the
erroneous labels, or the knowledge of the errors themselves, one
can probe the utilities of the algorithm in the extremely wide
scope of heterogenous problems.

ArchBoost keeps the initial motivation of the boost by
majority method in that the algorithms gives up on repeatedly
misclassified observations. However, unlike BBM or Robut-
Boost it does so without requiring any pretuning of the error
or maximum margin. ArchBoost adaptively learns which
data to give up on without a priori intervention. Additionally,
ArchBoost keeps the reweighing flavor of the AdaBoost or
GradientBoost algorithms but it differs in the way it minimizes
the empirical risk function as it allows for nonconvex losses.
While GradientBoost uses least-square and Newton criterions
for finding the optimal classifier, ArchBoost uses the hardness
condition to define an estimating equations and solves the equa-
tions directly (not approximately). Because of that, ArchBoost
does not reduce to the existing methods when the loss function
of choice is a recognized convex loss, for example, ArchBoost
does not reduce to the L2Boost when the loss is the least-square
loss.

5.8. Discussion

We showed that ArchBoost algorithms with nonconvex losses
are robust alternatives to the popular gradient boosting type
algorithms. We illustrated that the algorithm works for a very
general class of loss functions (see Definition 1). Additionally,
the robustness, summarized in Theorems 3 and 4, holds for
an arbitrary Lipschitz loss function. Hence, it presents novel
proof of why is LogitBoost more robust than the AdaBoost, a
folklore observation made by many experts in the field. The
statistical consistency proof is centered around “tilted” loss
functions that are nonconvex in particular. We believe that
nonconvex losses have great and unexplored potential for
robust high-dimensional statistics. The framework of “tilted”
loss functions is very general and can very well be explored for
robust variable selection and estimation through an appropriate
penalization scheme. Moreover, it is very well known that the
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impact of outliers is multiplied in case of inferential problems,
such as confidence intervals and testing. By screening out many
large outliers, “tilted” losses may significantly improve upon
asymptotic efficiency.

Appendix A: Proof of Theorem 1

Proof of Theorem 1(a). First, we show that at each iteration t , as
long as the empirical margin µ̂(wt , ht ) is positive, the empirical
risk decreases by adding the weak hypotheses ht to the current esti-
mate. Second, we show that the weak hypothesis returned by our
ArchBoost algorithm always has a positive empirical margin before
convergence.

Step 1. On the sample Sn, denote Ft−1 =
(Ft−1(x1), . . . , Ft−1(xn)). Denote the partial deriva-
tive w.r.t. F(Xi) as gt (Xi) = [ ∂R̂φ,n(F)

∂F(Xi )
]F(Xi )=Ft−1(Xi ) =

1
nYiφ

′
(YiFt−1(Xi)). Then the gradient of R̂φ,n at Ft−1

is ∇R̂φ,n(Ft−1) = 1
ng for g = (gt (X1), . . . , gt (Xn))

⊤.
Recall that wt (Xi,Yi) = −φ

′
(YiFt−1(Xi)) for each

i = 1, . . . , n. Suppose that we choose a weak
hypothesis ht with positive empirical margin w.r.t.
weights wt , that is, µ̂(ht ,wt ) > 0, and denote ht =
(ht (X1), . . . , ht (Xn)). Then ⟨−∇R̂φ,n(Ft−1), ht ⟩ =
1
n
∑n

i=1Yiht (Xi)wt (Xi,Yi) = µ̂(ht ,wt ) > 0, where
⟨·, ·⟩ is the standard inner product in Rn. Therefore,
we have ⟨−∇R̂φ,n(Ft−1), ht⟩ > 0 ⇐⇒ µ̂(wt , ht ) > 0.
Next, observe that if ⟨−∇R̂φ,n(Ft−1), ht ⟩ > 0, then ht
is a descending direction of R̂φ,n(F) at Ft−1, therefore
R̂φ,n[Ft ] = R̂φ,n[Ft−1 + αtht ] < R̂φ,n[Ft−1]. Note that
an appropriate step size αt can be found by the line
search αt = argminα R̂φ,n[Ft−1 + αht ]. In summary,
if at step t , we choose a base learner ht such that
µ̂(wt , ht ) > 0 and choose a suitable step size αt either
by line search or set to be appropriately small, then

R̂φ,n(Ft ) < R̂φ,n(Ft−1). (A.1)

Step 2. In any region Rj
t , ht ≡ γ

j
t . Then, ⟨−gt , ht ⟩ =∑Jt

j=1
∑

i∈Rj
t
Yiwt (Xi,Yi)γ

j
t =

∑Jt
j=1 γ

j
t (Pwt (Y = 1|X

∈ Rj
t ) − Pwt (Y = −1|X ∈ Rj

t ))
∑

i∈Rj
t
wt (Xi,Yi).

