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COMMENTS ON HIGH-DIMENSIONAL SIMULTANEOUS
INFERENCE WITH THE BOOTSTRAP

JELENA BRADIC AND YINCHU ZHU

The authors should be congratulated on their insightful article proposing forms of
residual and paired bootstrap methodologies in the context of simultaneous testing in
sparse and high-dimensional linear models. We appreciate the clear exposition of their
work, and the effectiveness of the proposed method. The authors advocate for the boot-
strap of a complete high-dimensional estimate rather than the linearized part of the test
statistic. We appreciate the opportunity to comment on several aspects of this article.

1. BOOTSTRAPS RELATIVE EFFICIENCY

The problem of forming a confidence set for the many parameters of interests in high-
dimensional setting differs from a more routine interval estimation problems in low-
dimensional setting, in that the estimator itself induces shrinkage and bias at estimation.
These difficulties, in turn, prohibit simple and intuitive guidelines for judging the relative
efficiency of one bootstrap scheme with respect to the other. Thus it seems interesting
to discuss relative efficiencies measured by the width of the confidence intervals (among
those that achieve nominal coverage).

We performed a small scale simulation study to investigate a number of scenarios. For
that end, we consider Y = X3* + ¢, where X € R™*P has i.i.d entries generated from
N(0,1) and € € R™ has i.i.d entries across i with g; = oc,iei. Here e; is independent of
oc; and follows one of the four distributions: (1) N'(0,1) (Gaussian), (2) centered expo-
nential random variables with parameter 1 (Exponential), (3) student-t distribution with
6 degrees of freedom normalized to have variance equal to 1 (Student) and (4) mixture of
two Gaussian distributions centered at 0.95 and -0.99 such that the mixture distribution
has mean zero and variance one (Mixture). The conditional standard deviation o.; is
either 1 (homoscedastic) or |X; 2| (heteroscedastic). We use 5* = (1,1,0,...,0)T € RP.
The goal is to test

Hy: B =57 j=12,...,80}.

We report coverage probability and width of 95% confidence sets. For the ease of
comparison across different sample size, the width times /n is reported. The results are
computed using 2000 random samples. We write Residual bootstrap (RB), multiplier
wild bootstrap with Gaussian multipliers (MBG), xyz-paired bootstrap (xyz), Zhang
and Cheng (ZC), robust Zhang and Cheng (RZC), multiplier bootstrap with Radmacher
multipliers (MBR) and multiplier bootstrap with Mammen multipliers (MBM). For ro-
bust Zhang and Cheng, instead of bootstrapping |n~'/? Yo (:)TXiHoo and multiplying
it by 6. as proposed by [3], we directly bootstrap |[n=2 3" O X;é;||o., Where O is
the nodewise Lasso estimator as defined therein.

1



2 JELENA BRADIC AND YINCHU ZHU

TABLE 1. The Coverage (Cov) and Width of the confidence interval. De-
sign has Gaussian distribution whereas the distribution of the errors is ho-
moscedastic and varies from symmetric to non-symmetric to heavy tailed
to bimodal.

n = 100 and p = 150

Gaussian Exponential Student Mixture

Cov || Width Cov || Width Cov || Width Cov || Width
RB  0.947 || 3.382 0.952| 3.337 0.944 | 3.336 0.936 | 3.418
MBG 0.922 || 3.269 0.934 | 3.237 0.925 | 3.235 0.904 | 3.316
MBR  0.943 0.950 0.941 0.934 | 3.407
MBM 0909 | 3.253 0.925| 3.221 0913 | 3.222 0.901 || 3.298
XYZ 0.990 || 3.809 0.991| 3.834 0.990 | 3.840 0.976 | 3.805
ZC 0945 | 3.838 0.955 | 3.814 0.948 | 3.775 0.942
RZC 0.967 | 3.959 0.974 || 4.053 0.972 | 4.018 0.952 | 3.907

n = 200 and p = 300

RB  0.943 0.947 | 3.322 0.939 | 3.327 0.941

MBG 0.924 | 3.285 0.928 | 3.247 0.931| 3.246 0.925| 3.335
MBR 0.939 | 3.366 0.944 0.950 0.936 || 3.400
MBM 0.921 | 3.291 0934 | 3.248 0.927 | 3.250 0.924 | 3.333
XYZ 0.967 || 3.591 0.985 | 3.626 0.979 | 3.635 0.966 || 3.576
ZC  0.940 || 3.624 0.951| 3.595 0.946 | 3.595 0.948 | 3.626
RZC  0.953 || 3.689 0.966 || 3.760 0.963 | 3.766 0.960 | 3.646

