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Abstract—Let G = (V,E) be an m1 × . . .×mk grid for some
arbitrary constant k. We establish that O(

∑k
i=1 mi) (makespan)

time-optimal labeled (i.e., each robot has a specific goal) multi-
robot path planning can be realized on G in O(|V |2) running
time, even when vertices of G are fully occupied by robots. When
all dimensions are of equal sizes, the running time approaches
O(|V |). Using this base line algorithm, which provides average
case O(1)-approximate (i.e., constant-factor) time-optimal solu-
tions, we further develop a first worst case O(1)-approximate
algorithm that again runs in O(|V |2) time for two and three
dimensions. We note that the problem has a worst case running
time lower bound of Ω(|V |2).

I. INTRODUCTION

We study a time-optimal multi-robot routing or path plan-
ning problem on grids and grid-like settings, with the as-
sumption that each vertex of the grid is occupied by a robot,
i.e., the robot density is maximal. Our work brings several
breakthroughs. First, on a k-D grid G = (V,E) for some
constant k, our algorithm, iSAG, improves the running time of
the average case O(1)-approximate (makespan) time-optimal
SPLITANDGROUP (SAG) algorithm from [1] from O(|V |3)
to a sub-quadratic o(|V |2) for most cases and O(|V |2) in the
worst case (when G is degenerate and nearly one dimensional).
When all dimensions are of equal sizes, iSAG runs in a
nearly linear O(|V |) time for large k. Second, building on
iSAG, we present a worst case O(1)-approximate algorithm,
PARTITIONANDFLOW (PAF), that generalizes a key result
from [2] (Theorem 3 in [2]), which only works in 2D,
to 3D. Our work, in both 2D and 3D cases, is developed
independently of [2]. Third, multiple algorithmic techniques in
our work, particularly Lemma 5 and Theorem 10, which help
enable iSAG and PAF, reveal fundamental structures present
in general routing problems and are of independent interest.

From the practical standpoint, our results are of significance
in multiple application domains including robotics and net-
work routing. Particularly, in robotics, our results imply that
even in highly dense settings, if among a group of labeled
robots the maximum distance between a robot and its goal is
of distance dg , then it is possible to compute a routing plan
that solves the entire problem that requires O(dg) makespan in
only quadratic time, assuming that the robots travel at no faster
than unit speed. Further exploration of the algorithmic insights
from our work may lead to more optimal coordination algo-
rithms for applications including warehousing [3], automated
container port management [4], and coordinated aerial flight
[5]. As noted in [2], algorithms like PAF help resolve open

questions regarding routing strategies for inter-connected mesh
networks. Indeed, solving multi-robot routing on grid and grid-
like structures is equivalent to finding vertex disjoint paths in
the underlying network, extended over discrete time steps.

Our presentation is fairly compact due to limited space.
Complete proofs and additional results are provided in [6].

Related work. Multi-robot path planning, from both the
algorithmic and the application perspectives, has been studied
extensively [7]–[21], covering many application domains [5],
[22]–[30]. Multi-robot path and motion planning is known
to be computationally hard under continuous settings [31],
[32], even when the robots are unlabeled [33], [34]. While
the general multi-robot motion planning problem seems rather
difficult to tackle, relaxed unlabeled continuous problems are
solvable in polynomial time even near optimally [16], [35].

Restricting our attention to the discrete and labeled setting,
in contrast to the continuous setting, feasible solutions are
more readily computable. Seminal work by Kornhauser et al.
[36], which builds on the work by Wilson [37], establishes
that a discrete instance can be checked and solved in O(|V |3)
time on a graph G = (V,E). Feasibility test can in fact
be completed in linear time [38]–[40]. Optimal solutions
remain difficult to compute in the discrete settings, however,
even on planar graphs [2], [41]. Whereas many algorithms
have been proposed toward optimally solving the discrete
labeled multi-robot path planning problems [12], [42]–[49],
few provide simultaneous guarantees on solution optimality
and (polynomial) running time. This leads to the development
of polynomial time methods that also provide these desirable
guarantees [1], [2].

