
Expected Constant-Factor Optimal Multi-Robot Path Planning in
Well-Connected Environments

Jingjin Yu

Abstract— Fast algorithms for optimal multi-robot path
planning are sought after in both research and real-world
applications. Known methods, however, generally do not si-
multaneously guarantee good solution optimality and fast run
time for difficult instances. In this work, we develop a low-
polynomial running time algorithm, called SPLITANDGROUP,
that solves the multi-robot path planning problem on grids and
grid-like environments, and produces constant factor time- and
distance-optimal solutions, in expectation. In particular, SPLI-
TANDGROUP computes solutions with sub-linear makespan.
SPLITANDGROUP is capable of handling cases when the density
of robot is extremely high - in a graph-theoretic setting, the
algorithm supports cases where all vertices of the underlying
graph are occupied by robots. SPLITANDGROUP attains its
desirable properties through a careful combination of divide-
and-conquer technique and network flow based methods for
routing the robots.

I. INTRODUCTION

Fast methods for multi-robot path planning have found
many real-world applications including shipping container
handling (Fig. 1(a)), order fulfillment (Fig. 1(b)), horti-
culture, among others, drastically improving the associated
process efficiency. While commercial applications have been
able to scale quite well, e.g., a single Amazon fulfillment
center can operate over a thousand Kiva mobile robots, it
remains unclear what level of optimality is achieved by
the underlying scheduling algorithms in these applications.
The same optimality-efficiency gap exists in the multi-robot
research domain: known algorithms for multi-robot path
planning do not simultaneous guarantee good solution op-
timality and fast running time. This is not entirely surprising
as it is well known that optimal multi-robot path planning
problems are generally NP-hard.

In this work, we narrow this optimality-efficiency gap in
multi-robot path planning, focusing on a class of grid-like
well-connected environments. Well-connected environments
(to be formally defined) include the container shipping port
scenario and the Amazon fulfillment center scenario. A
key property of these environments is that sub-linear time-
optimal solution is possible, which is not true for general
environments. Using a careful combination of divide-and-
conquer and network flow techniques, we show that expected
constant factor time- and distance-optimal solutions can be
computed in low-polynomial running time in such settings.
We call the resulting algorithm SPLITANDGROUP. In other
words, SPLITANDGROUP can efficiently compute O(1) op-

Jingjin Yu is with the Department of Computer Science, Rutgers Uni-
versity at New Brunswick. E-mails: jingjin.yu@cs.rutgers.edu. This work is
supported by NSF awards IIS-1617744 and IIS-1734419.

(a) (b)

Fig. 1. (a) Automated straddle carriers at the port of Los Angeles. Each
straddle carrier is capable of autonomously navigate to pick up or drop off a
shipping container at a designated location. (b) Amazon’s Kiva multi-robot
system working at its order fulfillment centers.

timal solutions. The method readily generalizes to higher
dimensions as well.

Related work. In multi-robot path and motion planning,
the goal is for the moving bodies, e.g., robots or vehicles, to
reach their respective destinations, collision-free. Frequently,
certain optimality measure (e.g., time, distance, communi-
cation) is also imposed. Variations of the multi-robot path
and motion planning problem have been actively studied for
decades [1]–[21]. As a fundamental problem, it finds appli-
cations in a diverse array of areas including assembly [22],
[23], evacuation [24], formation [25]–[29], localization [30],
micro droplet manipulation [31], [32], object transportation
[33], [34], and search-rescue [35]. In industrial applications
pertinent to the current work, centralized planners are gener-
ally employed to enforce global control to drive operational
efficiency. This work also follows the same paradigm.

Similar to high dimensional single robot problems [36],
[37], multi-robot path planning is well known to be strongly
NP-hard for discs in simple polygons [38] and PSPACE-hard
just for translating rectangles [39]. The hardness of the prob-
lem extends to unlabeled case [40] where it remains highly
intractable [41], [42]. Nevertheless, under mild assumptions,
the unlabeled case can be solved optimally or near optimally
with guaranteed running time [13], [43]–[46].

Because general (labeled) optimal multi-robot path plan-
ning problems in continuous domains is extremely chal-
lenging, a common approach is to start with a discrete
setting from the onset. Significant progress has been made on
optimally solving the general (labeled) problem in discrete
settings, in particular on grid-based environments. Multi-
robot motion planning is less computationally expensive in
discrete domains, with the feasibility problem readily solv-
able in O(|V |3) time, in which |V | is the number of vertices
of the discrete graph where the robots may reside [47]–[49].
Optimal versions remain computationally intractable under

the graph-theoretic setting [50]–[53], but the complexity has
dropped from PSPACE-hard to NP-complete in many cases.
Decoupling-based heuristics prove to be useful [54]–[56],
allowing the effective minimization of certain accrued cost
[9], [57]–[63]. Beyond decoupling, other ideas have also
been explored, including casting the problem as other known
NP-hard problems [64]–[66] for which high-performance
solvers are available.

Contributions. The main contribution brought forth by
this work is a low-polynomial time deterministic algorithm,
called SPLITANDGROUP, for solving the optimal multi-robot
path planning problem in grids and grid-like well-connected
environments. Under the prescribed settings, SPLITAND-
GROUP computes a solution with sub-linear makespan.
Moreover, the solution is only a constant multiple of the true
optimal solution in terms of both makespan and total dis-
tance, in expectation. SPLITANDGROUP applies to settings
with extreme robot density. To the best of our knowledge,
SPLITANDGROUP is the first such algorithm that achieves
the combination of desirable properties.

