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Efficient, High-Quality Stack Rearrangement

Shuai D. Han', Nicholas M. Stiffler!, Kostas E. Bekris', and Jingjin Yu!

Abstract—This work studies rearrangement problems involv-
ing the sorting of robots or objects in stack-like containers,
which can be accessed only from one side. Two scenarios are
considered: one where every robot or object needs to reach a
particular stack, and a setting in which each robot has a distinct
position within a stack. In both cases, the goal is to minimize
the number of stack removals that need to be performed. Stack
rearrangement is shown to be intimately connected to pebble mo-
tion problems, a useful abstraction in multi-robot path planning.
Through this connection, feasibility of stack rearrangement can
be readily addressed. Lower and upper bounds on optimality are
established, which differ only by a logarithmic factor, in terms
of stack removals. An algorithmic solution is then developed
that produces suboptimal paths much quicker than a pebble
motion solver. Furthermore, informed search-based methods are
proposed for finding high-quality solutions. The efficiency and
desirable scalability of the methods is demonstrated in simulation.

Index Terms—Foundations of Automation, Planning, Schedul-
ing and Coordination, Inventory Management, Manipulation
Planning, Task Planning

I. INTRODUCTION

ANY robotic applications involve the handling of

multiple stacks. For instance, spatial restrictions in
growing urban areas already motivate stackable parking lots
for vehicles, based on robotic technology!, as in Fig. 1(a).
Similarly, products in convenience stores are frequently ar-
ranged in “gravity flow” shelves depending on their type, as
in Fig. 1(b). Such stacked products arise in the industry where
a robot is able to interact with the foremost object and perform
operations similar to a “pop” or a “push” of a stack.

In the above stack rearrangement setups, the objective may
be to remove a specific object from the stack (e.g., a specific
car from the stackable parking lot) or to rearrange the objects
into a specific arrangement, which specifies the location of
each object within a stack (e.g., a Hanoi tower-like setting).
High quality solutions are more desirable for applications,
which critically depend on reducing the number of stack
pop and push operations. Otherwise, an exorbitant amount
of time is spent performing redundant actions, which reduces
efficiency or appears unnatural to people.
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Fig. 1. (a) Stackable parking lots are expected to become even more popular
in urban environments with the advent of autonomous cars. (b) Rearranging
stacks of objects is a task often encountered in convenience and grocery stores.

Through a reduction to a pebble motion problem, which
is well-studied in the multi-robot literature, the feasibility
of stack rearrangement can be decided. A naive feasible
solution, however, can be far from optimal in minimizing stack
removals. Adapting a divide-and-conquer technique, this paper
establishes asymptotic lower and upper bounds on this number
that differ by a logarithmic factor. Results are provided both
for objects that need to be placed in the right stack as well as
the case where objects need to acquire a specific stack position.
Finally, the paper considers both optimal and sub-optimal
informed search methods and proposes effective heuristics for
stack rearrangement. This leads to an experimental evaluation
of the different methods and heuristics, which suggests a
combination that scales nicely with the number of objects.

Related Work: Multi-body planning is itself hard. In the
continuous case, complete approaches do not scale even
though methods try to decrease the effective DOFs [1]. For
specific geometries, e.g., unlabeled unit-discs among polygons,
optimality is possible [2], even though the unlabeled case
is still hard [3]. Given the problem’s hardness, decoupled
methods, such as priority-based schemes [4] or velocity tuning
[5], trade completeness for efficiency.

Recent progress has been achieved for the discrete problem
variant, where robots occupy vertices and move along edges
of a graph. For this “pebble motion on a graph” problem [6]-
[9], feasibility can be answered in linear time and paths can be
acquired in polynomial time [10]-[13]. The optimal variation
is still hard but optimal solvers with good practical efficiency
have been developed [12]-[15]. More recently, O(1)-optimal
solutions are shown to be efficiently computable in practical
environments [16]. The current work is motivated by this
progress and aims to show that for stack rearrangement it is
possible to come up with practically efficient algorithms.

General rearrangement planning [17]-[19] is also hard,
similar to the related “navigation among movable obstacles”
(NAMO) task [20]-[24], which can be extended to manipulation
among movable obstacles (MAMO) and related challenges [25]-
[31]. These efforts focus on feasibility and no solution quality
arguments have been provided. A recent work has focused,
on high-quality rearrangement solutions but in the context of
manipulation challenges in tabletop environments [32].



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

Variants of the stack rearrangement problem have been
studied in the field of operations research. An optimal MLP-
based solver was constructed for the scenario where objects
need only to be moved to a target stack without specifying
their exact position within the stack [33]. There has also been
research towards estimating and minimizing the number of
relocations of multiple objects in stacks [34], [35]. While
this work investigates a similar problem, the emphasis of the
current work is on the structural and algorithmic study of
problems that relate to robotics applications.

II. PROBLEM FORMULATION

Assume n objects O = {o1,...,0,} that occupy w+1 last-
in-first-out (LIFO) queues, i.e., stacks, where w > 2, since 2-
stack rearrangement is impossible. Elements can only be added
or removed from one end of the data structure, often referred
to as the “top”. Furthermore, each stack has an integer depth
of d > 1, corresponding to the maximum stack capacity. An
object at the top of a stack has a depth of 1.

Modeling many real world problems, the assumption is that
objects in a stack always occupy contiguous positions, e.g.,
if the top object is removed from a stack in Fig. 1(b), the
remaining objects will “slide” towards the opening. Similarly,
as an object is pushed into a stack, the existing objects will
shift backwards by one position. It is straightforward to see
that the two versions of the problem, as shown in Fig. 2,
are equivalent. The difference denotes whether objects in
the stacks gravitate towards the top or bottom. The setup in
Fig. 2(a) is used for the remainder of the paper.

to fi
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Fig. 2. Visualization of the abstract problem where objects (a) gravitate
towards the bottom of the stacks, (b) slide to the opening of the stacks.