1.1. Gaussian design. What we have observed in this simulation study differs from
the classical low-dimensional setting where wild bootstrap and paired bootstrap provide
the most robust bootstrap alternatives. Table 1 contains results of the simulation study
and indicate that the MBG and MBM undercover and that XYZ bootstrap has much
larger coverage than the nominal level of 95%. The effects of shrinkage, the nonlinearity
it induces and the tuning parameter choices, result in pattern of the bootstrap efficiency
that is different from the intuitive one (see [1]|, Section 2.1). The MBR and RB perform
similarly with coverage of around 95% and the shortest widths among all the methods. In
low-dimensional settings, [2] shows that the distribution of the wild bootstrap converges
faster than the paired bootstrap; however, we did not observe any indication that this
may be true in high-dimensions. The proposed ZC and RZC even in the case of nominal
coverage provide much wider confidence intervals suggesting they are less efficient in
this example. With the increase in the sample size, the difference in the width shrunk
suggesting possible slower convergence rate or RZC and ZC in comparison to MBR and
RB. On the other hand, increase in the sample size improved the coverage of XYZ;
however, it did not improve the coverage of MBG and MBM. Lastly, all seven methods
were robust to the size of the p.

1.2. Heteroscedasticity. The wild bootstrap has often been interpreted as a procedure
that resamples residuals in a manner that captures any heteroscedasticity in the under-
lying errors. Section 5.2 in [1] gives Monte Carlo evidence supporting the superiority of
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TABLE 2. The Coverage (Cov) of the confidence interval and width at
two significances: W90 for 90% and W95 for 95%. Design has Gaussian
distribution whereas the distribution of the errors is heteroscedastic and
varies from symmetric to non-symmetric to heavy tailed to lastly bimodal.

n = 100 and p = 150

Gaussian Exponential Student Mixture

Cov || Width Cov || Width ~ Cov || Width ~Cov || Width
RB  0.946 || 3.306 0.939 | 3.240 0.960 || 3.284 0.943 | 3.341
MBG 0.923 || 3.199 0920 || 3.155 0.939 || 3.184 0.924 || 3.234
MBR  0.942 0.930 | 3.195 0.954 0.943
MBM 0.915 | 3.187 0.914 | 3.152 0.931 || 3.160 0.919 | 3.232
XYZ 0.994 || 3.883 0.989 || 3.958 0.994 || 3.925 0.989 | 3.920
ZC 0910 | 3.788 0914 | 3.735 0.927 | 3.679 0.923 | 3.803
RZC 0.957 || 4.216 0.960 0.970 || 4.160 0.956 || 4.164

n = 200 and p = 300

RB  0.942 0.946 || 3.233  0.950 || 3.268 0.943

MBG 0919 | 3.213 0923 | 3.155 0.927 | 3.181 0.917 | 3.254
MBR 0.934 | 3.291 0.943 0.950 0.938 | 3.343
MBM 0917 | 3218 0924 | 3.170 0.928 | 3.183 0.921 || 3.269
XYZ 0.982| 3.640 0985 | 3.714 0.989 | 3.709 0.977 | 3.615
ZC 0912 3.592 0.898 || 3.550 0.920 || 3.562 0.904 | 3.600
RZC  0.960 || 3.966 0.956 | 4.083 0.969 | 4.048 0.940 | 3.904

the wild bootstrap for carrying out a t test for the least squares estimator in the het-
eroskedastic linear model. A central thesis of the article is that the failure of existing
multiplier bootstrap schemes, such as the multiplier bootstrap [3], is due to its neglect
of the excess variation resulting from the possible non-gaussianity of the model error or
the presence of heteroscedastic errors.