Organization. The rest of the paper is organized as
follows. In Sec. II, the discrete multi-robot path planning
problem is formally defined, followed by analysis on con-
nectivity for achieving good solution optimality. This leads
us to the choice of grid-like environments. We describe
the details of the main algorithm, SPLITANDGROUP, in
Sec. III. In Sec. IV, complexity and optimality properties
of SPLITANDGROUP are established. In Sec. V, we show
that SPLITANDGROUP generalizes to higher dimensions and
(grid-like) well-connected environments including certain
continuous ones. Due to space limit, some proofs are omitted;
the can be found in [67].

II. PRELIMINARIES

In this section, we state the multi-robot path planning
problem and two important associated optimality objectives,
under a graph-theoretic setting. Next, we establish that
working with arbitrary graphs may lead to rather sub-optimal
solutions (i.e., super-linear with respect to the number of
robots). This necessitates the restriction of the graphs if
desirable optimality results are to be achieved.

A. Graph-Theoretic Optimal Multi-Robot Path Planning

Let G = (V,E) be a simple, undirected, and connected
graph. On this graph G, a set R of labeled robots may
move synchronously in a collision-free manner. At (integer)
time steps starting from t = 0, each robot resides on a
unique vertex of G, inducing a configuration X of the robots.
Effectively, X is an injective map X : R → V specifying
which robot occupies which vertex (see Fig. 2). From time
step t to time step t+ 1, a robot may move from its current
vertex to an adjacent one under two (collision avoidance)
conditions: (i) the new configuration at t + 1 remains an
injective map, i.e., each robot occupies a single vertex, and
(ii) no two robots travel along the same edge in opposite
directions.

2
1

3

4

5

6

2

1

3

4

5

6

(a) (b)

Fig. 2. Graph-theoretic formulation of the multi-robot path planning
problem. (a) A configuration of six robots on a graph (roadmap) with
seven vertices. (b) A configuration that is reachable from (a) in a single
synchronous move.

A multi-robot path planning problem (MPP) is fully de-
fined by a 3-tuple (G,XI , XG) in which G is a graph, and
XI and XG are two configurations. In this work, we look at
the extreme case of |XI | = |XG| = |V |. That is, all vertices
of G are occupied. We are interested in two optimal MPP
formulations. In what follows, makespan is the time span
covering the start to the end of a task and all edges of G
are assumed to have a length of 1 so that a robot traveling
at unit speed can cross it in a single time step.

Problem 1 (Minimum Makespan (TMPP)): Given G,XI ,
and XG, compute a sequence of moves that takes XI to XG

while minimizing the makespan.
Problem 2 (Minimum Total Distance (DMPP)): Given

G,XI , and XG, compute a sequence of moves that takes
XI to XG while minimizing the total distance traveled.

These two problems are known to be NP-hard and cannot
always be solved simultaneously [52], [53]. In this paper, we
assume that XI and XG are randomly distributed.

B. Effects of Environment Connectivity

The well-known pebble motion problems, which are highly
similar to MPP, may require Ω(|V |3) individual moves to
solve [68]. Since each pebble (robot) may only move once
per step, at most |V | individual moves can happen in a
time step. This implies that pebble motion problems, even
with synchronous moves, can have an optimal makespan of
Ω(|V |2), which is super linear (i.e. ω(|V |)). The same is true
for TMPP under certain graph topologies. We first prove
a simple but useful lemma for a class of graphs we call
figure-8 graphs. In such a graph, there are |V | = 7n + 6
vertices for some integer n ≥ 0. The graph is formed by
three disjoint paths of lengths n, 3n+2, and 3n+2, meeting
at two common end vertices. Figure-8 graphs with n = 1
are illustrated in Fig. 3.

An interesting and very useful property of figure-8 graphs
is that an arbitrary MPP instance on such a graph is feasible.

Lemma 1: An arbitrary MPP instance (G,XI , XG) is
feasible when G is a figure-8 graph.

Proof: Using the three-step plan provided in Fig. 3,
we may exchange the locations of robots 1 and 2 with-
out collision. This three-step plan is scale invariant and
applies to any n. With the three-step plan, the locations
of any two adjacent robots (e.g., robots 4 and 5 in the
top left figure of Fig. 3) can be exchanged. To do so,
we may first rotate the two adjacent robots of interest to

1 2 3

4

567

8

13

910

11

12

2 3 4

5

678

1

13

910

11

12

1 3 4

5

67

10 8

13

29

11 12

1 3

4

567

10

8

13

29

11

12

Fig. 3. A three-step plan for exchanging the locations of robots 1 and 2
on a figure-8 graph with 7n+ 6 vertices (n = 1 in this case).

the locations of robots 1 and 2, do the exchange using
the three-step plan, and then reverse the initial rotation.
Let us denote such a sequence of moves as a 2-switch.
Because the exchange of any two robots on the figure-8
graph can be decomposed into a sequence of 2-switches, such
exchanges are always feasible. As an example, the exchange
of robots 4 and 9 can be carried out using a 2-switch
sequence ⟨(3, 4), (2, 4), (1, 4), (4, 9), (1, 9), (2, 9), (3, 9)⟩, of
which each individual pair is an adjacent one after the
previous 2-switch is completed. Because solving the MPP
instance (G,XI , XG) can be decomposed into a sequence
of two-robot exchanges, arbitrary MPP instances are solvable
on figure-8 graphs.