Using this setup, an object that currently resides at the top
of stack ¢ can be transferred to an arbitrary stack j via a pop-
and-push action, denoted as a;;. A permissible pop-and-push
action constrains the above definition by requiring that 7 be
non-empty, and that j not currently be at capacity.

An arrangement is an injective mapping 7 : O — N2,
0; — 7(0;). Here, 7(0;) is a 2-tuple (7' (0;), 72 (0;)) in which
1 < 7(0;) < w+l and 1 < 72(0;) < d are the stack and
depth locations of o;, respectively. The paper primarily focuses
on two main problems, defined as follows.

Problem 1. Labeled Stack Rearrangement (1.SR). Given
(O,w,d, 71, 7q), compute a sequence of permissible pop-and-
push actions A = (ai, j, , Qinjsp, - - - ) that move the objects from
an initial arrangement my to a goal arrangement Tg.
Problem 2. Column-Labeled Stack Rearrangement
(C-LSR). Similar to LSR, but the objects are only required
to be moved to their goal stacks without a specific depth.
That is, 7% is left unspecified for all objects.

Whereas C-LSR appears less general, it has practical incar-
nations — perhaps more so than LSR. For example, in retail, it
is almost always the case that a shelf slot holds the same type
of product (e.g., Fig. 1(b)). Solving C-LSR then corresponds

to rearranging an out of order shelf so that each stack holds
only a single type of product.

In this paper, the optimization objective is to minimize the
number of actions taken, i.e. | A|. In robotic manipulation, the
objective models the required number of grasps by the robotic
manipulator, which is frequently the key limiting factor. As
such, this work assumes a unit cost to move an object between
any two arbitrary stacks and ignores other less significant cost
such as the cost of transporting objects between stacks.

Focused on generating high quality solutions, it is assumed
that n < wd, unless specified otherwise. This assumption
ensures that LSR and C-LSR with arbitrary 77, 7 are always
feasible. Details are further discussed in the following section.

III. STRUCTURAL ANALYSIS

A closely related problem is Pebble Motion on Graphs
(PMG) [6]: suppose an undirected graph G = (V,E) has
p < |V] pebbles placed on distinct vertices and which can
move sequentially to adjacent empty vertices. Given a PMG
instance (G, zr,xzq), the goal of PMG is to decide if the
configuration xg is reachable from z;, and to subsequently
find a sequence of moves to do so when possible. When G is
a tree, this problem is referred to as Pebble Motion on Trees
(PMT). The considered versions of SR (and C-LSR) are PMT
problems.

L3 J)Ls J|[s |

(b) A PMT instance

(a) A LSR instance
Fig. 3. From LSR to PMT
Proposition IIL.1. A LSR instance is always reducible to a
PMT instance. In particular, a solution to the reduced PMT
instance is also a solution to the initial LSR instance.

Proof. Given a LSR instance (O, w,d, 71, 7g), as shown in
Fig. 3, the tree graph T = (V, E) in the PMT instance is
obtained by first viewing each stack as a path of length d, and
then joining the top vertices of these stacks with a root vertex,
which builds the connection between them. This yields |V| =
((w 4+ 1)d) 4+ 1 vertices. It is clear that object arrangements
m; and wg directly map to configurations x; and xg of a
PMT instance. Note that a pop-and-push action in the LSR
solution is equivalent to moving one pebble from a path on
T to another path through the root vertex. Similarly, given a
solution to the PMT instance, a solution to the LSR instance
can be constructed by treating a pebble passing through the
root as a pop-and-push action. O

Given the relationship between PMT and LSR, and that
finding optimal solutions (i.e., a shortest solution sequence) for
PMG and its variants is NP-hard [36], [37], there is evidence
to believe that solving LSR optimally (i.e., minimizing the
number of actions) is also computationally hard.

In terms of feasibility, the LSR problem is always feasible
as defined. This is due to the assumption that n < wd while
the total number of slots in the stacks are (w+1)d. This allows
to always clear one stack of depth d and then the elements in
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the remaining stacks can be arranged with the aid of the empty
one. Consider, however, a more general version, called GLSR,
that allows for n to exceed wd. So there may be fewer than
d buffers available to rearrange objects.

Note that Proposition III.1 still holds for GLSR. The map-
ping from GLSR to PMT immediately leads to algorithmic so-
lutions for GLSR (and therefore, LSR). By Proposition III.1, a
GLSR instance is feasible if and only if the corresponding PMT
instance is so. The feasibility test of PMT can be performed in
linear time [8], so the same is true for GLSR as the reduction
can be performed also in linear time.

For a feasible GLSR, solving the corresponding PMT can be
performed in O(|V'|) running time (and pebble moves) [6].
This translates to a solution for GLSR that runs in O(w3d?)
time using up to O(w3d®) actions. Nevertheless, this upper
bound is no longer tight for LSR (i.e., when n < wd) as a
LSR instance is in fact always feasible. It turns out that LSR
can be solved with less computational effort and a reduced
number of actions than using a PMT solver. This contribution
is established in the following proposition.

Proposition IIL.2. An arbitrary LSR can be solved using
O(wd?) pop-and-push actions.