II. PRELIMINARIES

Let G = (V,E) be a simple, undirected, and connected
graph. A set of n ≤ |V | robots labeled 1-n may move
synchronously on G in a collision-free manner described as
follows. At integer (time) steps starting from t = 0, each robot
must reside on a unique vertex v ∈ V , inducing a configuration
Xt of the robots as an injective map Xt : {1, . . . , n} → V ,
specifying which robot occupies which vertex at step t (see
Fig. 1). From step t to step t + 1, a robot may move from
its current vertex to an adjacent one under two collision
avoidance constraints: (i) Xt+1 is injective, i.e., each robot
occupies a unique vertex, and (ii) for 1 ≤ i, j ≤ n, i ̸= j,
Xt(i) = Xt+1(j) → Xt(j) ̸= Xt+1(i), i.e., no two robots
may swap locations in a single step. If all individual robot



moves between some Xt and Xt+1 are valid (i.e., collision-
free), then Mt = (Xt, Xt+1) is a valid move for all robots.
Multiple such moves can be chained together to form a
sequence of moves, e.g., (Xt, Xt+1, . . . , Xt+∆t).
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Fig. 1. Graph-theoretic formulation of the multi-robot path planning
problem. (a) A configuration of 12 robots on a 4×3 grid. (b) A configuration
that is reachable from (a) in a single synchronous move through simultaneous
rotations of robots along two disjoint cycles.

Under the model, a multi-robot path planning (MPP) in-
stance is fully specified by a 3-tuple (G,XI , XG) in which
XI = X0 and XG are the initial and goal configurations,
respectively. To handle the most difficult case, we assumed that
n = |V |, i.e., the number of robots is the maximum possible.
We note that the case of n′ < |V | may be reduced to the
n = |V | case by placing (|V |−n′) “virtual” robots arbitrarily
on vertices that are empty in XI and XG.

For this study, G is assumed to be an m1 × . . .×mk grid
with m1 ≥ . . . ≥ mk ≥ 2 and |V | = m1 . . .mk ≥ 6.
Such a grid graph G is also meant whenever the term grid
is used in the paper without further specifications. Given
an MPP instance and a feasible solution, as a sequence of
moves M = (XI = X0, X1, . . . , Xtf = XG), we define the
solution’s makespan as the length tf of the sequence. For an
instance p = (G,XI , XG), let d(v1, v2) denote the distance
between two vertices v1, v2 ∈ V , assuming each edge has unit
length. We define the distance gap between XI and XG as

dg(p) = max
1≤i≤|V |

d(XI(i), XG(i)),

which is an underestimate of the minimum makespan for p.
The main aim of this work is to establish a polynomial time
algorithm that computes solutions with O(dg(p)) makespan
for an arbitrary p and k = 2, 3. In other words, the algorithm
produces, in the worst case, O(1)-approximate makespan
optimal solutions because dg(p) is an underestimate of the
makespan of p. When the instance p is clear, we use dg in
place of dg(p).

III. IMPROVED AVERAGE CASE O(1)-APPROXIMATE
MAKESPAN ALGORITHM

Our worst case O(1)-approximate algorithm makes use of
an average case O(1)-approximate algorithm for MPP that
improves over the SPLITANDGROUP (SAG) algorithm [1].
Main properties of SAG are summarized below.

Theorem 1 (SAG [1]). Let (G,XI , XG) be an MPP instance
with G = (V,E) being an m1×m2 grid. Then, a solution with
O(m1 +m2) makespan can be computed in O(|V |3) time.

To state our significant improvements, we briefly describe
how SAG operates on a m1 × m2 grid G. SAG recursively
splits G into halves along a longer dimension. During the first
iteration, G is split into two m1

2 ×m2 grids (assuming m1 is

even) G1 and G2. Then, all robots whose goals belong to G2

will be routed to G2. This also forces all robots whose goals
belong to G1 to G1 because G is fully occupied. This is the
grouping operation in SAG. The step effectively partitions all
robots on G into two equivalence classes (those should be in
G1 and those should be in G2); there is no need to distinguish
robots within each class during the current iteration. Fig. 2
illustrates graphically what is to be achieved in the grouping
operation in an iteration of SAG.

Fig. 2. On a 10× 4 grid, the shaded robots have goals on the right 5× 4
grid. The grouping operation of a SAG iteration seeks to move the 9 shaded
robots on the left 5× 4 grid to exchange with the 9 unshaded robots marked
with dashed boundaries on the right 5× 4 grid.