The introduction of figure-8 graphs allows us to formally
establish that sub-linear optimal solutions are not possible
on an arbitrary connected graph.

Theorem 2: There exists an infinite family of TMPP in-
stances on figure-8 graphs with ω(|V |) minimum makespans.

Theorem 2 implies that if the classes of graphs are
not restricted, we cannot always hope for the existence of
solutions with linear (and therefore sub-linear) makespans
with respect to the number of vertices of the graphs. That is,

Corollary 3: TMPP does not admit solutions with linear
or sub-linear makespans on an arbitrary graph.

Corollary 3 suggests that seeking general algorithms for
providing linear or sub-linear makespans that apply to all
environments will be a fruitless attempt. On the other hand,
sub-linear makespans are highly desirable in practice. With
this in mind, we first focus our attention on a restricted but
very practical class of discrete environments: grid graphs.

III. ROUTING ROBOTS ON RECTANGULAR GRIDS WITH A
SUB-LINEAR MAKESPAN

We begin the analysis with rectangular grids. Assuming
unit edge lengths, such a grid is fully specified by two
integers mℓ and ms, representing the number of vertices on
the long and short sides of the rectangular grid, respectively.
Without loss of generality, assume that mℓ ≥ ms (see Fig. 4
for a 8×4 grid). We further assume that mℓ ≥ 3 and ms ≥ 2
since a 2×2 grid does not admit non-trivial solutions. These
assumptions on grid dimensions are implicitly assumed in
this paper whenever “mℓ×ms grid” is used. The main result

to be established in this section is the following.

Theorem 4: Let (G,XI , XG) be an arbitrary TMPP in-
stance in which G is an mℓ ×ms grid. The instance admits
a solution with a makespan of O(mℓ).

Note that the O(mℓ) bound is sub-linear with respect to
the number of robots, which is Ω(msmℓ) and Ω(m2

ℓ) for
square grids. We name the algorithm, to be constructed, as
SPLITANDGROUP and explain how the divide-and-conquer
algorithm works at a high level. In this section we focus on
the makespan optimality aspects of SPLITANDGROUP. The
establishment of polynomial-time complexity and additional
properties of the algorithm is delayed until Sec. IV.

To simplify the explanation, assume that mℓ = ms = 2k

for some integer k. In the first iteration of SPLITANDGROUP,
it splits the grid into two smaller rectangular grids, G1 and
G2, of size 2k × 2k−1 each. Then, robots are moved so that
at the end of the iteration, if a robot belongs to G1 (resp.,
G2) in XG, it should be on some arbitrary vertex of G1

(resp., G2). This is the grouping operation. An example of a
single SPLITANDGROUP iteration is shown in Fig. 4. We will
show that such an iteration can be completed in O(mℓ) =
O(2k) time steps (makespan). In the second iteration, the
same process is carried out on both G1 and G2 in parallel,
which again requires O(2k) time steps. In the third iteration,
we start with four 2k−1 × 2k−1 grids and the iteration can
be completed in O(2k−1) time steps. After 2k iterations, the
problem is solved with a desired makespan of

2O(2k) + 2O(2k−1) + . . .+ 2O(1) = O(2k) = O(mℓ).

G1 G2

Fig. 4. Illustration of a single iteration of SPLITANDGROUP on a 8× 4
grid. Note that the grid is fully populated with robots and some are not
drawn. The overall grid is split in the middle by the dotted line to give
two 4 × 4 grids G1 and G2. The robots shown on G1 (resp., G2) have
goal locations on G2 (resp., G1). In the grouping operation, these robots
must move across the split line after the grouping operation is complete.
Other robots (not shown) on the grid must remain where they are after the
grouping operation is complete. In the next iteration, the same procedure is
applied to G1 and G2 in parallel.

We now proceed to describe the SPLITANDGROUP algo-
rithm in more detail. To achieve the stated O(mℓ) makespan,
SPLITANDGROUP needs to enable as much concurrent robot
movement as possible. This is rather challenging because of
our worst case assumption that there are as many robots as
the number of vertices. This is where the grid graph assump-
tion becomes critical: it enables the concurrent “flipping”
or “bubbling” of robots. Let G = (V,E) be an mℓ × ms

grid graph whose vertices are fully occupied by robots. Let
E′ ⊂ E be a set of vertex disjoint edges of G. Suppose
for each edge e = (v1, v2) ∈ E′, we wish to exchange the
two robots on v1 and v2 without collision. Let us call this

operation FLIP(E′). Then, the following holds.

Lemma 5: Let G = (V,E) be an mℓ×ms grid. Let E′ ⊂
E be a set of vertex disjoint edges. Then FLIP(E′) can be
completed in a constant number of time steps.

Lemma 5, in a nutshell, allows the exchange of two adja-
cent robots to be performed in O(1) time steps. Moreover,
it allows such exchanges to happen in parallel on disjoint
edges. With Lemma 5, to prove Theorem 4, we are left to
show that on an mℓ ×ms grid, after the split operation the
grouping operation in the first SPLITANDGROUP iteration
can be decomposed into O(mℓ) FLIP(·) operations. Because
each FLIP(·) can be carried out in O(1) time steps, the overall
makespan cost of the grouping operation is then O(mℓ).
To obtain the desired decomposition, we need to maximize
parallelism along the split line used for the split operation.
We achieve the desired parallelism by partitioning the grid
into trees with limited overlap. Each such tree has a limited
diameter and crosses the split line. The grouping operation
will then be carried out on these trees. As an example, Fig. 5
illustrates such a tree and the two groups of robots to be
exchanged. We want to show that that grouping robots on
trees can be done efficiently. Note that we do not require a
robot in the group to go to a specific goal vertex; we do not
distinguish robots within the group. In what follows, by non-
path grid, we mean a grid that is not a path. A robot does
not have net movement if it start and goal locations coincide.