Proof. Consider a LSR with n = wd. Without loss of
generality, assume that: V 0 € O : 7}(0) < w, 74 (0) < w,
i.e., stack w4+ 1 is empty at the start and goal arrangement. It
suffices to show that one stack (e.g., the first) can be rearranged
in O(d?) actions and this can be repeated w times. The O(d?)
cost for a stack is because each object can be moved to its
destination in O(d) moves and this can be repeated for d times.
Consider the object o to be moved to the bottom of the first
stack, i.e., mg(0) = (1,d). Without loss of generality, assume
that 77(0) = (z,y) with & # 1. Initially, o will be moved to
the top of stack z. If y = 1, no action is needed. Otherwise,
perform the following moves per Fig. 4: (i) move the object
at (1,1) to the buffer stack (w + 1), (ii) move objects from
(z,1) to (x,y — 1) to the buffer, (iii) move o to (1,1), (iv)
move all objects in the buffer except the last to stack z, (v)
move o to the top of stack z, and (vi) move the last object in
the buffer to stack 1.

R0 1R L

Fig. 4. The cyan object moves to the top of its stack = with O(d) actions.

Using the same O(d) procedure, the object o at (1,d) can
be moved to (1,1). Using the buffer stack (w+1), 0 and o can
be swapped in three actions. Then, reverting the sequences, o
can be moved to (1,d) for an O(d) total number of actions.
So, rearranging a single stack needs O(d?) actions and the
entire solution takes O(wd?) actions. O

The running time is also bounded by O(wd?) since the only
computational cost is to go through 7; and 7 and recover
the solution sequence. For GLSR, which allows n > wd, an
arbitrary instance may not be feasible. This paper focuses on
the optimal number of actions for rearrangement problems, so
GLSR is not considered further.

IV. FUNDAMENTAL BOUNDS ON OPTIMALITY

This section provides an analysis on the structural properties
of LSR, focusing on the fundamental optimality bounds and
polynomial time algorithms for computing them. The analysis
assumes the hardest case of LSR where n equals wd. Without
loss of generality, it is assumed that stack (w + 1) is empty
at the initial and goal arrangement, serving as a buffer. First,
consider the lower bound on the number of required actions.

Proposition IV.1. In the average case, Q(wd) actions are
required for solving LSR.

Proof. First consider a worst case scenario, i.e., that the
deepest objects 0; € O in each stack k, i.e., mr(0;) = (k,d),
must be moved to the next stack & + 1 modulo w, i.e.,
mc(o;) = ((k+ 1) mod w,d). To move each of these
objects, at least d actions are needed because d — 1 objects
are blocking the way to them. Therefore, the total number of
required actions is Q(wd).

In the average case (assuming 7y and 7 are both uniformly
randomly generated), each object o has probability (w —1)/w
to have 7}(0) # wi (o). That is, with probability 1/w, o
will stay in its initial stack and with probability (w — 1)/w
it must be moved to a different stack. Because moving o
will require on average d/2 actions, the expected cost of
moving it is then (w — 1)d/(2w). For all w stacks, this is
then Q((w — 1)wd/(2w)) = Q(wd). O

Then, the following lemma holds.

Lemma IV.1. A lower bound on the number of moves for
solving LSR is Q(wdlogd/logw).

Proof. The bound is established by counting the possible LSR
problems for fixed w and d, i.e., for the case n = wd. Given
a fixed 7, there are n! possible mg, so there are at least
n! = (wd)! different LSR instances. With each action, one
object at the top of a stack (w + 1 of these) can be moved
to any other stack (w of these). Therefore, each action can
create at most w(w + 1) < (w + 1)? new arrangements. In
order to solve all possible LSR instances, it must then be the

must satisfy [(w + 1)2]™{UAD} > (wd)!. Then, by Stirling’s
approximation, min{|A|} = Q(w dlogd) 0

log w

Lemma IV.1 implies Proposition IV.1 as well but does so
in a less direct way. Interestingly for the case of w <« d,
Lemma IV.1 immediately implies the following better lower
bounds.

Corollary IV.1. For a LSR with w = e\/@, on average it
requires Q2(wdv/log d) actions to solve.

Corollary IV.2. For a LSR with w being a constant, on
average it requires Q(dlogd) actions to solve.

The focus now shifts towards upper bounds on optimality
where polynomial time algorithms are presented for computing
them. Recall that a trivial upper bound of O(wd?) is given by
Proposition I11.2. Comparing the O(wd?) upper bound with
the lower bound, which ranges between Q(wd) and (dlog d)
(for constant w), there remains a sizable gap. Forthcoming
algorithms illustrate how to significantly reduce, and in certain
cases eliminate this gap.
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Lemma IV.2. An arbitrary instance of C-LSR can be solved
using O(wdlogw) actions.

Proof. A recursive algorithm is outlined for solving C-LSR.
The logw factor in O(wdlogw) is a result of a divide-and-
conquer approach, similar to the one that appears in popular
sorting algorithms like quicksort. In the first iteration, partition
all wd objects into two sets based on 7},. For an object 0 € O,
if 75 (0) < [w/2], then it is assigned to the left set. Otherwise
it is assigned to right set. The goal of the first iteration is to
sort objects so that the left set resides in stacks 1 to [w/2],
as illustrated in Fig. 5.

e

Fig. 5. The goal of the first iteration in solving an C-LSR instance with
w =7 and d = 7. The empty stack is not drawn.

In the first iteration, begin with the first stack and sort it
into two contiguous sections belonging to the left set and the
right set. The process involves using another occupied stack
and the buffer stack (using O(d) moves). Note that the content
of the other occupied stack is irrelevant. These three stacks are
illustrated in the first figure in Fig. 6. Assume that ¢ objects of
stack 1 belong to the left set (in the example, ¢ = 4). To begin,
the top ¢ objects of the last stack is moved to the buffer. This
allows the sorting of the first stack into two contiguous blocks
of left only and right only objects, which can then be returned
to the first stack. Note that the order of the two blocks can be
reversed using the same procedure; this will be used shortly.
The procedure is then applied to all stacks. The procedure and
the end result are illustrated in Fig. 6. It is clear that the total
actions required is O(wd).