To be able to move the robots to the desired halves of G, it
was noted [49] that an exchange of two robots can be realized
on a 3× 2 grid using a constant number of moves (Fig. 3).
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Fig. 3. Robots 2 and 3 may be “swapped” using three synchronous moves
on a 3× 2 grid. This implies that arbitrary configuration on a 3× 2 grid can
be realized in a constant number of moves.

The local “swapping” primitives can be executed in parallel
on G, which implies Lemma 2 as follows. An illustration of
the operation is provided in Fig. 4.

Lemma 2 (Lemma 6 in [1]). On a length ℓ path embedded in
a grid, a group of indistinguishable robots may be arbitrarily
rearranged using O(ℓ) makespan. Multiple such rearrange-
ments on vertex disjoint paths can be carried out in parallel.

Fig. 4. On a length ℓ path is embedded in a grid, Lemma 2 guarantees that
the arbitrary distribution of a group of robots can be done in O(ℓ) makespan.

Lemma 2 further implies Lemma 3. Fig. 5 illustrates graph-
ically the operation realized by Lemma 3.

Fig. 5. Assuming the grid-embedded path has a length of ℓ, Lemma 3
guarantees that the swapping of the two separated groups of robots, up to ℓ

2
per group, can be done in O(ℓ) makespan.

Lemma 3 (Lemma 7 in [1]). On a length ℓ path embedded
in a grid, two groups of robots, equal in number and initially
located on two disjoint portions of the path, may exchange
locations in O(ℓ) makespan. Multiple such exchanges on
vertex disjoint paths can be carried out in parallel.

Lemma 2 and Lemma 3 both demand a running time of
O(ℓ2); some problems require Ω(ℓ2) time to simply write
down the solution, e.g., when ℓ

2 robots need to be moved on



a path of length ℓ. Additional results were developed over
Lemma 3 in [1] to complete the grouping operation involving
routing of robots on trees, embedded in a grid, that may
overlap. We provide a new algorithm, iSAG, that simplifies
the process and significantly improves the running time. We
note that, to complete the grouping over the example from
Fig. 2, we may reconfigure robots on the left 5 × 4 grid so
that for each row, robots to be exchanged across the split line
are equal in number (see Fig. 6). Lemma 3 then applies.

Fig. 6. We would like to reconfigure robots on the left 5× 4 half of Fig. 2
to the configuration as shown. The right 5 × 4 portion will not be touched
in the operation. In this configuration, robots do not need to move between
different rows to complete the grouping operation, using Lemma 3.

To perform the reconfiguration, we begin by assigning labels
to the robots as illustrated and explained in Fig. 7. These labels
are only for pairing up robots for the reconfiguration; keep in
mind that the shaded robots are in fact indistinguishable in the
execution of the grouping operation.

1 3 542

3 54

1

1 21

4 5 54

3 31

432 51

432 5

2

443 53

22 2

1

5

1

(a) (b)
Fig. 7. (a) and (b) correspond to the left 5× 4 grids from Fig. 2 and Fig. 6,
respectively. We would like to reconfigure the shaded robots to go from (a)
to (b) (ignoring the labels). In (a), shaded robots are assigned labels based on
the column they belong to. In (b), from top to bottom and left to right, we
sequentially assign each shaded labeled robot from (a) a goal.

With the labeling, we set up a bipartite graph as follows.
One of the partite set {v1i } (e.g., {v11 , . . . , v15} in Fig. 8)
represents the initial columns and the other set {v2j } (e.g.,
{v21 , . . . , v25} in Fig. 8) the goal columns. We draw an edge
between v1i and v2j if a shaded robot labeled i ends up at a
goal column j. For example, in Fig. 7, shaded robots with
label 1 in (a) ends up at columns 1 and 2 in (b), yielding
the edges (v11 , v

2
1) and (v11 , v

2
2) in Fig. 8. If a goal column

j contains multiple shaded robots with label i, then multiple
edges between v1i and v2j are added. Note that, if we also add
the edges for the unshaded robots in Fig. 7 in a similar manner,
the bipartite graph will be d-regular where d is the number of
rows in the original grid (d = 4 in the provided example).

