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A B S T R A C T

To produce a large object within a limited workspace of an Additive Manufacturing (AM) machine, this study
proposes a two-phase method: (1) part decomposition to separate a part into several pieces; and (2) 2D batch
placement to place the decomposed parts onto multiple batches. In Phase 1, the large object is re-designed into
small pieces by a Binary Space Partitioning (BSP) with a hyperplane, where parts are decomposed recursively
until no parts are oversize the limited size of the workspace. In Phase 2, the decomposed parts are grouped as
batches to go through serial build processes using a single AM machine. Within a batch, the decomposed parts
are placed based on a 2D packing method in which parts are not placed over other parts to avoid potential
surface damage caused by support structure between parts. A genetic algorithm (GA) for the 2D batch placement
is applied to find near-optimal solutions for build orientations, placement positions, and batch number for each
part. As an objective function, the total process time including build time and post-processing time is minimized.
This research provides some insights into the relation between part decomposition and 2D batch placement. It
shows that minimizing the number of decomposed parts could be more critical than minimizing the size of
decomposed parts for reducing the overall process time in serial batch processes.

1. Introduction

Researchers and practitioners have considered Additive Manufacturing
(AM) as a supplement to the traditional manufacturing (subtractive and
formative) [1,2]. However, the AM technology still has several practical
limitations such as the finite workspace size of an AM machine [3]. In
some cases like houses [4,5] and automobiles [6] that the size of a
product is non-scalable and larger than the buildable size, a sufficiently
large AM machine might be one solution. However, developing large-
scale AM machines does not seem practical, since it requires a huge in-
vestment and causes other limitations such as less flexibility of storages
and difficulty of transportation. Another solution is to re-design an initial
model into assemblies to fit in smaller-scale workspaces. For decades,
researchers have worked on methods to decompose an object, Part De-
composition for AM [7,8], and methods to pack multiple parts into the
limited space, Part Packing or Placement for AM [9]. These two issues
have been addressed independently and sometimes simultaneously, De-
composition-and-Packing (DAP) problems for AM [10].

This paper provides three main research contributions. First, it ex-
pands the research boundary of DAP by applying multiple batches ra-
ther than a single batch. This is a practical need as an AMmachine has a

limited workspace and multiple batches are often required to print the
whole product. Second, this study presents the relation between the
part decomposition and the multiple batches. It discusses that the
number of decomposed parts could be more critical than minimizing
the size of decomposed parts in terms of reducing the overall process
time of serial batch processes. Third, it shows that the 2D packing could
be preferred to 3D packing for multiple batches in terms of minimizing
the support amount. It validates the claim by Zhang et al. [9] that 2D
packing is effective in terms of improving the surface quality by
avoiding overlapping parts [9].

In this study, an original model is decomposed into several pieces to
fit in the limited space of an AM machine, and then the decomposed
parts are placed in multiple batches with 2D packing that is named as
2D batch placement. Fig. 1 illustrates the overall procedure of the
proposed approach for a rabbit model. First, an initial solid model goes
through the part decomposition algorithm and is decomposed into
seven pieces. Then, the pieces enter into the genetic algorithm (GA) for
the 2D batch placement. In this example, the decomposed parts are
placed over three batches as shown in Fig. 1-(b).

The proposed method in this study is suitable for large-size and non-
scalable objects since it includes a part decomposition method to fit in
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the limited workspace. In addition, since the batch placement is based
on 2D packing, this study can be effective for the AM technologies with
support structure issues, such as Stereolithography (SLA) and Fused
Deposition Modeling (FDM) [11].

The rest of this paper is organized as follows. Section 2 reviews the
related literature on part decomposition and packing issues for AM. The
proposed methods and algorithms are introduced in Section 3. A nu-
merical example is described in Section 4. Finally, Section 5 concludes
the study and suggests the future research directions.

2. Literature review

To clearly categorize the literature, we define two groups of mul-
tiple parts based on component relations: independent parts and depen-
dent parts. The independent parts are literally not related to each other
for assembly. For instance, the relation of a rabbit model and a cat
model. On the other hand, the dependent parts are sub-assemblies
needed to complete a final product such as table legs and a table board.
Section 2.1 reviews AM studies on how dependent parts are generated
from an initial object and how they are packed in a limited workspace.
The literature for packing issue of independent parts is covered in
Section 2.2.