LT

Fig. 6. The left four figures illustrate the process of sorting a single stack
into two contiguous blocks. The last figure is the end result of applying the
procedure to all stacks.

The next step involves the first two stacks and attempts to
consolidate the sets. If any stack is already fully occupied by
either the left or the right set, then that stack can be skipped;
suppose not. Let these two stacks be i-th and j-th stacks and
let £; and £; be the number of objects belonging to the left set
in the i-th and j-th stacks, respectively. If ¢; +¢; > d, then
using the buffer stack, stack 7 can be forced to contain only
objects belonging to the left set. Fig. 7 illustrates applying the
procedure to the left most two stacks to the running example

and the result.
- EEEEE

= g1 e

Fig. 7. Consolidating the first two stacks.
If 4; +¢; < d, then stack ¢ is processed so that the ¢;

objects belonging to the left set are on the top (using the block
reverse procedure mentioned earlier in this proof). Then, a

similar consolidation routine can be applied. Fig. 8 illustrates
the application of the procedure to stacks 2 and 3 of the right
most figure of Fig. 7. With these two variations, all stacks can
be sorted so that each stack contains only objects from either
the left set or the right set.

B aLlE

Fig. 8. Consolidating the first two stacks that requires reversing the two
contiguous blocks one of the two stacks.

At this point, using the buffer stack, entire stacks can
be readily swapped to complete the first iteration. The total
number of actions used is O(wd) per iteration. Applying the
same iterative procedure to the left and the right sets of objects,
the full C-LSR problem can then be solved with O(wd logw)
actions. O

After solving C-LSR, each stack needs to be sorted again to
fully solve the original LSR problem, which can be performed
using O(dlogd) actions.

Lemma IV.3. After solving the C-LSR portion of a LSR

instance, a stack can be fully sorted using another stack and
the buffer stack with O(dlogd) actions.

Proof. The sorting is done recursively. Suppose stack @ is to
be sorted using stack 7 and the buffer stack. Assume without
loss of generality that d = 2* for some k. To start, move half
of the objects in stack j to the buffer stack. This creates two
buffers of size 251, Using these two buffers, stack ¢ can be
sorted into a top half and a bottom half. As these two halves
are restored to stack ¢, the top and bottom halves are separated.
Iteratively applying the same procedure can then sort stack 7
fully in log d iterations. The total number of required actions is
then O(dlog d). Fig. 9 provides an illustrative example sorting
sequence for k = 3. O

\»PU\DJP—‘OONI\IQ

—

(@
Fig. 9. An example of sorting a stack with d = 23.
Lemma IV.2 and Lemma IV.3 suggest that the gap between
the lower and upper bounds for LSR can be completely
eliminated for constant w.

Theorem IV.1.
O(dlogd) actions, agreeing with the Q(dlogd) lower bound.

For constant w, LSR can be solved using

Proof. By Lemma IV.2, when w is a constant, a corresponding
C-LSR problem can be solved using O(wdlogw) = O(d)
actions. Lemma IV.3 then applies to do the final sorting
in O(wdlogd) = O(dlogd) actions. The total number of
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required actions is then O(dlogd). The lower bound is given
by Corollary IV.2. O

The following provides a tighter upper bound for non-
constant w.

Theorem IV.2. An arbitrary LSR instance can be solved using
O(wdmax{logd,logw}) actions.
Proof. Applying Lemma IV.2 to the LSR problem yields
a stack sorted instance of LSR using O(wdlogw) ac-
tions. Since sorting each of the stacks afterward takes
O(dlogd) time, the full LSR problem can be solved using
O(wdmax{logd,logw}) actions. O
The greatly improved and general upper bound is now
fairly close to the general lower bound (wd) within only
a logarithmic factor.

Algorithm 1: Poly-LSR (7, 7)

1 Poly-C-LSR(1,w)

2 for ¢; € [1,w] do Sort stack ¢;
3 return

4 Function Poly-C-LSR(l,r)

5 if | = r then return

6 i lj+rm<+ |[(I+7)/2]

7 for o; € O do

8 if | <7k (0;) < m then label o;: left

9 else if m + 1 < 7}, (0;) < r then label o;: right
10 for ¢; € [I,r] do Reorder stack c;

1 for ¢; € [, r] do Consolidate stack c;

12 Poly-C-LSR(I, m)

13 Poly-C-LSR(m + 1,7)

14 return

The algorithmic process (Poly-LSR) for the method intro-
duced above is shown in Alg. 1. It contains the subroutine for
solving C—-LSR (Poly-C-LSR, in line 4-14), which iteratively
separates the left and right sets in each stack (line 12), and con-
solidate the stacks (line 13). Details are already mentioned in
Lemma IV.2. LSR is solved by first call Poly-C-LSR and then
sort all the stacks using the routine in Lemma IV.3 (line 2).
The overall time complexity is O(wd max{log d,log w}),
which is equivalent to the number of actions in the solution.

V. OPTIMAL AND SUBOPTIMAL LSR SOLVERS

The polynomial algorithms (Sections III and IV) provide
a balance between computational complexity and solution
quality. These algorithms are more appropriate for solving
large-scale problems quickly with a bounded sub-optimality
guarantee. Nevertheless, given that the computational burden is
relatively manageable for smaller problem instances, optimal
solutions can be computed via alternative search-based solvers,
which are introduced in this section. Appropriate heuristics are
developed to guide these solvers, which helps in making them
tractable for larger problem instances.

LSR can be reduced to a Shortest Path Problem, which
searches for a minimum weight path between two nodes in
an undirected graph. Here a node simply denotes an arrange-
ment 7. The neighbors of this node are all the arrangements
reachable from 7 via a single pop-and-push action. The edge
weights between connected nodes are uniform.