With the bipartite graph constructed, we proceed to obtain a
set of up to d maximum matchings, which is always possible
because our bipartite graph is a sub-graph of a d-regular
bipartite graph. By Hall’s theorem [50], a perfect matching
may be obtained on a d-regular bipartite graph, the removal
of which leaves a (d − 1)-regular bipartite graph. From the
obtained set of matchings (e.g., using [51]), we apply Lemma 2
to distribute the robots vertically so that a robot matched in

the i-th matching gets moved to the i-th row. In our example,
the first set is {1−1, 2−3, 3−2, 5−4}, which means that a set
of three robots labeled 1, 2, 3, and 5 should be moved to the
first row. Doing this for all matching sets shown in Fig. 7(a)
yields the configuration in Fig. 9(a).

v11 v12 v13 v14 v15

v21 v22 v23 v24 v25
Fig. 8. A bipartite graph constructed for rearranging robots. The 4 colorings
of the edges indicate a possible set of 4 matchings, which are {1 − 1, 3 −
2, 5−3} (red), {1−2, 3−1, 5−4} (orange), {2−3, 4−1} (green), {4−2}
(purple).

In a second round, the robots are permuted within their row,
again using the matching result. In the example, the first set
{1 − 1, 2 − 3, 3 − 2, 5 − 4} says that robots 1, 2, 3, and 5 on
the first row should be moved to columns 1, 3, 2, and 4. Going
from 1, 2, 3, 5 to 1, 3, 2, 4 is possible with Lemma 2 because
the labels here are nominal; in effect, four indistinguishable
robots must be moved to to columns 1, 2, 3, and 4 without
consideration of the absolute order. For the configuration in
Fig. 9(a), this round yields the configuration in Fig. 9(b). We
note that the perfect bipartite matching technique mentioned
here was due to [52], in which a variation of it is used for a
different reconfiguration task.
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Fig. 9. (a) The initial permutation of columns of Fig. 7(a) using the bipartite
matching result. (b) A second row-based permutation of (a) using the bipartite
matching result. Our procedure operates following the sequence Fig. 7(a) →
Fig. 9(a) → Fig. 9(b) → Fig. 7(b).

The labeled robots that need to be moved are now in the
correct columns. One last column permutation then moves the
robots in place. In the example, this is going from Fig. 9(b)
to Fig. 7(b). We summarize the the discussion in a lemma.
Lemma 4. On an m1 × m2 grid, the reconfiguration of
a group of indistinguishable robots between two arbitrary
configurations can be completed using O(m1+m2) makespan
in O(m2

1m2 +m1m
2
2) time.

Proof: The procedure is already fully described; here,
we analyze its performance. The procedure operates in three
phases, each requiring a makespan of either O(m1) or O(m2)
(because only one dimension of the m1×m2 grid is involved
in each phase). The overall makespan is then O(m1 + m2).
Regarding the computation time, each invocation of the pro-
cedure from Lemma 2 or Lemma 3 on an m1 × m2 grid
takes O(m2

1) or O(m2
2) time; doing these in parallel on

the grid then takes O(m2
1m2 + m1m

2
2) = O(m2

1m2) time.
For doing the bipartite matching, we may invoke the regular
bipartite matching algorithm [51] d times which requires a



total time O(d|EB |) where EB is edge set of the bipartite
graph. If we make m1 the number of columns, then d = m2

and |EB | = m1m2/2. The total time spent on matching is
O(m1m

2
2) and the total running time is then as given.

Lemma 4 readily generalizes to k-D via induction.

Lemma 5 (k-D Shuffle). On an m1×. . .×mk grid, the recon-
figuration of a group of indistinguishable robots between two
arbitrary configurations can be completed using O(

∑k
i=1 mi)

makespan in O((
∑k

i=1 mi)(
∏k

i=1 mi)) time.

Proof: The proof uses straightforward inductive argu-
ment. Having shown that the 2D cases holds, assume the k-D
case holds. For k+1 dimensions, similar to how we partition
the 2D case into m1

2 columns of size m2, here we first make a
partition over the half of the m1× . . .mk+1 grid into m1...mk

2
columns of size mk+1 each. After the bipartite matching, each
of the m1...mk

2 columns is permuted in parallel. Now, we have
mk+1 layers of size m1

2 × . . .×mk that need to be shuffled,
which we may complete via the induction hypothesis. This is
then followed by another permutation of m1...mk

2 columns of
size mk+1 to complete the procedure.