2.1. Part decomposition and packing of dependent parts (assemblies)

2.1.1. Part decomposition methods to fit an object into a limited work size
Part decomposition has been studied for several purposes: to fit a

large object into the limited workspace of an AM machine [12]; to
minimize process time [13]; to remove support structure [14]; to im-
prove surface quality [15]; to have interchangeability among parts
[16]; and for artistic purpose [17]. The current paper focuses on the
first purpose, known as printability.

To fit an object into the limited workspace of an AM machine,
several decomposition methods have been developed. For example,
Chan and Tan [18] proposed a decomposition method [18], in which a
solid model is cut with split tool surfaces, a hyperplane or a curved
surface, to fit in a rectangular or cylindrical chamber. Medellin et al.
(2006) suggested a decomposition algorithm to generate octants [19].
They developed a recursive decomposition process that divides a cube
into two spaces for the three axes (x, y, and z) by a hyperplane, and
finally, an octree structure is generated in which each parent node has
eight child nodes. The octants are cubes of leaf nodes in the octree
structure. Hao et al. [20] presented a curvature-based partitioning
method to fit a large complex model to the buildable space [20]. In
their algorithm, the best-fit loop is selected and then cut with a hy-
perplane. Luo et al. [7] suggested a framework for decomposing a large
solid 3D model into smaller pieces to fit into the working volume of the
3D printer, known as the Chopper. They adopted a BSP and cut an initial
model with a hyperplane [7]. A binary tree represents decomposition
processes and the leaf nodes are final decomposed parts. In their

algorithm, cutting is recursively conducted until the part volume is less
than a certain threshold parameter. However, the focus of the above-
mentioned studies was only on the part decomposition not packing is-
sues.

2.1.2. Considering both decomposition and packing issues
Some studies have addressed both decomposition and packing to-

pics known as PackMerger [21], decompose-and-pack [10], partitioning
and packing [22] or split-and-pack [23]. Vanek et al. [21] were the first
group who expanded the object decomposition issue to packing pro-
blems for AM, which affected later studies such as Chen et al. [10]. In
PackMerger, an initial model is decomposed into several parts using a
bottom-up approach in which several starting seeds are getting merged
with adjacent cells. Then, build orientations and packing of resulting
parts are optimized sequentially [21]. Later, other studies have opti-
mized both orientation and packing issues simultaneously [10,22,23].
For example, Chen et al. [10] adopted a pyramidal shape [24] to solve
both part decomposition and 3D packing issues, known as DAP pro-
blems [10]. They proposed a global optimization algorithm for solving
DAP problems, named as Dapper. The Dapper algorithm aims to
minimize support material, build time and assembly cost, and considers
several constraints including the bounding container, and the assembly
thresholds such as cut area and part thickness. Yao et al. [22] developed
the decomposition and packing system based on level-set methods [22].
The level-set method is used to refine segmentation boundary between
parts with free forms such as curved seams. The authors showed a
locking issue that prevents decomposed parts from being assembled
back into the original shape. However, the above-mentioned decom-
position and packing studies only consider 3D packing assuming the full
placement of all parts. This still leaves the subset placement issue that
all parts cannot be placed on one AM machine.

2.2. Packing optimization of independent parts

The packing problem deals with how to optimally place in-
dependent multiple parts (with same or different shapes) into a limited
build space (3D packing) or onto the build tray (2D packing) with re-
spect to user-defined objectives [9].

2.2.1. 3D packing
To name several studies that have been focused on 3D packing,

Ikonen et al. [25] developed a GA for packing 3D non-convex parts with
cavities and holes into the build cylinder of a Selective Laser Sintering
(SLS) machine [25]. Parts are randomly selected from a specified group
to form a subset of parts in which each part had 24 pre-defined alter-
native orientations (45 degrees of increment in three directions). The
parts are placed one by one with finite relative positions constrained by
a pre-set including five attachment points for each part. Hur et al. [26]
proposed a part placement optimization strategy for SLS to maximize
the utilization of workspace and reduce the total build time [26]. Before