The A* graph search algorithm [38] is a common tool for
solving such a problem optimally. The branching factor is (w+
1)w since a pop-and-push action picks an object from one of

(w + 1) stacks, and places it in one of the other w stacks.
Several heuristic functions are designed to guide the search:
Depth Based Heuristic (DBH). This heuristic returns an
admissible number of pop-and-push actions needed to move
a single object o, € O to its goal. The detailed process
appears in Alg. 2. It initially checks if o; is at its goal position
(line 1), and simply returns O if this statement is true. Lines 2
and 3 calculate the number of objects in front of o; in ¢
(resp. ), and denote it as n. (resp. ny). At this point (line 4),
if the object is currently in its goal stack, DBH computes
the estimated number of moves via the following process: (1)
take o; out of 7 (0;), (2) make the goal pose reachable by
inserting/removing intermediary objects from 7(,(0;), and (3)
place o; back into 7 (0;). If the object is not in its goal stack,
then one of the following apply: If 7w (0;) is reachable from
mc(0;) solely by removing intermediary objects in front of
both positions, then the object can be moved to mg(0;) in
ne + ng + 1 steps; Otherwise, o; needs to be moved to an
intermediate stack and this induces an extra move.

Algorithm 2: DBH(o;, 7¢, 7¢)

1 if 7o (0;) = mg(o;) then return 0

2 ne < [{ojloj € O,m(0;) = g (0i), 7 (05) < w(0i)}]
3 ng «+ {ojloj € O,mg(05) = mg(0s), m(05) < mg(0i)}H
a if },(0;) = w5 (0;) then

5 if nc > ngy then return 2n. —ng + 2

6 else return ng + 2

7 else

8 if 72,(0;) + 7% (0;) — 1 < (w+ 1)d — n then
9 L return n; + ng + 1
|
The following variants of DBH deal with multiple objects:
1) DBHI1: admissible, takes the maximum DBH value over
all objects: hppyy = max,eo DBH(o, 7, 7¢).
2) DBHn: inadmissible, takes the summation of DBH val-
ues: hppn = Y ,c0 DBH(0, ¢, mg).

Column Based Heuristic (CBH). Described in Alg. 3,
CBH counts the summation of the minimum number of actions
necessary to move each object to its goal stack. As opposed
to DBH which seeks a tight estimate for a single object, CBH
considers all objects.

The detailed process is as follows. For every object 0; € O,
CBH first determines whether 7 (0;) = 74 (0;) (line 3). If
n&(0;) = m&(0;), the heuristic value h remains unchanged if
the objects behind o; are all at their goals. Otherwise, there
exists either an object currently deeper than o; that needs to
be evacuated, or an object in another stack that needs to be
inserted to 7}, (0;) at a depth deeper than 7% (0;). Thus o; must
be taken out of its goal stack and placed back afterwards. This
requires 2 actions on o; (line 4).

If 74 (0;) # 7 (0;), it takes at least 1 action for o; to be
moved to 7 (0;) (line 7). However if the empty locations in
the stacks other than 7, (0;) and 7, (0;) cannot contain all the
objects in front of 7 (0;) and wg(0;), 0; must be moved to
an intermediate stack. This requires 2 actions (line 6).

An example of DBH and CBH calculation is shown in
Fig. 10. The running time for DBH is O(d), so totally O(nd)
for both DBH1 and DBHn. CBH runs in O(n) time when
dealing objects in each stack from the bottom. The admissible

else return n. + ng + 2
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|| | L2 ][]
Fig. 10. An example for heuristic calculation. The left figure denotes
mc, while the right one denotes mg. The heuristic values are hpgy; =

max{3,1,3,4} =4, hppun = 3+1+3+4 = 11, hepy = 2+1+2+2 =17,
The optimal solution for this problem costs 9 steps.

Algorithm 3: CBH(wo, 7¢q)

1 h<20

2 for o; € O do

3 if 7l (0;) = 75 (0;) then

4 if 3o; € O, TI'é(Oj) = Wé(oi),wé(oj-) >
wé(oi),wc(oj) 75 ﬂ'G(Oj) then h < h + 2

5 else

6 if (w+1)d—n < 7% (0;) + 7% (0;) — 1 then h «+— h+2
7 else h < h+1

8 return h

heuristics CBH and DBHI are also consistent. Proofs are
omitted due to the lack of space.

An alternate optimal solver is bidirectional heuristic search
(BHPA) [39]. It runs two A* searches simultaneously: One
starts from 77 and searches for 7¢; the other starts from 7g
and searches for ;. BHPA terminates when it finds a path with
cost u < max{fs, fc}. Here f; and fs denote the minimum
f-values in the two search fringes, respectively.

By multiplying the heuristic value with a weight w > 1,
weighted A* search [40] generates w-approximate solutions,
and runs significantly faster than A* search. Weighted A* is
denoted as A*(w) and weighted BHPA as BHPA(w).

Remark. Other algorithms, including, but not limited to,
ALT [41], ID [42], CBS [43], ILP [15], although efficient in
solving search or PMG problems, are expected to underperform
on LSR because of the high density and lack of parallel
movements. Details are omitted due to the lack of space.

VI. EXPERIMENTAL RESULTS

This section presents experimental validation for the algo-
rithms introduced in this paper. All experiments were executed
on a Intel® Core™ i7-6900K CPU with 32GB RAM at
2133MHz.

Both the success rate (Fig. 11-12) and average cost (Table I)
are evaluated for each problem setup. The success rate is the
percentage of instances that generated a solution before a five
second timeout occurred. The quality of solutions is presented
as the average number of actions |A|. The experiments were
conducted with varying values for w, d, and n. For each
problem setup (w,d,n), 100 random instances are generated
and the average solution cost is reported. To observe the
robustness of the algorithms to various parameter values,
three sets of experiments were conducted that fixed certain
parameters while varying others. The following table shows
the position of the experiments as they appear relative to
Table I and the Figures 11-12 along with the accompanying
parameter values.