From (6), we have φ
′
(−Ft (x))

φ
′
(Ft (x))

= Pwt (Y=1|x)
Pwt (Y=−1|x)

φ
′
(−Ft−1(x))

φ
′
(Ft−1(x))

.

Observe that if Pwt (Y = 1|x) > Pwt (Y = −1|x), then
φ

′
(−Ft (x))

φ
′
(Ft (x))

> φ
′
(−Ft−1(x))

φ
′
(Ft−1(x))

. By second part of Lemma 1,
Ft (x) > Ft−1(x), that is, ht (x) > 0. Therefore, there
exists a strictly increasing function θ with the only root
at 1/2 such that γ

j
t = θ (Pwt (Y = 1|X ∈ Rj

t )). Hence,
⟨−gt , ht⟩ =

∑Jt
j=1 θ (Pwt (Y = 1|X ∈ Rj

t ))(2Pwt (Y =
1|X ∈ Rj

t ) − 1)
∑

i∈Rj
t
wt (Xi,Yi)≥0. The last inequality

is because θ (Pwt (Y = 1|X ∈ Rj
t )) always has the same

sign as 2Pwt (Y = 1|X ∈ Rj
t ) − 1, and “=” holds if and

only if Pwt (Y = 1|X ∈ Rj
t ) = 1

2 for all j = 1, . . . , Jt . !
Proof of Theorem 1(b). Here, we develop ideas similar to the
proof of Lemma 4.1 and Lemma 4.2 in Zhang and Yu (2005).
There are two differences here in comparison to Zhang and
Yu (2005). First, the loss is nonconvex function and second,
the optimal hypothesis is chosen differently. For f ∈ ∪∞

T=1FT ,

let Hf ⊂ H be the set that contains all weak hypotheses in f .
For example, f1 =

∑
h∈Hf

αh
1h and f2 =

∑
h∈Hf

αh
2h. Moreover,

denote f̄t =
∑

h∈Ht
ωh
t h, Ft =

∑
h∈Ht

αh
t h. For notation sim-

plicity, we denote R = R̂φ,n since we have fixed a loss function
φ and sample size n. Let sh = sign(ωh

t − αh
t ). By Taylor expan-

sion, we have R(Ft + αt+1shh) ≤ R(Ft )+ αt+1sh⟨∇R(Ft ), h⟩ +
α2
t+1
2 supξ∈[0,1] R

′′

Ft ,h(ξαt+1sh), where RFt ,h(α) := R(Ft + αh).
Since the Hessian of R is bounded, there exists M > 0 s.t.
supξ∈[0,1] R

′′

Ft ,h(ξαt+1sh) < M. Therefore,

R(Ft + αt+1shh) ≤ R(Ft )+ αt+1sh⟨∇R(Ft ), h⟩ +
α2
t+1

2
M.

By Algorithm 1 that R(Ft+1) = R(Ft + αt+1ht+1). Moreover, by (6),
ht+1 is chosen as the argminh∈Ht Ew[R(Ft + αt+1h)]. Hence, for
any h ∈ Ht , Ew[R(Ft + αt+1ht+1)] ≤ Ew[R(Ft + αt+1h)]. More-
over, for any bounded random variable Z, |Ew[Z] − E[Z]| ≤ K for
a positive constant K. Combining the above, we have R(Ft+1) ≤
R(Ft + αt+1shh)+ 2ϵt + 2K, for ϵt = suph∈Ht

|R(Ft + αt+1shh) −
E[R(Ft + αt+1shh)]|. By the arguments very much similar to Lem-
mas S1 and S2 of the supplement, it is easy to obtain ϵt = oP(1).
Since || f̄t − Ft ||1 = o(log t ), and || f̄t − FT ||22 ≤ || f̄t−Ft ||21

tct where ct ∈
(0, 1) and ct → 0 as t → ∞, we have || f̄t−Ft ||21

tct = o( log ttct || f̄t − Ft ||1).
Hence,

|| f̄t − Ft ||22(R(Ft+1) − 2ϵt − 2K)