Fig. 1. A Two-Phase approach: (a) part decomposition and (b) 2D batch placement.
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packing, the build orientations of parts are optimized by considering
the height of parts and surface quality. Then, a modified Bottom-Left
(BL) approach implemented by GA is used to search an optimal packing
solution within a cylindrical build chamber. However, the BL packing
requires order information as it is a serial packing and reduces the
original solution space. Zhang et al. [27] developed a layout optimi-
zation strategy implemented with a simulated annealing (SA) for solid
ground curing (SGC) process [27]. In their method, parts are represented
by bounding box and rotated under six pre-set orientations. As parallel
packing method, an overlap between parts is considered and could be
removed by applying a compensating algorithm. Gogate and Pande
[28] developed a 3D layout planning system for optimizing the multiple
parts placement in AM [28]. In their study, build orientations of parts
are optimized according to user-concerned criteria. For each part, a
finite set of acceptable orientations are generated. A BL approach is
used to solve the 3D packing problem. Parts are represented by voxel
models and could be rotated around the build axis with an increment of
45 degrees. Lutters et al. [29] suggested an algorithm for 3D packing
based on a non-deterministic approach in which high frequency vi-
brating motions called Brazil Nut Effect is used [29]. Wu et al. [30]
proposed an improved BL method to solve the 3D packing problem in
AM [30]. In their method, orientations are pre-set and fixed during
packing. Multi-objective functions are used in optimization to generate
a Pareto-frontier for user's further decision-making.

2.2.2. 2D packing
While most of the previous studies have focused on 3D packing to

save wasted space [28,30], Canellidis et al. [31] proposed a 2D packing
method for the SLA process. [31]. Before the 2D packing, the build
orientation for each part is determined individually by considering one
or several criteria. The packing rule is an improved BL packing method,
called Left-Border-Down-Border (LB-DB). This study is improved by Ca-
nellidis et al. [32]. They adopted No-Fit-Polygon (NFP) as an additional
placing rule based on the former LB-DB to avoid overlap of projections.
Zhang et al. [9] pointed out the surface damage issue caused by support
structures in 3D packing [9]. They suggested the 2D placement opti-
mization to solve the problem. The method goes through two optimi-
zation processes sequentially: AM feature-based orientation optimiza-
tion, which decides on each part’s build orientation to guarantee the
production quality, and parallel packing optimization, which aims to
maximize the compactness of placements by using the projection pro-
files of parts so as to decrease the total build time and cost.

The above-mentioned studies for 3D packing and 2D packing only
considered independent parts, meaning that the part decomposition has
not been included in their research scope. In this article, we have de-
veloped a method that integrates both part decomposition and packing
problem.

3. The two-phase approach

This section describes the two phases of the proposed approach as
highlighted in Fig. 1. In Phase 1, an initial object is decomposed using a
Binary Space Partitioning (BSP) with a hyperplane. The part decom-
position is repeated until no parts are oversize the limited size of a
workspace. In Phase 2, a GA is employed to find a near optimal solution
for 2D batch placement. In the GA, parent chromosomes are selected
based on the tournament approach. Additionally, decomposed parts are
placed in serial order with the Left-Bottom (LB) approach for 2D
packing. The major assumptions in this study are as follows:

• Parts are built by a single AM machine;

• The buildable space of workspace (build chamber) is rectangular;
and

• The object is larger than the buildable space, meaning the diagonal
of the bounding box of the object is larger than the width, length, or
height of the buildable space.

3.1. Phase 1: part decomposition

In this paper, the major motivation for decomposing an object is its
printability within the limited size of the workspace. The smaller is the
size of workspace, the lager is the number of decomposed parts.
Therefore, the size of the workspace is a key factor in determining the
number of assemblies.

The use of a BSP with a hyperplane for the part decomposition re-
sults in the higher efficiency by giving up the flexibility of arbitrary cuts
[7,33]. In this study, the cutting direction with a hyperplane is ran-
domly determined based on the center of mass. Since, in the BSP
method, a part is decomposed into two pieces, the number of parts
increases one by one. The data structure of BSP is represented by a
binary tree. In the binary tree, each parent node includes two child
nodes indicating the resulting decomposed parts. The root node of the
tree is an initial object and the leaf nodes are the final pieces after the
completion of part decomposition. Fig. 2 shows an example of the part
decomposition for a rabbit model, Part_0. Five parts are generated as
shown in Fig. 2-(a) and (b) corresponding to the leaf nodes in Fig. 2-(c).
In this example, part decomposition is conducted four times.

Part decomposition is repeated until the diagonal dimension of all
parts is smaller than the feasible size. As shown in Fig. 3, the diagonal
dimension is the diagonal size of the bounding box of a part and the
feasible size is the minimum dimension of width, length, and height of
an AM workspace. When parts are placed in the workspace, they are
rotated according to x-, y-, and z-axis. Therefore, the diagonal dimen-
sion, theoretically the largest size, should be smaller than the feasible
size to fit in the workspace.