Position | w d n
top varies 3 wd
middle 2 varies wd

bottom 5 5 varies

o - - =

8-24 927

4.12 5.15 618 7-21
Number of Slots - Number of Objects

1008 ® . !

| V'Y P

5.10 6-12 7-14 8-16 9-18 10-20
Depth - Number of Objects

PN PN PN

2 4 6 8 10 12 14 16 18 20 22 24
Number of Objects

—e— DBH1 —4— DBHn —m— CBH ‘

Fig. 11. Success rate of heuristics when applied to the A* algorithm.

Polynomial algorithms are implemented with basic post-
processing, which removes back-and-forth actions (i.e., trans-
fer an object to another stack and immediately move it
back). Poly-D is the simple O(wd?) algorithm in Section III,
while Poly-LSR is the O(wd max{logd,logw}) algorithm in
Section IV. The yellow columns in Table I show the average
solution cost of Poly-D and Poly-LSR across all simulated
instances. Poly-D generates solutions with a lower average
cost than Poly-LSR when n is small. The performance flips
when there is more than 1000 objects. For example, when
w = 50,d = 40,n = 2000, Poly-D uses ~ 63,000 steps to
solve a problem, while Poly-LSR uses ~ 50,000 steps. Both
the Poly-D and Poly-LSR algorithms are able to solve LSR
problems with 1000 objects in 1 second, which is already
beyond a practical number.

The heuristics described in Section V are tested with the A*
algorithm. As evidenced in Fig. 11, the admissible heuristic
CBH has a higher success rate than the alternatives. The
average solution cost across all scenarios that employ an A*
heuristic appear in the brown and red columns of Table I.
Fig. 12 shows that with the help of CBH, A* has a much
higher success rate than Breadth First Search (BFS) and its
bidirectional version Bi-BFS. As expected, A* also beats
BHPA [38].

The weighted search algorithms (red columns in Table I)
generate solutions close to the optimal (green column in
Table I). BHPA(2) has a higher success rate than A*(2) (see
Fig. 12), and also generates solutions with lower cost. This is
because as the heuristic becomes inadmissible, the termination
criterion of BHPA is more easily to be satisfied.

The key difference between the optimal search-based meth-
ods and the suboptimal methods centers around the relaxation
of the objective function. By forgoing optimality, the subopti-
mal methods gain increased scalability, which often generate
near-optimal feasible solutions to problem instances that are
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TABLE 1
AVERAGE SOLUTION COST OF THE ALGORITHMS
’ w ‘ d ‘ n ‘ Opt.Val. ‘ Poly-D ‘ Poly-LSR ‘ BES ‘ Bi-BFS ‘ DB A*l, W]‘;J]‘Bg:““T“C CBH %Ig? /&(ﬁ) ‘ B}él;’?{(z) ‘

T ] 3 3 211 1407 3114 2.0 2.0 2.0 2.84 200 200 .02 13.49
3 3 9 17.16 24.08 5395 .17 17.16 6.13* | 1758 | 17.16 17.16 198 19.78
T3 12 31.95 3378 83.88 NA 16.4% NA NA 35 | 2LIF 3535 352

3 315 % 3435 T14.85 NA NA NA NA 2470 | 2494 | 3185 3132
6 T 3 | 18 % 5434 136,53 NA NA NA NA NA NA 3728 36.77
7T 3 | 2 % 4.5 17849 NA NA NA NA NA NA 3445 1398
§ 1 3 | = % 75.93 20777 NA NA NA NA NA NA 39,73 39.82%
53 [ 27 5 86.99 35647 NA NA NA NA NA NA 36.71% 36.15%
T T 3 6 .11 1407 3114 2.0 2.1 2.0 12.84 2.1 2.0 B.02 13.49
7 4 g 1817 3397 5874 8.7 18.17 18.17 2047 18.17 18.17 3057 2027
> T 5 1 10 35.08 3543 78.96 NA 35.00% | 2148% | 25.23% | 25.08 75.08 28.62 84

7T 6 | 12 32.57 3890 1012 NA 3507 NA NA 3023F | 2957 372 3741

> 7 [ 14 % 63.95 12461 NA NA NA NA 35.0F | 3429 | 4621% 3638
3§ | 16 % 79.57 147.63 NA NA NA NA 36.5° NA 53.88" 54.907
79 [ 18 5 93.54 7242 NA NA NA NA NA NA 61.6% 6151%
7 10 | 20 7 17.47 1973 NA NA NA NA NA NA 63.25% 69.45%
5T 5 3 74 186 1535 74 74 174 74 174 174 74 74

515 3 42 504 30.73 42 42 a2 a3 iz 42 429 426

5 5 3 6.87 9.49 532 6.65° 6.87 6.87 737 6.87 6.87 7.2 7.18

5 5 g 9.62 15.89 6131 NA 9.6% 856F | 1035* 9.62 9.62 103 10.28
5 510 13.01 32.63 76.93 NA 10.2% 933 .97 1300 13.01 14.69 14.44
5 5T 12 16.01 30.42 92.08 NA NA NA NA 587 | 1586 | 1849 1832
55 [ 14 19.74 33.86 107.13 NA NA NA NA 1886% | 1885 | 2279 72.69
5T 5 | 16 % 3.1 12274 NA NA NA NA 215% | 2165 | 27.54 27.26
5T 5 [ 18 % 5753 138.08 NA NA NA NA B33 | B | 3342 32.92
5T 5 | 20 % 8.17 153.61 NA NA NA NA NA NA 38237 37,887
5 5 2 % 80.04 16841 NA NA NA NA NA NA 167 FYRyE
5 5 4 % 9757 183.97 NA NA NA NA NA NA 55,607 55,507

* Failed instances are not involved in calculating the average cost, which makes the data point less informative.