As claimed by the authors, ZC method undercovers in all heteroscedastic cases. Our
proposed robust version of the ZC, RZC, put the coverage at the correct order; however,
it creates confidence intervals which are prominently wide. The XYZ method over covers
but interestingly has the width much smaller than the RZC, indicating suboptimality of
the RZC method. However, traditional benefits of the wild bootstrap appear lost now as
the wild bootstrap is not able to capture the heteroscedasticity; MBG and MBM both
under cover significantly below the expected level.

1.3. Non-Gaussian design. In this section we considered a non-gaussian design model
and tested the ability of the proposed methods to adapt. We observed that both RB and
7.C showcase strong robustness to the distribution of the design; both methods relate to
each other in the similar way to Section 1.1. However, here we observed the MBR is not
always stable with the non-gaussian design with MBG and MBM failing to cover at the
nominal level. XYZ is still over covering.
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TABLE 3. The Coverage (Cov) and Width of the confidence interval. De-
sign has Exponential distribution whereas the distribution of the errors
is homoscedastic and varies from symmetric to non-symmetric to heavy
tailed to bimodal.

n = 100 and p = 150

Gaussian Exponential Student Mixture

Cov | Width Cov || Width Cov || Width Cov || Width
RB 0933 | 3.309 0951 || 3.325 0.946 || 3.279 0.943
MBG 0.914 || 3.223 0916 | 3.206 0.933 | 3.199 0931 | 3.263
MBR 0.931 | 3.303 0.930 || 3.271 0.947 0.947 | 3.350
MBM 0.910 | 3.202 0.908 || 3.196 0.925 | 3.180 0.922 | 3.251
XYZ 0.986 || 3.898 0.993| 3.940 0.993 | 3.939 0.988 | 3.887
ZC  0.946 | 4.091 0932 | 4.082 0934 | 4.047 0.957 | 4.121
RZC 0972 | 4.387 0984 | 4.667 0.982| 4.633 0.971| 4.276

n = 200 and p = 300
RB  0.941 0.942 0.939 | 3.275 0.940
MBG 0.916 || 3.233 0.893 | 3.204 0.918 | 3.195 0.925 | 3.279
MBR 0.934 || 3.299 0.906 | 3.265 0.932 | 3.258 0.938 | 3.346
MBM 0.925 | 3.235 0.880 || 3.206 0.922 || 3.202 0.922 | 3.274
XYZ 0.983 | 3.653 0.980 || 3.746 0.985 | 3.713 0.975 | 3.614
ZC 0949 || 3.765 0.920 || 3.738 0.930 | 3.747 0.947 | 3.769
RZC  0.968 || 3.964 0.982| 4.252 0.976 | 4.280 0.956 | 3.846

1.4. Non-gaussian design and heteroscedasticity. The effect of the heteroscedas-
ticity here is more pronounced as the design is non-gaussian. We observe the complete
failure of the ZC method with coverage going as low as 70% for the nominal level of
95%. In this case, we observe that RB needs larger sample size to cover the heavy-tailed
error distributions; however, most methods underperform substantially. All of the wild
multiplier bootstraps fail with MBR slightly performing better for larger n. RZC per-
haps has the most consistency in covering, but its width can be massive. The case of the
bimodal error seems to be particularly difficult for all of the methods and none of them
perform sufficiently well. Interestingly, we have not found a case where XYZ performs
much better than the RB or MBR.