With Lemma 5, we state the theorem that supports iSAG.

Theorem 6 (iSAG, k-D). An O(k
∑k

i=1 mi) makespan solu-
tion can be computed in O(k(

∑k
i=1 mi)(

∏k
i=1 mi)) time for

an MPP instance on an m1 × . . .×mk grid.

Proof: We iteratively apply Lemma 5 and then
Lemma 3 (in parallel) to dimensions 1, . . . , k. After the
first k iterations, due to parallelism, we incur a to-
tal makespan of O(k

∑k
i=1 mi) and a total running time

of O(k(
∑k

i=1 mi)(
∏k

i=1 mi)). Now, the initial problem is
partitioned into 2k problems with grids of sizes m1

2 ×
. . . × mk

2 . For the next k iterations, each will in-
cur a makespan of O(k2 (

∑k
i=1 mi)) and a running time

O(k2 (
∑k

i=1 mi)(
∏k

i=1 mi)). Adding everything up, we end up
with the stated makespan and running time.

We note that when all dimensions are of roughly equal
O(|V | 1k ) size, iSAG yields a makespan of O(k2|V | 1k ) and
a running time of O(k2|V | k+1

k ). Because for fixed G, most
instances have makespan of O(

∑k
i=1 mi)) (see Lemma 9 of

[1], which generalizes to k-D), iSAG is an average case O(1)-
approximate optimal algorithm.

IV. PAF IN TWO DIMENSIONS

After establishing iSAG, we now introduce PARTITIO-
NANDFLOW (PAF) for 2D, which uses a general approach
that applies to high dimensions. In sketching PAF, we remark
that it works on a problem (G,XI , XG) by updating XI .
It first creates some intermediate X1

G based on XI and XG

and solve the problem (G,XI , X
1
G), leaving a new problem

(G,X1
G, XG). The process is repeated until XI is updated to

match XG. It is important to keep this in mind in reading the
sketch of PAF. As the name suggests, PAF partitions an MPP
instance on a grid into smaller cells and organize the flow of
robots through these cells. The partition is in effect a form of
decoupling that is more general than iSAG’s splitting scheme.

For a given MPP instance p = (G,XI , XG) with G being
an m1 × m2 grid, PAF starts by computing dg , the distance
gap for the problem. In the main case, dg = o(m2). That is,
for any robot i, d(XI(i), XG(i)) = o(m2). This means that G
may be partitioned into square cells of size 5dg ×5dg . This is
the partition operation in PAF (see Fig. 10 for an illustration).
For the moment, we assume that a perfect partition can be
achieved, i.e., m1 and m2 are both integer multiples of 5dg;
the assumption is justified later.

m1

m2

5dg

5
d
g

Fig. 10. Partitioning of an m1 ×m2 grid into 6× 4 cells. Each cell has a
size of 5dg × 5dg . Within a cell (the figure on the right), only robots located
of a distance no more than dg from the border may have goals outside the
cell.

The partition scheme, as a refinement to the splitting scheme
from iSAG, has the property that only robots of distance dg
from a cell boundary may have goals outside the cell by the
definition of dg (for more details, see Fig. 11). This means that
between two cells that share a vertical or horizontal boundary,
at most 10d2g robots need to cross that boundary. If we only
count the net exchange, then the number reduces to 5d2g .

dg

Fig. 11. An illustration of the dg thick boundary areas of four adjacent
cells. Any net robot exchange between two cells must happen in this region
by the definition of dg .