NA: all test cases failed.
Content explanation:
- The leftmost 3 columns denote different setups of LSR.

- Green column: optimal costs achieved by running the A* algorithm with CBH heuristic with 300 seconds timeout. The memory requirements of the problem are a bottleneck

for these instances.

- Yellow, blue, brown, and red columns denote results for polynomial algorithms, BFS, optimal search-based solvers, and suboptimal search-based solvers, respectively.

intractable for traditional search-based methods. 100 — - - - —

The accompanying video? provides additional experiments. £ 80
These experiments illustrate the effectiveness of the proposed 260
methods in application domains, such as shelf stocking via a 240
robot manipulator and automated vehicle parking. 220

0 0 0
2.6 3.9 4-12 5.15 6-18 7-21 8-24 9.27
VII. CONCLUSION Number of Slots - Number of Objects
. . . 100@ +

This paper describes a novel approach to the object re- 50| 2
arrangement problem where objects are stored in stack-like & g
containers. Fundamental optimality bounds are provided by §40 -
modeling these challenges as pebble motion on a graph @20 |
problems. While optimal solvers exist to tackle pebble motion 0 ‘ ® —0—0

. . 3.6 4.8 5.10 6-12 7-14 8-16 9-18 10-20

on a graph problems, these methods are ill-suited for stack Depth - Number of Objects
object rearrangement due to the approaches’ poor scalability.
To overcome this shortcoming, an algorithmic solution is pre-
sented, which is faster than optimal solvers, albeit producing
suboptimal solutions. The utility of the proposed method is
validated experimentally.

The current work assumes a single manipulator, which
forces all stack operations to be sequential. A future line of
research is to consider parallel operations. A starting point
may be the parallelization of the stack operations with multiple
manipulators where each manipulator is in charge of a number
of stacks. From an algorithmic perspective, the divide-and-
conquer algorithm proposed here will naturally benefit from
such a scheme. Further parallelization efforts, however, must
be considered jointly with the design of the underlying system

2 Avaliable at https://youtu.be/qOIT-1g5S6w

2 4 6 8 10 12 14 16 18 20 22 24
Number of Objects

—@— BFS —o— Bi-BFS — i A* —5— BHPA — 4 A*(2) —a— BHPA(2)

Fig. 12. Success rate of algorithms with the CBH heuristic.

since carrying out multiple stack operations simultaneously
will require careful coordination between the manipulators.

The cost function in this paper focuses on the number of pop
and push actions given the high real-world cost of grasping
objects in stacks. It can be expanded, however, to reflect the
distance between entrances of different stacks. Developing a
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polynomial time algorithm with tight optimality guarantees
will be more challenging but also useful for physical systems
where the energy expense and execution time are affected by
the distance over which an object is transported.

[1]

[2

—

[3]

[4]

[5

=

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

B. Aronov, M. de Berg, A. F. van den Stappen, P. Svestka, and

J. Vleugels, “Motion planning for multiple robots,” Discrete and
Computational Geometry, vol. 22, no. 4, pp. 505-525, 1999.

K. Solovey, J. Yu, O. Zamir, and D. Halperin, “Motion planning for
unlabeled discs with optimality guarantees,” in Proc. Robotics: Science
and Systems, Rome, Italy, Jul. 2015.

K. Solovey and D. Halperin, “On the hardness of unlabeled
multi-robot motion planning,” in Proc. Robotics: Science and Systems,
Rome, Italy, Jul. 2015.

J. van den Berg and M. Overmars, “Prioritized motion planning for
multiple robots,” in Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems, Edmonton, AB, Canada, Aug. 2005,
pp. 2217-2222.

S. Leroy, J.-P. Laumond, and T. Siméon, “Multiple path coordination
for mobile robots: A geometric algorithm,” in Proc. International Joint
Conferences on Artificial Intelligence, Stockholm, Sweden, Jul. 1999,
pp. 1118-1123.

D. Kornhauser, G. Miller, and P. Spirakis, “Coordinating pebble
motion on graphs, the diameter of permutation groups, and
applications,” in Proc. IEEE Symposium on Foundations of Computer
Science, Singer Island, FL, USA, 1984, pp. 241-250.

G. Calinescu, A. Dumitrescu, and J. Pach, “Reconfigurations in graphs
and grids,” SIAM Journal on Discrete Mathematics, vol. 22, no. 1, pp.
124-138, 2008.

V. Auletta, A. Monti, D. Parente, and G. Persiano, “A linear time
algorithm for the feasibility of pebble motion on trees,” Algorthmica,
vol. 23, pp. 223-245, 1999.

G. Goraly and R. Hassin, “Multi-color pebble motion on graphs,”
Algorthmica, vol. 58, no. 3, pp. 610-636, 2010.

A. Krontiris, R. Luna, and K. E. Bekris, “From feasibility tests to path
planners for multi-agent pathfinding,” in Proc. International
Symposium on Combinatorial Search, Seattle, WA, Jul. 2013.

R. Luna and K. E. Bekris, “Efficient and complete centralized
multi-robot path planning,” in Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Francisco, CA, Sep
2011.

G. Wagner, M. Kang, and H. Choset, “Probabilistic path planning for
multiple robots with subdimensional expansion,” in Proc. IEEE
International Conference on Robotics and Automation, Minneapolis,
MN USA, May 2012.

J. Yu and S. M. LaValle, “Multi-agent path planning and network
flow,” in Algorithmic Foundations of Robotics X. Springer, 2013, pp.
157-173.

G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” in Artificial Intelligence,
no. 219, 2015, pp. 40-66.