Theorem 6: Let T be a tree of diameter d embedded in
a non-path grid whose vertices are fully occupied by robots.
Let P be a length ℓ path branch of T . Then, a group of
robots on P can be exchanged with robots on T outside P
in O(d) time steps without net movement of other robots.
The relocation may be performed using FLIP(·) on T .

Fig. 5. Illustration of a tree-based subproblem in the grouping operation.
The first picture illustrates the initial configuration and the second picture
the goal configuration. The unshaded robots must retain their locations.

Implicitly, Theorem 6 says that the same O(d) makespan
can be achieved for multiple disjoint trees embedded in the
same grid graph. The O(d) makespan in fact continues to
hold even when the trees have some minor overlaps. We
proceed to sketch the proof of Theorem 4.

Proof: (Sketch of proof of Theorem 4) We sketch how
to carry out a single iteration of SPLITANDGROUP with the
help of an example. A split is always done along a longer
side of the current grid. The split of a 9 × 7 grid G into
smaller grids G1 and G2 is illustrated in Fig. 6(a). To move

all the (red) robots to G2, we hope to find routing paths for
each red robot in G1 to form a tree (e.g., Fig. 6(b)), after
which Theorem 6 can be applied.

G2

G1

(a) (b)
Fig. 6. (a) A 9 × 7 grid is split into two grids G1 and G2 of sizes
4 × 7 and 5 × 7, respectively. The dark-shaded robots’ final goals are in
G2. (b) The grid is partitioned into (possibly non-disjoint) trees to allow
the dark-shaded robots that are not already in G2 to exchange with robots
(lightly-shaded ones) that should be moved to G1.

Toward this, for each robot in G1 that needs to be moved,
we compute paths from it to all possible targets in G2, with
the limitation that each such path has a single turn that must
happen in G1. We can then apply the Hungarian algorithm
[69] to compute an initial path set with minimum total path
lengths. Merging these paths then produces a set of up to ms

trees. The issue with these initial trees is that there might be
crossovers. We define a crossover as an intersection between
two paths, e.g., the dotted paths in Fig. 7(a). We do not
consider the scenario in Fig. 7(b) as crossovers. Note that the
scenario in Fig. 7(c) cannot happen due to the path set having
the minimum total path lengths. That is, since updating these
two paths Fig. 7(c) will reduce total path length, the original
paths cannot be part of a minimum total distance solution.

(a) (b) (c)

Fig. 7. (a) Example of a tree crossover (dotted paths) and its removal
(solid paths) without increasing the total distance. Note that only the relevant
paths of the two trees are shown. (b) An intersection that is not considered
a crossover. (c) An impossible crossover scenario.

If a crossover is detected, it can be removed with simple
updates (e.g., the solid paths in Fig. 7(a)) and the process
will end a finite number of iterations. After all crossovers
are resolved, Theorem 6 then applies to group the robots as
desired.

IV. COMPLEXITY AND SOLUTION OPTIMALITY
PROPERTIES OF THE SPLITANDGROUP ALGORITHM

In this section, we establish two key properties of SPLI-
TANDGROUP, namely, its polynomial running-time and
asymptotic solution optimality.

A. Time Complexity of SPLITANDGROUP

The SPLITANDGROUP algorithm is outlined in Algo-
rithm 1. At Lines 1-2, a partition of the current grid G is
made, over which initial path planning and scheduling is
performed to generate the trees for grouping the robots into
the proper subgraph. Then, at Line 3, crossovers are resolved.
At Line 4, the final paths are scheduled, from which the
robot moves can be extracted. This step also yields where
each robot will end up at in the end of the iteration, which
becomes the initial configuration for the next iteration (if
there is one). After the main iteration steps are complete, at
Lines 5-10, the algorithm recursively calls itself on smaller
problem instances. The special case here is when a sub-
problem is small enough (Line 7), in which case it is directly
solved without further splitting operations.

We now proceed to bound the running time of SPLI-
TANDGROUP, with the main goal to establish it polynomial
running time. With this goal in mind, here, we will not push
for the best bound on running time. It is straightforward
to see that the SPLIT routine takes O(|V |) = O(mℓms)
time to complete because we are basically scanning the input
without much additional logic. MATCHANDPLANPATH can
be implemented using the standard Hungarian algorithm
[69], which runs in O(|V |3) time.

For RESOLVECROSSOVERS, we may implement it by
starting with an arbitrary robot that needs to be moved
across the split line and check whether the path it is on has
crossovers that need to be resolved. Checking one path with
another can be done in constant time because each path can
be represented using a constant number of parameters even
though it may have length O(|V |); detecting a crossover then
takes up to O(|V |) running time because there are at O(|V |)
other paths to check against. Resolving a crossover can be
completed in O(|V |) running time as well. We note that, as
a crossover is resolved, one of the two paths will end up
being shorter (see, e.g., Fig. 7). We then repeat the process
with this shorter path until no more crossover exists. Naively,
because the path keeps getting shorter, this process will end
in at most O(|V |) steps, taking a total of O(|V |2) running
time. Therefore, all together, RESOLVECROSSOVERS can be
completed in O(|V |3) running time.