Fig. 2. The part decomposition of a rabbit model and its binary space partitioning (BSP) tree.

Y. Oh et al. Journal of Manufacturing Systems 48 (2018) 131–139

133



Fig. 4 represents the flowchart of the proposed part decomposition
method. First, variables and setting parameters are initialized. The part
list, P, includes an initial object as an input part. FeasibleSize is the
minimum among the width, length, and height of an AM workspace. As
a stopping condition of the algorithm, Printability is set to false. When
the diagonal dimension, DiagonalDim, of all parts is smaller than Fea-
sibleSize, Printability becomes true and the loop is terminated. When P
includes multiple parts, a part, p, with the largest DiagonalDim is se-
lected and then is decomposed into two pieces, p1 and p2. The degrees
of a hyperplane for decomposition are determined arbitrarily. After part
decomposition, P is updated by adding two new parts.

3.2. Phase 2: genetic algorithm for 2D batch placement

In Phase 1, the geometry and number of parts are decided by part
decomposition. The second phase is to determine how to place the
decomposed parts over multiple batches. As discussed before, this study
considers the 2D packing to avoid one part placed over other parts. In
the placement process, each part is represented by a bounding box to
simplify the computation procedure. The bounding boxes of parts are
placed one by one, as serial placement orders. To determine the pla-
cement order for each part, placement priority is assigned to a corre-
sponding part. As such, for batch placement, a part with the higher
priority goes first. If there is no space to put the bounding box of a part
on a certain batch, it is placed in a new batch. The bounding boxes of
parts are placed to the left and bottom corner in the X–Y plane, the LB
approach for placement orders. In this approach, the x-position of a
bounding box is determined first before the y-position.

In the proposed GA, a chromosome consists of genes that correspond
to parts. As such, the length of genes in a chromosome is identical to the
number of decomposed parts. Fig. 5-(a) details the structure of a tet-
raploid chromosome including n parts where each part (pi) has four
factors influencing batch placement: rotation degrees according to X-
(αi), Y- (βi), and Z-axis (γi); and placement priority (μi). With the center
of mass, a part is rotated according to the three axes as shown in Fig. 5-
(b). This changes the size of a bounding box of a part.

Fig. 6 shows an example of the 2D batch placement. In this example,
there are six parts with fixed rotation degrees. Placement orders are
determined by placement priority. Therefore, the bounding box of Part
p2 with the highest priority, 6, is placed first in the left-bottom corner of
Batch 1. Then, p3 and p5 are sequentially placed after p2. When p1 is
placed, there is no more space in Batch 1. Therefore, p1 is placed in a
new batch, Batch 2. This is the same as the last part, p4. It is placed in a
new batch, Batch 3, since p4 is too big to place in Batch 2.

Fig. 7 represents the flowchart of the GA for batch placement. First,
a population (U), a list of chromosomes, is initialized. For the in-
itialization, rotation degrees and placement priority in a chromosome

Fig. 3. (a) The bounding box of a part and (b) the feasible size.

Fig. 4. The flowchart of part decomposition.

Fig. 5. (a) The structure of a chromosome and (b) part rotation for the three axes (x, y, and z).
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are randomly assigned for each part. Then, each chromosome is eval-
uated based on the fitness function shown in Eq. (1). The loop in the
algorithm is conducted until the number of generations, i, reaches to
MaxGeneration. In the loop, two parent chromosomes, PT1 and PT2, are
selected in U where the selection process is tournament-based. Two
selected chromosomes are going through the crossover process to create
two offspring chromosomes, Off1 and Off2. Herein, crossover for rota-
tion degrees and placement priority is different. In the crossover for
rotation degrees, two chromosomes interchange genes that are below

the randomly selected position, which is a one-point crossover. On the
other hand, for placement priority, partially matched crossover (PMX) is
used since all parts should have different priorities. Then, the mutation
process is conducted. Mutation genes are randomly chosen in a chro-
mosome. The rotation degrees of chosen genes are randomly assigned
and the placement priority of two chosen genes are exchanged. In the
part placement, parts are rotated according to gene data. Then, the
corresponding bounding boxes are generated. Next, the bounding boxes
are placed according to placement priority. Based on the batch place-
ment of all parts, the fitness functions of Off1 and Off2 are calculated.
Finally, the two chromosomes with the worst fitness value are replaced
with the offspring chromosomes.