Over the partition, PAF will build a flow between the cells
treating each cell as a node in a graph. To be able to translate
the flow into feasible robot movements, the flow should only
happen between adjacent cells that share a boundary. However,
as illustrated in Fig. 11, it is possible for a robot to have initial
and goal configurations that are separated into diagonally
adjacent cells which do not share boundaries. To resolve this,
we may update the goals for these robots using robots from
another cell that is adjacent to both of the involved cells.
Fig. 12 illustrates how one such robot can be processed. We
call this operation diagonal rerouting, which will create a new
configuration X1

G of the robots on G. iSAG is then invoked
to solve (G,XI , X

1
G). iSAG will do so locally on 4dg × 4dg

regions that span equal parts of four adjacent cells.
Then, PAF creates another intermediate configuration X2

G

for moving robots between each vertical or horizontal cell
boundary so that between any two cells, robots will only need
to move in a single direction when crossing a cell boundary.
That is, for each cell boundary, iSAG is called to “cancel out”
non-net robot movements, as illustrated in Fig. 13, leaving
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Fig. 12. (a) At the boundary between four cells, robot 1 has initial and goal
configurations (vertices) spanning two diagonally adjacent cells. In the top
right cell which is adjacent to both the top left and bottom right cells, there
exists a robot that has its goal vertex in the same cell. (b) By swapping the
robots 1 and 2 using iSAG, no robot needs to cross cell boundaries diagonally.

only uni-directional robot movements across cells. We call this
operation flow cancellation.

(a) (b)
Fig. 13. (a) There are five robots in the top cell and three robots in the
bottom cell that need to move across the horizontal boundary. (b) Through
an arbitrary matching (indicated with double sided arrows) of three pairs
of robots’ initial configurations and applying iSAG to swap them, the robot
movements across the boundary are now unidirectional.

The net robot movement across cell boundary induces a flow
over the cells (see Fig. 14(a)). Because each cell contains a
fixed number of robots, the incoming and outgoing flow at
each cell (node) must be equal. This means that all such flows
must form a valid circulation1 over the graph formed by cells
as nodes. The flow between two adjacent cells is no more
than 6d2g (to be established later). The circulation can then be
decomposed into 6d2g unit circulations (Fig. 14(b)). These unit
circulations can be translated into coordinated global robot
movements that require any robot to travel only locally at
most a distance of O(dg). The translation amounts to creating
another configuration X3

G. (G,X2
G, X

3
G) is also solved using

iSAG.

2
2

2 2

3 3

2
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(a) (b)
Fig. 14. (a) Induced circulation (network) from required robot movements.
The numbers denote the total flow on a given edge. The edges without
numbers have unit flows. (b) After decomposition, the circulation can be
turned into unit circulations on simple cycles.

After the preparation phase, the scheduled global robot
movements are directly executed, yielding a new configuration
X4

G, which has the property that every robot is now in the
5dg×5dg partitioned cell where its goal resides. iSAG can then
be invoked to solve (G,X4

G, XG) at the cell level. Throughout,

1A circulation is essentially a valid flow over a network without source and
sink nodes. That is, the incoming flows and outgoing flows at every node of
the network are equal in magnitude.

each robot only needs to move a distance of O(dg) and calls
to iSAG can be performed in parallel, yielding an overall
makespan of O(dg).

We now proceed to provide the proofs. Objects of minor im-
portance, including the temporary configurations (e.g., Xi

G’s)
and actual robot movement plans (e.g., M i’s), are omitted in
the description. Sufficient details are provided if a reader is
interested in deriving these objects. The goal in the rest this
section is to establish the following.

Theorem 7 (PAF, 2D). Let p = (G,XI , XG) be an arbitrary
MPP instance on an m1 × m2 grid. A solution for p with
O(dg(p)) makespan can be computed in O(m1m2d

2
g(p)) time

or Õ(m1m2dg(p)) expected time.

The cases for dg = o(m1) are divided into two disjoint
cases: (i) dg = Ω(m2) and (ii) dg = o(m2), which is the
main case. The first case can be readily addressed.
Lemma 8. Let p = (G,XI , XG) be an arbitrary MPP
instance in which G is an m1 ×m2 grid with dg(p) = o(m1)
and dg(p) = Ω(m2). The instance admits a solution with a
makespan of O(dg(p)), computable in O(m1m2dg(p)) time.

c1 c2 c3
Fig. 15. Partitioning of an m1 × m2 grid along the m1 dimension into
q = ⌊m1/dg⌋ cells of roughly the same size of w×m2 with w ≈ ⌊m1/q⌋.
Three partitioned cells c1, c2 and c3 are shown. Four robots need to move
from c1 to c2 and three robots need to move from c2 to c3. Equal number of
robots must move in the opposite direction. The goals of the robots are not
illustrated in the drawing.