The SCHEDULEMOVES routine simply extracts informa-
tion from the already planned path set P and can be
completed in O(|V |) running time. The SOLVE routine
takes constant time. Adding everything up, an iteration of
SPLITANDGROUP can be carried out in O(|V |3) time using
a naive implementation. Summing over all iterations, the total
running time is

O(|V |3) + 2O((
|V |
2

)3) + 4O((
|V |
4

)3) + . . . = O(|V |3),

which is low-polynomial with respect to the input size.

Algorithm 1: SPLITANDGROUP (G, XI , XG)
Input : G = (V,E): an mℓ ×ms grid graph

XI : initial configuration
XG: goal configuration

Output: M = ⟨M1,M2, . . .⟩: a sequence of moves

%Run matching and construct initial

trees

1 (G1, G2)← SPLIT(G)
2 P ← MATCHANDPLANPATH(G,XI , XG)

%Remove crossovers

3 P ← RESOLVECROSSOVERS(P)

%Schedule the sequence of moves

4 (M,X ′
I)← SCHEDULEMOVES(P ′)

%Recursively solve smaller sub-problems

5 foreach Gi, i = 1, 2 do
6 if row(Gi) ≤ 3 and col(Gi) ≤ 3 then
7 M = M + SOLVE(Gi, X

′
I |Gi

, XG|Gi
)

8 else
9 M =

M + SPLITANDGROUP(Gi, X
′
I |Gi , XG|Gi)

10 end
11 end

12 return M

B. Constant Factor Time- and Distance-Optimality

Having established that SPLITANDGROUP is a polynomial
time algorithm that solves MPP with sub-linear makespan,
we now show that a solution produced by SPLITAND-
GROUP is in fact only a constant factor away from the best
possible, in expectation, for both TMPP and DMPP. That
is, SPLITANDGROUP in fact computes an asymptotically
optimal solution simultaneously for time- and distance-based
objectives.

Theorem 7: Let (G,XI , XG) be an MPP instance in
which G is an mℓ ×ms grid, and XI and XG are selected
uniformly randomly. Then SPLITANDGROUP computes con-
stant factor optimal solutions, in expectation, with respect to
the makespan and the total distance objectives.

Proof: Let i be a specific robot with si ∈ XI and gi ∈
XG be its start and goal locations on G, respectively. Since
XI and XG are randomly distributed, the expected distance
between si and gi on G can be readily seen to be Ω(mℓ).
This implies that the minimum possible makespan is Ω(mℓ).
Since SPLITANDGROUP produces solutions with an O(mℓ)
makespan, it computes a constant factor approximation of
the optimal makespan.

Similarly, each robot incurs an expected travel distance of
Ω(mℓ); therefore, the minimum total distance for all robots,
in expectation, is Ω(msm

2
ℓ) because there are msml robots.

On the other hand, because SPLITANDGROUP produces a
solution with an O(mℓ) makespan, each robot can only
travel a distance of O(mℓ). Summing this over all robots,

the solution from SPLITANDGROUP has a total distance of
O(msm

2
ℓ). This matches the lower bound Ω(msm

2
ℓ) .

V. GENERALIZATIONS

In this section, we establish that SPLITANDGROUP readily
generalizes to environments other than 2D rectangular grids,
including high dimensional grids and certain continuous
environments.

A. High Dimensions

SPLITANDGROUP can be readily extended to work for
grids of arbitrary dimensions. For dimensions d ≥ 2, two
updates to SPLITANDGROUP are needed. First, the split line
should be updated to a split hyperplane of dimension d− 1.
Second, the crossover check now takes O(d) time instead
of O(1) time because each extra dimension may require
the path to turn one more time; two paths can potentially
intersect d times. Other than these changes, the rest of
SPLITANDGROUP continue to work without major change.
The updated SPLITANDGROUP algorithm for dimension d
therefore runs in O(d|V |3) time.

B. Well-Connected Environments

The selection of G as a grid plays a critical role in
proving the desirable properties of SPLITANDGROUP. In
particular, two features of grid graphs are used. First, grids
are composed of small cycles, which allow the 2-switch
operation to be carried out locally. This in turn allows
multiple 2-switch operations to be carried out in parallel.
Second, restricting to two adjacent rows (or columns) of
a rectangular grid (e.g., row 4 and row 5 in Fig. 6(a)),
multiple 2-switches can be completed between these two
rows in constant number of steps, allowing more parallelism
in routing the robots. As long as the environment possesses
these two features, SPLITANDGROUP works. We call such
environments well-connected.