Eq. (1) represents the fitness function that calculates the total pro-
cess time. The objective is to minimize the fitness value with the aim of
finding the minimum total process time, T , including both the total
build time, Tbld, and the total post-processing time, Tpost.

Min T T T: bld post= + (1)

where Tbld and Tpost denote the total build time and the total post-pro-
cessing time when all parts in List P are placed over several batches. As
shown in Fig. 8, Tbld is the sum of the build time for all batches and Tpost
is the sum of assembly time and all setup time.

It is challenging to calculate an accurate build time since a variety of
process parameters should be considered, depending on the type of AM
processes [34] and mechanical properties such as time to heat material
[35]. Moreover, considering process parameters increases computation
time and cost. In particular, it is critical for the GA since the build time
is calculated for each generation. Therefore, this paper simplifies build
time model based on part geometry including volume and height. The
model for SLA is modified from [36] and [37] and roughly estimates
build time as follows:

T t t{ }
i

n
i i

bld
1

scan
( )

trn
( )∑= +

= (2)

where t i
scan
( ) , t i

trn
( ) , and n denote scan time to draw parts or support,

transition time between layers, and the number of batches, respectively.
t i
scan
( ) and t i

trn
( ) are calculated as follows:

Fig. 6. An example of the 2D batch placement.

Fig. 7. A flowchart of the genetic algorithm (GA) for batch placement.

Fig. 8. The total build time and the total post-processing time for batch processes.
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i( ) , Dp, Ds, S, and l are the volume of parts in the i-th batch,
the volume of the support structure in the i-th batch, scan distance of
parts, hatch distance of support structure, scan speed, and the layer
thickness. Herein, support amount is indirectly estimated by summar-
izing the volume made by the downward (overhanging) facets gen-
erating the supports [36]. Additionally, trec and L i( ) denote recoat time
for a layer and the number of layers in the i-th batch. L i( ) is computed by
dividing the height of highest part in the batch to the layer thickness, l.

As shown in Eq. (5), Tpost consists of two parts: setup time and as-
sembly time.

T t n τ P(| | 1)post set= + − (5)

where tset, τ , and P| | denote the setup time after a batch, the unit as-
sembly time, and the total number of assemblies. The assembly time is
estimated by multiplying τ to the number of connections (P| | 1− ). τ
means the time to handle parts and use glue for connecting the parts. In
this study, we assume that all parts are simply connected with glue. In
practice, tset could include various factors such as time to detach parts
from the build tray, support removal time, and machine setup time.
However, for simplicity, it is roughly set as a consistent parameter. Note
that τ for all connections are also consistent.

4. Case study

For case studies, the rabbit model shown in Fig. 1-(a) is used as an
initial model. The size of the model is 140.34 137.25 156.18× × (mm)
with the diagonal size of 250.85 (mm). The part decomposition and
batch placement algorithms are coded using Python 2.7.8 and Macro
files in the CAD platform of FreeCAD 0.16 [38].

4.1. The impact of feasible size on the number and size of decomposed parts

The feasible size of the workspace affects the number of decom-
posed parts. By limiting the diagonal size of parts, a smaller feasible size
results in a higher number of parts decomposed. To demonstrate this
point, part decomposition is conducted 20 times for different feasible
sizes ranging from 110 to 250 (mm). Fig. 9-(a) and (b) show the average
number of decomposed parts and the average diagonal size of decom-
posed parts based on the feasible size. While the average diagonal size
of parts linearly decreases by getting confined the part size, the number
of parts exponentially increases by decreasing the feasible size. This
means that the too small size of workspace leads to a significant number
of decomposed parts.

In practice, the maximum size of the workspace, the feasible size, is
fixed when only one AM machine is used. However, although the

feasible size is fixed, the result of part decomposition can vary in terms
of the size and number of parts as shown in Fig. 9-(c). Therefore, the
trade-off between the number and size of decomposed parts should be
considered in batch placement to minimize the total process time.

4.2. The relation between part decomposition and 2D batch placement

Section 4.1 represents that, even if the same initial part is used, the
random-based part decomposition generates different results in terms of
the number and size of parts. As shown in Fig. 9-(c), running the part
decomposition algorithm for 20 times results in 20 different assembly
cases. The result of part decomposition for each case is used as an input
for the 2D batch placement algorithm to identify the relation between
part decomposition and 2D batch placement. The results of the 2D
batch placement for each case are shown in Table 2.