2. BOOTSTRAP INFERENCE FOR HIGH-DIMENSIONAL AND POSSIBLY
NON-SPARSE MODELS

The interesting and shared part of many of the proposed bootstrap schemes is in the
construction of the residuals based on regularized, i.e., Lasso estimator. The most promi-
nent examples, exhibiting excellent performance in a variety of settings, seem robust to
the construction of such residuals despite the intricate bias introduced by the regulariza-
tion. However, when the sparsity of the model increases, we expect that the introduced
bootstrap, that is the Lasso within it, will induce a bias term that would be too large
and that would affect the finite sample coverage.
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TABLE 4. The Coverage (Cov) and Width of the confidence interval. De-
sign has Exponential distribution whereas the distribution of the errors
is heteroscedastic and varies from symmetric to non-symmetric to heavy
tailed to bimodal.

n = 100 and p = 150

Gaussian Exponential Student Mixture

Cov | Width Cov | Width Cov || Width Cov | Width
RB  0.944 0.902 || 3.207 0.939 | 3.237 0.913 | 3.270
MBG 0.922 || 3170 0.882 | 3.137 0.917 3.150 0.891 | 3.207
MBR  0.941 || 3.275 0.896 | 3.199 0.935 | 3.239 0.914 | 3.358
MBM 0.925 || 3.176 0.885 || 3.169 0.919 | 3.159 0.902 || 3.249
XYZ 0995 | 4.149 0964 | 4.308 0.993 || 4.181 0.972 | 4.404
ZC  0.797 || 3.871 0.756 | 3.757 0.802 || 3.775 0.749 | 3.911
RZC 0950 | 5.154 0.933 | 5.283 0.955 | 5.127 0.906 || 5.108

n = 200 and p = 300

RB 0943 | 3.242 0.921 | 3.202 0.951 || 3.223 0.927 || 3.274
MBG 0.934 || 3.164 0.909 | 3.127 0.933 || 3.146 0913 | 3.206
MBR  0.943 0.921 || 3180 0.953 0.931 || 3.306
MBM 0.929 || 3.175 0.910 | 3.151 0.929 | 3.153 0.919 || 3.241
XYZ 0.993 | 3.887 0.978 | 4.056 0.993 || 3.942 0.984 | 4.001
ZC  0.737 || 3.641 0.705 | 3.584 0.737 || 3.555 0.727 | 3.670
RZC  0.926 || 5194 0.934 | 5346 0.944 || 5.165 0.901 | 5.198

We explore the possibility of applying the bootstrap methods proposed by the authors
to perform inference problems of high-dimensional models that are potentially non-sparse.
To the best of our knowledge, the only work in this direction is [{|. We only consider
the particular case of G being a singleton, i.e., testing one entry of 8. Without loss of
generality, consider the problem of testing

Ho: By =B
The CorrT method proposed in [!] is implemented as follows. We first compute

A~

Bo1 =

s.t.

and

arg min||v||y
veRp—1

X1 (Y = X187 — X_10)|[oe < 13

1Y = X187 = X_1vlloo < [IY = X157 — X_10]|2/log?n

(Y = X180) (Y = X187 — X_1v) > 0.01]]Y — X1 573/ \/1ogn,

= argminl|v|;
vERPL

st X5 (X0 = Xo1v) o < g

HXI — X—l””oo < ||X1 — X_11)H2/10g2n

X (X — X_qv) > 0.01]| X4 5/+/logn,
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where 7g,19 < \/n~!logp are tuning parameters chosen as in [1]. Let
G=X,—X_10, and =Y — X180 — X_15_1.
Then the test statistic defined therein takes the form

T, = v/n ela/|é]2] a2
Under the assumptions in |1], it is proved that under Hy : B} = B, T, converges
in distribution to AN(0, 1), regardless of whether or not 8* is sparse. In the following
we define a residual bootstrap counterparts of the test statistic above and explore their
finite sample properties.

2.1. CorrT with residual bootstrap (CorrTRB). Define centered estimated resid-
uals with @ = (@1, ..., Up,) " with @ = G —n " >, ;. Then, consider a random sample
ulB = (uffB ... ulB)T computed by drawing with replacement from {u;}?_;. Then,
define the new variable X{*¥ = X_10 + uf'B. We then compute §%F as 0 in (1) with X

replaced by X{zB. The bootstrap test statistic is

rp _ Ve (XfP - X_,05P)
T ElallXfE - X8R5,

2.2. CorrT with paired bootstrap (CorrTPB). For this setting we would like to
take advantage of the distributions of pairs of observations. We begin by defining