More precisely, a well-connected environment, E , is one
with the following properties. Let G be an mℓ × ms rect-
angular grid that contains E . Unlike earlier grids, here, G
is not required to have unit edge lengths; a cell of G is
only required to be of rectangular shape with O(1) side
lengths. Let r1 and r2 be two arbitrary adjacent rows of
G, and let c1 ∈ r1, c2 ∈ r2 be two neighboring cells
(see, e.g., Fig. 8). The only requirement over E is that a
robot in c1 and a robot in c2 may exchange residing cells
locally, without affecting the configuration of other robots.
In terms of the example in Fig. 8, the two shaded robots
(other robots are not drawn) must be able to exchange
locations in constant makespan within a region of constant
radius. The requirement then implies that parallel exchanges
of robots between r1 and r2 can be performed with a
constant makespan. The same requirement applies to two ad-
jacent columns of G. Subsequently, given an arbitrary well-
connected environment E and an initial robot configuration
XI , the steps from SPLITANDGROUP can be readily applied
to reach an arbitrary XG that is a permutation of XI . As long
as pairwise robot exchanges can be computed efficiently,

G

E r1

r2
c1

c2

Fig. 8. Illustration of a well-connected non-grid graph environment.

the overall generalized SPLITANDGROUP algorithm also
runs efficiently while maintaining the optimality guarantees.
We note that the definition of well-connectedness can be
further generalized to certain continuous settings. Fig. 9
provides a discrete example and a continuous example of
well-connected settings, which include both the environment
and the robots.

Fig. 9. Examples of two well-connected settings, with both environments
and robots. An arbitrary permutation of the (labeled) robots can be reached
using SPLITANDGROUP with optimality guarantees.

As mentioned in Sec. I, well-connected environments are
frequently found in real-world applications, e.g., automated
warehouses at Amazon and road networks in cities like Man-
hattan. Our theoretical results imply that such environments
are in fact quite optimal in their design, in terms of being
able to efficiently route robots or vehicles.

VI. CONCLUSION AND FUTURE WORK

In this work, we developed a low-polynomial time algo-
rithm, SPLITANDGROUP, for solving the multi-robot path
planning problem in grids and grid-like, well-connected
environments. In expectation, the solution produced by
SPLITANDGROUP is within a constant factor of the best
possible in terms of makespan and total distance optimality.
SPLITANDGROUP applies to problems with the maximum
possible density in graph-based settings and supports certain
continuous problems as well.

The development of SPLITANDGROUP opens up many
possibilities for promising future work. On the theoretical
side, SPLITANDGROUP gets us closer to the goal of a
finding a PTAS (polynomial time approximation scheme)
for optimal multi-robot path planning. Also, it would be
desirable to remove the probabilistic element (i.e., the “in
expectation” part) from the guarantees. On the practical side,
noting that we have only looked at the case with the highest

robot density, it is promising to exploit the combination
of divide-and-conquer and network flow techniques to seek
more optimal algorithms for cases with lower robot density.

REFERENCES

[1] M. A. Erdmann and T. Lozano-Pérez, “On multiple moving objects,”
in Proceedings IEEE International Conference on Robotics & Automa-
tion, 1986, pp. 1419–1424.

[2] A. Zelinsky, “A mobile robot exploration algorithm,” IEEE Transac-
tions on Robotics & Automation, vol. 8, no. 6, pp. 707–717, 1992.

[3] S. M. LaValle and S. A. Hutchinson, “Optimal motion planning for
multiple robots having independent goals,” IEEE Transactions on
Robotics & Automation, vol. 14, no. 6, pp. 912–925, Dec. 1998.

[4] Y. Guo and L. E. Parker, “A distributed and optimal motion planning
approach for multiple mobile robots,” in Proceedings IEEE Interna-
tional Conference on Robotics & Automation, 2002, pp. 2612–2619.

[5] D. Silver, “Cooperative pathfinding,” in The 1st Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment, 2005, pp.
23–28.

[6] M. R. K. Ryan, “Exploiting subgraph structure in multi-robot path
planning,” Journal of Artificial Intelligence Research, vol. 31, pp. 497–
542, 2008.

[7] R. Jansen and N. Sturtevant, “A new approach to cooperative pathfind-
ing,” in In International Conference on Autonomous Agents and
Multiagent Systems, 2008, pp. 1401–1404.

[8] R. Luna and K. E. Bekris, “Push and swap: Fast cooperative path-
finding with completeness guarantees,” in Proceedings International
Joint Conference on Artificial Intelligence, 2011, pp. 294–300.

[9] T. Standley and R. Korf, “Complete algorithms for cooperative
pathfinding problems,” in Proceedings International Joint Conference
on Artificial Intelligence, 2011, pp. 668–673.

[10] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha, “Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans,” in Robotics: Science and Systems, 2009.

[11] K. Solovey and D. Halperin, “k-color multi-robot motion planning,” in
Proceedings Workshop on Algorithmic Foundations of Robotics, 2012.

[12] J. Yu and S. M. LaValle, “Multi-agent path planning and network
flow,” in Algorithmic Foundations of Robotics X, Springer Tracts in
Advanced Robotics. Springer Berlin/Heidelberg, 2013, vol. 86, pp.
157–173.

[13] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “CAPT: Concurrent
assignment and planning of trajectories for multiple robots,” Interna-
tional Journal of Robotics Research, vol. 33, no. 1, pp. 98–112, 2014.

[14] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. Cambridge, MA: MIT Press, 2005.

[15] J. van den Berg, M. C. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in Proceedings IEEE
International Conference on Robotics & Automation, 2008, pp. 1928–
1935.

[16] M. S. Branicky, M. M. Curtiss, J. Levine, and S. Morgan, “Sampling-
based planning, control and verification of hybrid systems,” IEE
Proceedings Control Theory and Applications, vol. 153, no. 5, p. 575,
2006.

[17] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The international journal of robotics research, vol. 5, no. 1,
pp. 90–98, 1986.