In this case study, we consider the size of the workspace as
120 120 120× × (mm), so the feasible size is 120 (mm). To run the GA
for the batch placement, the population size is set to 10 and the max-
imum number of generations, MaxGeneration, is set to 300. In the
tournament-based selection, the selection pressure to choose dominant
parents is 0.9. To calculate the fitness function based on Eq. (1), the
process parameters are given in Table 1.

In Table 2, the best and worst cases in terms of minimizing the total
process time are Cases 8 and 4. In this experiment, the best case with
71,038 (s) decreases the total process time by 26.96% compared with
the worst case, 97,252 (s). This means that the results of the 2D batch
placement significantly vary depending on part decomposition even if
the same initial part is used.

The trade-off between the number and size of decomposed parts
should be considered to minimize the total process time. If an object is
decomposed into many pieces, the size of pieces would be small mostly.
This has two possibilities for the total process time. First, the total
process time might increase since many parts cause many batches
which results in more build processes. Second, the total process time
might decrease since the small size of parts creates small build height in
2D packing, which results in short build time.

Figs. 10 and 11 represent that the first possibility is more likely to
happen. The data in Table 2 are plotted in Figs. 10 and 11 to show the
relations between input factors (the number and size of decomposed
parts) and the total process time of the 2D batch placement for the 20
cases. Fig. 10-(a) presents that the number of decomposed parts and the
number of batches are positively correlated with the correlation coef-
ficient of 0.85. In addition, Fig. 10-(b) shows that the number of batches
and the total process time are also considerably related with the cor-
relation coefficient of 0.86. This means that the high number of de-
composed parts causes the large number of batches, which results in a
long total process time. On the contrary, Fig. 11-(a) and (b) present that
the size of parts is not considerably related to the total process time,
which is against the second possibility. Therefore, to minimize the total

Fig. 9. The average number of parts and the average diagonal of parts according to the feasible size.
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process time, it is preferred to have a fewer number of decomposed
parts even if the size of each part is large.

4.3. Comparison of 2D and 3D batch placement

To compare with the result of 2D batch placement, the GA for the
3D batch placement is conducted for the decomposed parts resulted
from Section 4.1. All experiment conditions and process parameters are
the same as Section 4.2. For 3D packing, the Left-Bottom/Down-Bottom
(LBDB) approach is used with serial placement [32]. In Table 2, the 2D
and 3D batch placement methods are compared in terms of four factors:
the number of batches, the average height of batches, the support
amount and the total process time. In this study, batch height is the
maximum height of parts within the build tray of a batch and the
average height of batches is the average of batch height for all batches.

When the average values of the 20 cases are compared, the total
process time of 2D and 3D batch placement is 83,215 (s) and 82,481 (s)
respectively. This means that the results of two methods are not that
much different in terms of the total process time. The total process time
is affected by three other factors. For the 2D batch placement, the
number of batches, 7.50, is larger than the value, 5.80, of 3D batch
placement. The larger number of batches has a negative influence on
minimizing the total process time since more build and setup processes
are required. However, the smaller values for the average height of
batches, 65.06 (mm), and support amount, 441,746 (mm3), have a
positive effect on minimizing the build time for each batch and com-
pensate for the loss of a large number of batches. Herein, the point is

the gap between two methods in terms of the support amount. The 3D
batch placement requires 61.45% more support structure than the 2D
batch placement since parts are stacked over others and the space be-
tween parts is filled with support. It has negative influences in terms of
material cost and product quality since more material for support
structure is needed and more risk is involved to damage part surface for
removing support. These are major reasons to apply 2D batch place-
ment instead of 3D batch placement [9].

5. Conclusion and future research directions

The objective of this study is to answer the following two main
research questions: (1) how to cut a large object into smaller pieces to
fit in the limited workspace of an AM machine; and (2) how to place
and group the decomposed parts into several batches to minimize the
total process time. To answer these questions, this study proposes a
two-phase approach including a part decomposition method and a 2D
batch placement algorithm. In Phase 1, an object is decomposed into
smaller pieces using a BSP method with a hyperplane. Then, the de-
composed parts are placed over several 2D batches using the GA. The
result of case studies presents two major findings. First, minimizing the
number of decomposed parts is more critical than minimizing the size
of decomposed parts in terms of reducing overall process time of serial
batch processes. Second, 2D batch placement could be preferred than
3D batch placement in terms of minimizing the support amount.