= o

⎡

⎣ log t
tct

∑

h∈Ht

|αh
t − ωh

t |R(Ft + αt+1shh)

⎤

⎦

= o

⎡

⎣ log t
tct

∑

h∈Ht

|αh
t − ωh

t |

×
(
R(Ft )+ αt+1sh⟨∇R(Ft ), h⟩ +

α2
t+1

2
M

)]

= o
[
log t
tct

|| f̄t − Ft ||1R(Ft )+
αt+1 log t

tct
⟨∇R(Ft ), f̄t − Ft⟩

+
Mα2

t+1 log t
2tct

|| f̄t − Ft ||1
]
. (A.2)

Now we look at the situation when µ̂(hk,wk) = 0. From part
(a), this happens if and only if Pwk (Y = 1|X ∈ Rj

k) =
1
2 , ∀ j,

that is, ∇R(Fk) ⊥ H. Since µ̂(ht ,wt ) → 0, ∇R(Ft ) is perpen-
dicular to ∪∞

T=1FT , and ⟨∇R(Ft ) − ∇R( f̄t ), f̄t − Ft⟩ → 0 since
f̄t − Ft ∈ ∪∞

T=1FT . Since φ is Lipschitz differentiable, there exists
L > 0 s.t. R(Ft ) − R( f̄t ) ≤ ⟨∇R( f̄t ), Ft − f̄t⟩ + L

2 || f̄t − Ft ||22. Then
⟨∇R( f̄t ), f̄t − Ft⟩ ≤ R( f̄t ) − R(Ft )+ L

2 || f̄t − Ft ||22. When t is large
enough, there exists sequence ϵ̃t → 0 s.t. ⟨∇R(Ft ), f̄t − Ft⟩ ≤
R( f̄t ) − R(Ft )+ L

2 || f̄t − Ft ||22 + ϵ̃t . Then, by (A.2),

|| f̄t − Ft ||22(R(Ft+1) − 2ϵt − 2K)

= o
[
log t
tct

|| f̄t − Ft ||1R(Ft )+
αt+1 log t

tct
⟨∇R(Ft ), f̄t − Ft⟩
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+
α2
t+1 log t
2tct

|| f̄t − Ft ||1M
]

= o
[
log t
tct

|| f̄t − Ft ||1R(Ft )+
αt+1 log t

tct

×
(
R( f̄t ) − R(Ft )+

L
2
|| f̄t − Ft ||22 + ϵ̃t

)

+
α2
t+1 log t
2tct

|| f̄t − Ft ||1M
]

= o
[
log t
tct

|| f̄t − Ft ||1R(Ft )+
αt+1 log t

tct
(R( f̄t ) − R(Ft ))+ ηt

]
,

(A.3)

where ηt := αt+1 log t
tct ( L2 || f̄t − Ft ||22 + ϵ̃t )+ α2

t+1 log t
2tct || f̄t − Ft ||1M.

Then by dividing || f̄t − Ft ||22 on both sides of (A.3), we get

R(Ft+1) = o

[
log t
tct

|| f̄t − Ft ||1
|| f̄t − Ft ||22

R(Ft )+
αt+1 log t

tct || f̄t − Ft ||22
× (R( f̄t ) − R(Ft ))+ η̄t + 2ϵt + 2K

]

= o

[
log t

tct/2|| f̄t − Ft ||2
R(Ft )+

αt+1 log t
tct || f̄t − Ft ||22

× (R( f̄t ) − R(Ft ))+ η̄t + 2ϵt + 2K
]
,

where η̄t := αt+1 log t
tct ( L2 +

ϵ̃t
|| f̄t−Ft ||22

)+ α2
t+1 log t

2tct /2|| f̄t−Ft ||2
M. Therefore,

R(Ft+1) − R( f̄t ) = o

[
log t

tct || f̄t − Ft ||2
R(Ft )+

αt+1 log t
tct || f̄t − Ft ||22

× (R( f̄t ) − R(Ft ))+ η̄t + 2ϵt + 2K
]

≤ ξt log t
tct || f̄t − Ft ||2

R(Ft )+
αt+1ξt log t
tct || f̄t − Ft ||22

×(R( f̄t ) − R(Ft ))+ ξt η̄t + 2ξtϵt + 2Kξt ,

for some sequence ξt → 0 as t → ∞. Now, for ct → 0, and with
αt satisfying conditions in (b), and by Lemma 4.2 in Zhang and Yu
(2005), we have R(Ft+1) − R( f̄t ) → 0 as t → ∞. !