Proof: When dg = Ω(m2), We compute q = ⌊m1/dg⌋
and w = ⌊m1/q⌋ (note that w ≥ dg). Partition G into q grid
cells along the direction of m1; each cell is of size m2 × w
or m2× (w+1) (see Fig. 15). We label these cells c1, . . . , cq .
By the definition of dg , a robot initially located in cell ci may
only have its goal in either ci−1, ci, or ci+1, when applicable.
This further implies that for any applicable i, the number of
robots must be equal between cells. The MPP instance can
then be solved in two rounds through first invoking iSAG on
the combined cells ci + ci+1 for all applicable odd i and then
for all even i. The total makespan is clearly O(dg). For running
time, each round of iSAG application requires O(q(d2gm2 +
dgm

2
2)) = O(m1m2dg) time.

The rest of this section is devoted to the case dg = o(m2).
Because dg = o(m2), without loss of generality, we assume
that m1 ≥ m2 ≥ 5dg . Furthermore, we may assume without
loss of generality that m1 and m2 are multiples of 5dg . If that
is not the case, assuming that PAF is correct, then we can apply
PAF up to four times without adding makespan or running time
penalty. To execute this, first we compute q1 = ⌊m1/(5dg)⌋
and q2 = ⌊m2/(5dg)⌋. We note that |V | ≈ q1q2d

2
g . Then,

PAF is applied to the top left portion of G. This will fully
solve the problem for the top left (q1 − 1) × (q2 − 1) cells
of sizes 5dg × 5dg . Doing the same three more times with



each application on a different section of G, as illustrated in
Fig. 16, the entire problem is then solved.

5q1dg

5
q 2
d
g

Fig. 16. For G = m1 × m2, if m1 or m2 are not multiples of 5dg , we
may apply PAF to a q1 × q2 cell partition of G up to four times to cover G.

Henceforth, we assume m1 = 5q1dg and m2 = 5q2dg
in which q1 and q2 are integers. G is partitioned into a
q1 × q2 skeleton grid GS with its nodes being 5dg × 5dg
cells. We now realize what is illustrated in Fig. 14(a) from
a raw partition using diagonal rerouting (Fig. 12) and flow
cancellation (Fig. 13) operations.

Lemma 9 (Flow Orientation). In O(m1m2dg) time and O(dg)
makespan, the flow of robots on the q1 × q2 skeleton grid
may be arranged to be only vertical or horizontal between
adjacent cells and uni-directional. The largest total incoming
flow through a cell boundary is no more than 6d2g .

Proof: We first show how to carry out diagonal rerouting
(Fig. 12) and let the four involved cells, starting from the
top-left one and in clockwise order, be c1 through c4. By the
definition of dg , if a robot 1 in c1 has its goal in c3, then the
robot must be in the bottom right dg × dg region of c1 and its
goal must be in the top left dg×dg region of c3. For each such
robot, we pick an arbitrary robot 2 from c2 in the diagonal-line
shaded region. Any robot in this region will have its goal in c2.
By swapping the initial configurations of 1 and 2, the diagonal
movement of 1 is eliminated. Going in a clockwise fashion, we
apply the same procedure to all the cells to all affected robots.
We may call iSAG in parallel on G on all these 4dg × 4dg
regions, which use O(dg) makespan. For running time, each
4dg × 4dg region requires (16d2g)

3
2 = O(d3g) time, which is

then O(dgm1m2) over all q1q2 regions.
The flow cancellation operation (see Fig. 13) is carried

out using a mechanism similar fashion and incurs similar
makespan and running time; we omit the details. It is clear
that the total flow through any boundary is no more than
5d2g + d2g/2 + d2g/2 = 6d2g .

We are now left with only unidirectional flows on the
skeleton grid GS that are either vertical or horizontal between
adjacent cells. To route these flows, closed disjoint cycles must
be constructed for moving the robots synchronously across
multiple cell boundaries. To achieve this, we will first decom-
pose the flow into unit circulations (i.e., describing a procedure
for going from Fig. 14(a) to Fig. 14(b)). Then, we will show
how the cycles on the skeleton grid GS can be grouped into
a constant number of d2g sized batches and turned into actual
cycles on the original grid G. Our flow decomposition result,
outlined below, works for arbitrary graphs.
Theorem 10 (Circulation Decomposition). Let C be a circu-
lation on a graph G = (V,E) with the largest total incoming
flow for any vertex being f . C can be decomposed into f unit
circulations on G in O(f2|V |) time or (f |V | log |V |) expected
time.