This study can be extended in several ways. First, generating as-
semblies by part decomposition could be controversial in Design for AM
(DfAM), since it may not be lucrative by causing additional processes
such as assembly. If part decomposition generates too many assemblies,
the assembly cost would increase. However, if an original model is not
sufficiently decomposed, parts would be too big to fit in the workspace
of an AM machine. As such, determining the proper number and geo-
metry of assemblies by part decomposition can be considered as future
work. Second, since generating assemblies by part decomposition
causes assembly processes, this research can be extended to include the
Design for Assembly (DFA) issues considering the ease of assembly and
other connection types such as fasteners and interlocking. Third, the
random-based part decomposition method can be elaborated by

Table 1
Summary of parameters used in the case study [3,36].

Parameter Value Parameter Value

Layer thickness (l) 0.05 mm Scan distance of part (Dp) 0.1 mm
Scan speed (S) 10,000mm/s Hatch distance of support

(Ds)
0.7 mm

Recoat time for a layer
(trec)

6 s Setup time (tset) 1260 s

Assembly time (τ ) 30 s

Table 2
The 20 cases for part decomposition and batch placement (feasible size= 120mm).

Case Phase 1: Part decomposition Phase 2: Genetic algorithm (GA)

2D batch placement 3D batch placement

Number of
decomposed parts

The average diagonal
of decomposed parts
(mm)

Number of
batches

The average
height of
batches (mm)

Support
Amount
(mm3)

Total
process
time (s)

Number of
batches

The average
height of
batches (mm)

Support
Amount
(mm3)

Total
process time
(s)

1 30 98.81 9.00 63.87 430,974 96,328 7.00 91.16 690,473 102,147
2 22 104.17 8.00 58.23 369,451 81,575 6.00 83.05 553,018 83,477
3 27 100.00 10.00 53.42 442,489 92,660 6.00 93.02 771,180 91,425
4 29 102.13 9.00 64.76 427,407 97,252 7.00 82.98 663,478 95,165
5 23 105.52 8.00 63.06 490,204 86,584 6.00 85.72 806,099 86,152
6 22 101.06 7.00 62.53 378,467 76,965 6.00 73.08 429,944 75,942
7 21 103.77 7.00 66.37 446,849 80,356 6.00 83.91 629,944 84,280
8 17 103.40 6.00 67.02 293,352 71,038 5.00 77.56 431,794 68,455
9 25 98.68 7.00 70.69 521,698 84,318 5.00 95.86 1009,901 81,332
10 24 99.29 7.00 67.88 394,305 81,561 5.00 88.43 839,183 76,352
11 28 98.90 8.00 66.24 501,676 89,821 7.00 83.70 686,828 95,809
12 23 102.03 7.00 70.30 342,693 83,423 6.00 80.99 674,567 82,369
13 24 101.63 8.00 66.58 401,559 89,741 5.00 94.44 792,303 79,824
14 16 105.28 6.00 67.50 302,379 71,383 5.00 79.48 403,084 69,499
15 27 97.65 9.00 53.10 386,719 84,487 6.00 83.69 818,657 84,845
16 19 103.27 7.00 60.91 460,940 75,747 5.00 83.74 519,149 72,472
17 18 106.25 6.00 73.19 458,798 75,986 6.00 73.32 687,177 76,732
18 22 104.99 7.00 71.04 428,457 84,253 6.00 84.73 474,975 84,462
19 22 105.58 8.00 63.72 380,403 86,876 6.00 80.66 709,990 82,203
20 18 109.20 6.00 70.70 376,110 73,954 5.00 89.93 704,071 76,686
Average 7.50 65.06 411,746 83,215 5.80 84.47 664,791 82,481
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considering mechanical properties such as durability. Moreover, the
objective function can consider other criteria such as process cost and
surface quality and the estimation model can be elaborated to obtain
more accurate time. Additionally, the 2D batch placement with a single
AM machine can be extended to multiple AM machines. In this case, it
is combined with the scheduling problem for AM in which multiple
parts are assigned to multiple AM machines. Lastly, to represent parts
for 2D placement, other methods instead of bounding boxes can be
considered to save wasted space.
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