Appendix B: Proof of Theorem 3
With IF(z;T,P) = gz ∈ H , we have 2λgz + EPφ

′′
(Y, fP,λ(X ))gz

(X )+(X ) = EPφ
′
(Y, fP,λ(X ))+(X ) − φ

′
(zy, fP,λ(zx))+(zx). By tak-

ing inner product ⟨·, ·⟩H with gz itself, we have

2λ||gz||2H + EPφ
′′
(Y, fP,λ(X ))g2z (X )

= EPφ
′
(Y, fP,λ(X ))gz(X ) − φ

′
(zy, fP,λ(zx))gz(zx). (B.1)

Moreover, the Frechet derivative at fP,λ is a zero mapping hence,

2λ⟨ fP,λ, gz⟩H + EPφ
′
(Y, fP,λ(X ))gz(X ) = 0. (B.2)

We also note that since fP,λ is the global minimum, then λ|| fP,λ||2H +
Rφ ( fP,λ) ≤ λ||0H ||2H + Rφ (0H ) = Cφ where Cφ = Rφ (0H ) = φ(0, 0) is a
constant, that is,

λ|| fP,λ||2H ≤ λ|| fP,λ||2H + EPφ(Y, fP,λ(X )) ≤ Cφ . (B.3)

Finally, we have

2λ||gz||2H ≤ 2λ||gz||2H + EPφ
′′
(Y, fP,λ(X ))g2z (X )

(i)= EPφ
′
(Y, fP,λ(X ))gz(X ) − φ

′
(zy, fP,λ(zx))gz(zx)

(ii)= −2λ⟨ fP,λ, gz⟩H − φ
′
(zy, fP,λ(zx))gz(zx)

(iii)
≤ 2λ∥ fP,λ∥H∥gz∥H − φ

′
(zy, fP,λ(zx)))gz(zx)

(iv )
≤ 2

√
λCφ∥gz∥H + |φ ′

(zy, fP,λ(zx))||gz(zx)|
= 2

√
λCφ∥gz∥H + |φ ′

(zy, fP,λ(zx))|⟨gz, k(zx, ·)⟩H
(v )
≤ 2

√
λCφ∥gz∥H + |φ ′

(zy, fP,λ(zx))|
×

√
⟨gz, gz⟩H

√
⟨k(zx, ·), k(zx, ·)⟩H

= 2
√

λCφ∥gz∥H + |φ ′
(zy, fP,λ(zx))|||gz||H |k(zx, zx)|.

where (i) is due to (B.1); (ii) due to (B.2); (iii) is due to the
Cauchy–Schwartz inequality; (iv ) is due to (B.3); (v ) is again due
to the Cauchy–Schwartz inequality. Since k is a bounded kernel,
∃ Mk > 0 such that |k(x1, x2)| ≤ Mk for all x1, x2 ∈ X . Hence,
|φ ′

(zy, fP,λ(zx))|||gz||H |k(zx, zx)| ≤ Mk|φ
′
(zy, fP,λ(zx))|||gz||H , which

in turn leads to 2λ||gz||2H ≤ 2
√

λCφ∥gz∥H +Mk|φ
′
(zy, fP,λ)(zx)|∥gz∥H

and hence ||gz||H ≤
√

Cφ

λ
+ Mk|φ

′
(zy, fP,λ )(zx )|
2λ .

Supplementary Materials
Supplement consists of the detailed technical proofs of all intermediate
results (Lemmas 1–4 and Lemmas S4–S6) together with the proof of The-
orems 2, 4, 5, and 6. It also contains some additional results about both
simulated and real data analysis (Figures S1–S3).
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