[18] M. G. Earl and R. D’Andrea, “Iterative milp methods for vehicle-
control problems,” IEEE Transactions on Robotics, vol. 21, no. 6, pp.
1158–1167, 2005.

[19] K. E. Bekris, K. I. Tsianos, and L. E. Kavraki, “A decentralized
planner that guarantees the safety of communicating vehicles with
complex dynamics that replan online,” in 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2007, pp. 3784–
3790.

[20] J. Alonso-Mora, R. Knepper, R. Siegwart, and D. Rus, “Local motion
planning for collaborative multi-robot manipulation of deformable
objects,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 5495–5502.

[21] R. A. Knepper and D. Rus, “Pedestrian-inspired sampling-based multi-
robot collision avoidance,” in 2012 IEEE RO-MAN: The 21st IEEE
International Symposium on Robot and Human Interactive Communi-
cation. IEEE, 2012, pp. 94–100.

[22] D. Halperin, J.-C. Latombe, and R. Wilson, “A general framework
for assembly planning: The motion space approach,” Algorithmica,
vol. 26, no. 3-4, pp. 577–601, 2000.

[23] B. Nnaji, Theory of Automatic Robot Assembly and Programming.
Chapman & Hall, 1992.

[24] S. Rodriguez and N. M. Amato, “Behavior-based evacuation plan-
ning,” in Proceedings IEEE International Conference on Robotics &
Automation, 2010, pp. 350–355.

[25] T. Balch and R. C. Arkin, “Behavior-based formation control for
multirobot teams,” IEEE Transactions on Robotics & Automation,
vol. 14, no. 6, pp. 926–939, 1998.

[26] S. Poduri and G. S. Sukhatme, “Constrained coverage for mobile
sensor networks,” in Proceedings IEEE International Conference on
Robotics & Automation, 2004.

[27] B. Shucker, T. Murphey, and J. K. Bennett, “Switching rules for
decentralized control with simple control laws,” in American Control
Conference, Jul 2007, pp. 1485–1492.

[28] B. Smith, M. Egerstedt, and A. Howard, “Automatic generation of per-
sistent formations for multi-agent networks under range constraints,”
ACM/Springer Mobile Networks and Applications Journal, vol. 14,
no. 3, pp. 322–335, Jun. 2009.

[29] H. Tanner, G. Pappas, and V. Kumar, “Leader-to-formation stability,”
IEEE Transactions on Robotics & Automation, vol. 20, no. 3, pp.
443–455, Jun 2004.

[30] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic ap-
proach to collaborative multi-robot localization,” Autonomous Robots,
vol. 8, no. 3, pp. 325–344, Jun. 2000.

[31] J. Ding, K. Chakrabarty, and R. B. Fair, “Scheduling of microfluidic
operations for reconfigurable two-dimensional electrowetting arrays,”
IEEE Transactions on Computer-aided Design of Integrated Circuits
and Systems, vol. 20, no. 12, pp. 1463–1468, 2001.

[32] E. J. Griffith and S. Akella, “Coordinating multiple droplets in planar
array digital microfluidic systems,” International Journal of Robotics
Research, vol. 24, no. 11, pp. 933–949, 2005.

[33] M. J. Matarić, M. Nilsson, and K. T. Simsarian, “Cooperative multi-
robot box pushing,” in Proceedings IEEE/RSJ International Confer-
ence on Intelligent Robots & Systems, 1995, pp. 556–561.

[34] D. Rus, B. Donald, and J. Jennings, “Moving furniture with teams of
autonomous robots,” in Proceedings IEEE/RSJ International Confer-
ence on Intelligent Robots & Systems, 1995, pp. 235–242.

[35] J. S. Jennings, G. Whelan, and W. F. Evans, “Cooperative search
and rescue with a team of mobile robots,” in Proceedings IEEE
International Conference on Robotics & Automation, 1997.

[36] J. H. Reif, “Complexity of the generalized mover’s problem.” DTIC
Document, Tech. Rep., 1985.

[37] J. F. Canny, The Complexity of Robot Motion Planning. Cambridge,
MA: MIT Press, 1988.

[38] P. Spirakis and C. K. Yap, “Strong NP-hardness of moving many
discs,” Information Processing Letters, vol. 19, no. 1, pp. 55–59, 1984.

[39] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of
motion planning for multiple independent objects; PSPACE-hardness
of the “warehouseman’s problem”,” The International Journal of
Robotics Research, vol. 3, no. 4, pp. 76–88, 1984.

[40] S. Kloder and S. Hutchinson, “Path planning for permutation-invariant
multirobot formations,” IEEE Transactions on Robotics, vol. 22, no. 4,
pp. 650–665, 2006.

[41] R. A. Hearn and E. D. Demaine, “PSPACE-completeness of sliding-
block puzzles and other problems through the nondeterministic con-
straint logic model of computation,” Theoretical Computer Science,
vol. 343, no. 1, pp. 72–96, 2005.

[42] K. Solovey and D. Halperin, “On the hardness of unlabeled multi-robot
motion planning,” in Robotics: Science and Systems (RSS), 2015.

[43] J. Yu and S. M. LaValle, “Distance optimal formation control on
graphs with a tight convergence time guarantee,” in Proceedings IEEE
Conference on Decision & Control, 2012, pp. 4023–4028.

[44] M. Katsev, J. Yu, and S. M. LaValle, “Efficient formation path planning
on large graphs,” in Proceedings IEEE International Conference on
Robotics & Automation, 2013, pp. 3606–3611.