X1 = Xflé +u
and X_; = (X, ..., X,) € R™(P~1) with
£ = X, - alz2( w)a
for j > 2. We now consider a new sample (£*, XF, X*,) whose rows form a random

sample with replacement from rows of (é,Xl,X_l). We compute 0* as 6 in (1) with
(X1, X_1) replaced by (X7, X*;). The bootstrap test statistic reads

Ve T (X} - X*,6%)
£%]I2 ]| X7 — X, 6%]|2

pair __
" =

2.3. CorrT with wild multiplier bootstrap (CorrTMB). Let {{;}!" ; beii.d. mul-
tipliers drawn independent of the sample. We compute XMB = X_10 + uMB_ where
uMB = (uMB . uMB)T with

ME =g,

Then we compute 0M5 as 6 in (1) with X; replaced by X{B and the bootstrap test
statistic

u

up _ Ve (X{TP — X_10M5)
" [Ell2[|XMF — X_10MB]|;
We propose three multiplier bootstrap methods labeled by CorrTMBG, CorrTMBR and

CorrTMBM, where the multipliers are drawn from N (0, 1), Radmacher distribution and
Mammen distribution, respectively.
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2.4. Numerical example. We now compare CorrT and its bootstrap variations. We
report the rejection probabilities of these methods for the hypothesis Hy : ] = 37 with

By =BT+ n~1/2h. Hence, these probabilities represent the size if h = 0 and the power if
h #0.

TABLE 5. CorrT: Gaussian design and Gaussian errors. We consider
dense B* = 4p~1/2(1,...,1)T € R? with p = 300 and n = 200.

Homoscedasticity
CvM KS h=0 h=5 h=10 h=15

CorrT 0.024 0.046 0.040 0.210 0.683 0.943
CorrTRB  0.025 0.044 0.048 0.228 0.710  0.943
CorrTPB  0.025 0.051 0.053 0.250 0.703  0.943

CorrTMBG 0.021 0.038 0.055 0.225 0.695  0.938
CorrTMBR 0.021 0.040 0.050 0.213 0.700  0.938
CorrTMBM 0.023 0.045 0.048 0.230 0.678  0.933

Heteroscedasticity
CvM KS h=0 h=5 h=10 h=15

Corr'T 0.013 0.037 0.053 0.240 0.708  0.960
CorrTRB  0.013 0.030 0.053 0.258 0.715  0.960
CorrTPB  0.013 0.026 0.065 0.270 0.705  0.965

CorrTMBG 0.016 0.035 0.053 0.265 0.705  0.958
CorrTMBR 0.018 0.039 0.058 0.258 0.685  0.955
CorrTMBM 0.012 0.026 0.065 0.255 0.688  0.955

The simulation results are collected in Table 5. We observe that all the methods
perform quite well in that they all control the Type I error rate and thus inverting these
tests would be a valid way of constructing confidence sets for the parameter under testing.
This suggests that the bootstrap methods proposed by the authors can be extended to
handle non-sparse high-dimensional linear models via the construction by [4]|. In addition
to the novel result by the authors who show that bootstrap methods can be successfully
applied to high-dimensional sparse linear models, our simulation evidence suggests the
possibility that the boundary of bootstrap methods might be further pushed to non-sparse
settings although rigorous theoretical justification is left for future research. Another
interesting direction would be investigating how to address the problem for |G| > 1 or
even very large |G| in non-sparse scenarios.

To observe finite sample differences between all of the methods we calculated Cramer-
von-Mises (CvM) and Kolmogorov-Smirnov (KS) distances between the empirical null
distribution of p-values and the uniform distribution. We see from Table 5 that Cor-
rTMBG has the smallest distance from the uniform distribution in the case of ho-
moscedastic errors. However, with regard to the heteroscedastic errors, all methods
are practically indistinguishable with perhaps CorrTPB and CorrTMBM bootstrap per-
forming slightly better. This last case mimics the low-dimensional property of the MBM
and its strong robustness to the heteroscedasticity (see [2]).
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