J. Yu and S. M. LaValle, “Optimal multirobot path planning on
graphs: Complete algorithms and effective heuristics,” IEEE
Transactions on Robotics, vol. 32, no. 5, pp. 1163-1177, 2016.

J. Yu, “Expected constant factor optimal multi-robot path planning in
well-connected environments,” in International Symposium on
Multi-Robot and Multi-Agent Systems, 2017.

O. Ben-Shahar and E. Rivlin, “Practical pushing planning for
rearrangement tasks,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 4, Aug. 1998.

J. Ota, “Rearrangement planning of multiple movable objects by using
real-time search methodology,” in Proc. IEEE International
Conference on Robotics and Automation, vol. 1.  Washington DC,
USA: IEEE, May 2002, pp. 947-953.

M. Christofides and C. I, “The rearrangement of items in a
warehouse,” Operations Research, vol. 21, no. 2, pp. 577-589, 1973.
G. Wilfong, “Motion planning in the presence of movable obstacles,”
in Annals of Mathematics and Artificial Intelligence, 1991, pp.
131-150.

P. C. Chen and Y. K. Hwang, “Practical path planning among movable
obstacles,” in Proc. IEEE International Conference on Robotics and
Automation, Sacramento, CA, USA, Apr. 1991, pp. 444-449.

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

(32]

[33]

(34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

E. Demaine, J. O’Rourke, and M. L. Demaine, “Pushpush and push-1
are np-hard in 2d,” in Proc. Candadian Conference on Computational
Geometry, 2000, pp. 211-219.

D. Nieuwenhuisen, A. F. van der Stappen, and M. H. Overmars, “An
effective framework for path planning amidst movable obstacles,” in
Proc. Workshop on the Algorithmic Foundations of Robotics, New
York City, USA, Jul. 2006.

J. van den Berg, M. Stilman, J. J. Kuffner, M. Lin, and D. Manocha,
“Path planning among movable obstacles: A probabilistically complete
approach,” in Proc. Workshop on the Algorithmic Foundations of
Robotics, Guanajuato, Mxico, Dec. 2008.

M. Stilman, J. Schamburek, J. J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in Proc. IEEE International
Conference on Robotics and Automation, Rome, Italy, Apr. 2007.

G. Havur, G. Ozbilgin, E. Erdem, and V. Patoglu, “Geometric
rearrangement of multiple moveable objects on cluttered surfaces: A
hybrid reasoning approach,” in Proc. IEEE International Conference
on Robotics and Automation, Hong Kong, China, May 2014, pp.
445-452.

S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible
planner-independent interface layer,” in Proc. IEEE International
Conference on Robotics and Automation, Hong Kong, China, May
2014.

C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An
efficient heuristic for task and motion planning,” in Proc. Workshop on
the Algorithmic Foundations of Robotics, Istanbul, Turkey, Sep. 2014.
A. Krontiris, R. Shome, A. Dobson, A. Kimmel, and K. E. Bekris,
“Rearranging similar objects with a manipulator using pebble graphs,”
in Proc. IEEE International Conference on Humanoid Robotics,
Madrid, Spain, Nov. 2014.

A. Krontiris and K. E. Bekris, “Dealing with difficult instances of
object rearrangement,” in Proc. Robotics: Science and Systems, Rome,
Italy, Jul. 2015.

——, “Efficiently solving general rearrangement tasks:a fast extension
primitive for an incremental sampling-based planner,” in Proc. IEEE
International Conference on Robotics and Automation, Stockholm,
Sweden, May 2016.

S. Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu,
“High-quality tabletop rearrangement with overhand grasps: Hardness
results and fast methods,” in Proc. Robotics: Science and Systems,
Cambridge, MA, Jul. 2017.

N. R. Dayama, M. Krishnamoorthy, A. Ernst, V. Narayanan, and

N. Rangaraj, “Approaches for solving the container stacking problem
with route distance minimization and stack rearrangement
considerations,” Computers & Operations Research, vol. 52, pp.
68-83, 2014.

K. H. Kim, “Evaluation of the number of rehandles in container
yards,” Computers & Industrial Engineering, vol. 32, no. 4, pp.
701-711, 1997.

M. Caserta, S. Vo3, and M. Sniedovich, “Applying the corridor
method to a blocks relocation problem,” OR spectrum, vol. 33, no. 4,
pp. 915-929, 2011.

0. Goldreich, “Studies in complexity and cryptography,” O. Goldreich,
Ed. Berlin, Heidelberg: Springer-Verlag, 2011, ch. Finding the
Shortest Move-sequence in the Graph-generalized 15-puzzle is
NP-hard, pp. 1-5.

D. Ratner and M. Warmuth, “The (n2-1)-puzzle and related relocation
problems,” Journal of Symbolic Computation, vol. 10, no. 2, pp.
111-137, 1990.

E. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions on
Systems Science and Cybernetics, vol. 2, pp. 100-107, 1968.

1. Pohl, “Bi-directional and heuristic search in path problems,” Ph.D.
dissertation, Stanford University, Dept. of Computer Science, 1969.

J. Pearl, “Heuristics: intelligent search strategies for computer problem
solving,” 1984.

A. V. Goldberg and C. Harrelson, “Computing the shortest path: A*
search meets graph theory,” in Proc. ACM-SIAM Symposium on
Discrete Algorithms. Society for Industrial and Applied Mathematics,
2005, pp. 156-165.

T. Standley and R. Korf, “Complete algorithms for cooperative
pathfinding problems,” in Proc. International Joint Conferences on
Artificial Intelligence, Barcelona, Spain, Jul. 2011, pp. 668-673.

G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40-66, 2015.



	Introduction
	Problem Formulation
	Structural Analysis
	Fundamental Bounds on Optimality
	Optimal and Suboptimal LSR Solvers
	Experimental Results
	Conclusion
	References