[45] A. Adler, M. De Berg, D. Halperin, and K. Solovey, “Efficient multi-
robot motion planning for unlabeled discs in simple polygons,” in
Algorithmic Foundations of Robotics XI. Springer, 2015, pp. 1–17.

[46] K. Solovey, J. Yu, O. Zamir, and D. Halperin, “Motion planning for
unlabeled discs with optimality guarantees,” in Robotics: Science and
Systems, 2015.

[47] V. Auletta, A. Monti, M. Parente, and P. Persiano, “A linear-time
algorithm for the feasbility of pebble motion on trees,” Algorithmica,
vol. 23, pp. 223–245, 1999.

[48] G. Goraly and R. Hassin, “Multi-color pebble motion on graph,”
Algorithmica, vol. 58, pp. 610–636, 2010.

[49] J. Yu, “A linear time algorithm for the feasibility of pebble motion on
graphs,” arXiv:1301.2342, 2013.

[50] O. Goldreich, “Finding the shortest move-sequence in the graph-
generalized 15-puzzle is NP-hard,” 1984, laboratory for Computer Sci-
ence, Massachusetts Institute of Technology, Unpublished manuscript.

[51] D. Ratner and M. Warmuth, “The (n2 − 1)-puzzle and related
relocation problems,” Journal of Symbolic Computation, vol. 10, pp.
111–137, 1990.

[52] J. Yu and S. M. LaValle, “Structure and intractability of optimal
multi-robot path planning on graphs,” in Proceedings AAAI National
Conference on Artificial Intelligence, 2013, pp. 1444–1449.

[53] J. Yu, “Intractability of optimal multi-robot path planning on planar
graphs,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp.
33–40, 2016.

[54] R. Alami, F. Robert, F. Ingrand, and S. Suzuki, “Multi-robot coopera-
tion through incremental plan-merging,” in Robotics and Automation,
1995. Proceedings., 1995 IEEE International Conference on, vol. 3.
IEEE, 1995, pp. 2573–2579.

[55] S. Qutub, R. Alami, and F. Ingrand, “How to solve deadlock situations
within the plan-merging paradigm for multi-robot cooperation,” in
Intelligent Robots and Systems, 1997. IROS’97., Proceedings of the
1997 IEEE/RSJ International Conference on, vol. 3. IEEE, 1997, pp.
1610–1615.

[56] M. Saha and P. Isto, “Multi-robot motion planning by incremental co-
ordination,” in 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2006, pp. 5960–5963.

[57] G. Sharon, R. Stern, A. Felner, and N. Sturtevant, “Conflict-Based
Search for Optimal Multi-Agent Path Finding,” in Proc of the Twenty-
Sixth AAAI Conference on Artificial Intelligence, 2012.

[58] G. Wagner and H. Choset, “M*: A complete multirobot path plan-
ning algorithm with performance bounds,” in Proceedings IEEE/RSJ
International Conference on Intelligent Robots & Systems, 2011, pp.
3260–3267.

[59] C. Ferner, G. Wagner, and H. Choset, “Odrm* optimal multirobot
path planning in low dimensional search spaces,” in Robotics and
Automation (ICRA), 2013 IEEE International Conference on. IEEE,
2013, pp. 3854–3859.

[60] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The increasing
cost tree search for optimal multi-agent pathfinding,” Artificial Intel-
ligence, vol. 195, pp. 470–495, 2013.

[61] E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D. Tolpin,
and E. Shimony, “Icbs: The improved conflict-based search algorithm
for multi-agent pathfinding,” in Eighth Annual Symposium on Combi-
natorial Search, 2015.

[62] W. Hönig, T. S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian, and
S. Koenig, “Multi-agent path finding with kinematic constraints.” in
ICAPS, 2016, pp. 477–485.

[63] L. Cohen, T. Uras, T. Kumar, H. Xu, N. Ayanian, and S. Koenig,
“Improved bounded-suboptimal multi-agent path finding solvers,” in
International Joint Conference on Artificial Intelligence, 2016.

[64] P. Surynek, “Towards optimal cooperative path planning in hard
setups through satisfiability solving,” in Proceedings 12th Pacific Rim
International Conference on Artificial Intelligence, 2012.

[65] E. Erdem, D. G. Kisa, U. Öztok, and P. Schueller, “A general formal
framework for pathfinding problems with multiple agents.” in AAAI,
2013.

[66] J. Yu and S. M. LaValle, “Optimal multi-robot path planning on
graphs: Complete algorithms and effective heuristics,” IEEE Trans-
actions on Robotics, vol. 32, no. 5, pp. 1163–1177, 2016.

[67] J. Yu, “Constant factor optimal multi-robot path planning in well-
connected environments,” arXiv:1706.07255, 2017, available at:
https://arxiv.org/abs/1706.07255.

[68] D. M. Kornhauser, “Coordinating pebble motion on graphs, the
diameter of permutation groups, and applications,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1984.

[69] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

	Introduction
	Preliminaries
	Graph-Theoretic Optimal Multi-Robot Path Planning
	Effects of Environment Connectivity

	Routing Robots on Rectangular Grids with a Sub-Linear Makespan
	Complexity and Solution Optimality Properties of the SplitAndGroup Algorithm
	Time Complexity of SplitAndGroup
	Constant Factor Time- and Distance-Optimality

	Generalizations
	High Dimensions
	Well-Connected Environments

	Conclusion and Future Work
	References