Proof: We proceed to build a bipartite graph over two
copies of |V |. For a vertex vi ∈ V , we denote one of the copy
v1i and the other v2i . For any two adjacent vertices vi, vj ∈ V ,
if there is a flow of magnitude fij from vi to vj , then we
add fij edges between v1i and v2j . Because the largest total
incoming flow to any vertex is f , the maximum degree for
any vji , j = 1, 2, is also f . Also, due to flow conservation at
vertices, for fixed vi ∈ V , v1i and v2i have the same degree
fi ≤ f . For all vi with fi < f , we add f−fi edges between v1i
and v2i . This brings the degrees of all vertices in the bipartite
graph to f , yielding a regular bipartite graph. The bipartite
graph has 2|V | vertices and f |V | edges. An illustration of the
bipartite graph construction is given in Fig. 17.

v1 v2 v3

v5

2

2

v4

v11 v12 v13 v14 v15

v21 v22 v23 v24 v25
(a) (b)

Fig. 17. (a) A graph with five vertices and a valid circulation of largest
total incoming degree being 2. The flow on each edge with non-unit flow is
marked on the edge. (b) The constructed bipartite graph. The dashed edges
are the edges added to make the graph regular.

With the regular bipartite graph of degree f , we obtain
perfect matching with [51] in O(|E|) = O(f |V |) time. Each
perfect matching corresponds to a unit circulation on G,
which translates to either a single cycle or multiple vertex
disjoint cycles. In the example, a perfect matching may be
(v11 , v

2
2), (v

1
2 , v

2
5), (v

1
3 , v

2
3), (v

1
4 , v

2
4), (v

2
5 , v

2
1), which translates

to the cycle v1v2v5. The total running time to obtain the f
unit circulations is O(f2|V |). If we use the O(|V | log |V |)
expected time algorithm from [53], the running time is then
O(f |V | log |V |) expected time.

For our setting, Theorem 10 implies O(d2g) circulation on
a q1 × q2 skeleton grid can be decomposed into O(d2g) unit
circulations in O(m1m2d

2
g) time or Õ(m1m2) expected time.

Because at most 6d2g flows can pass through a cell boundary,
at most 12d2g flow can pass through a cell (two incoming, two
outgoing). Theorem 10 gives us 12d2g unit circulations over
the skeleton grid GS . With the decomposed circulation, we
may group them into batches and translate these into actual
robot movements on G. To start, we handle a dg batch.

Lemma 11 (Single Batch Global Flow Routing). A batch of
up to dg unit circulations on the q1× q2 skeleton grid may be
translated into actual cyclic paths for robots on G to complete
in a single step, using O(m1m2) time.

Proof: For a fixed cell, after considering various symme-
tries including rotation and flow directions, there are only three
possible cases as illustrated in Fig. 18; note that some flow may
have a value of zero. Therefore, establishing how a dg amount
of flow may be translated into feasible robot movements for
the three cases in Fig. 18 encompasses all possible scenarios.
We will sketch how up to dg robots can be arranged to go
through the boundaries in a single step for all three cases.



(a) (b) (c)
Fig. 18. Three possible flow orientations that cover all possible cases
considering flow quantity (which may be zero) and symmetries (flipping of
all flow directions and rotating the cell).

To route the robots, we will only use the center “+” area
of dg width of each 5dg × 5dg cell. Fig. 19(a) illustrates the
routing plan for realizing the flow given in Fig. 18(a), which
may be readily verified to be correct using basic algebra, i.e.,
assuming the top, left, and bottom routes contain x, y, and z
flows, respectively, such that x+ y+ z ≤ dg; we omit details.
For arranging the robots, for horizontal cell boundaries, robots
are aligned left. For vertical boundaries, robots are aligned
toward the top. We note that if Fig. 18(a) is rotated, some
adjustments are needed due to this choice of robot alignment
but the change is minimal. Such alignments are necessary to
ensure that the robot movements at cell boundaries match.

(a) (b)
Fig. 19. Illustration of how a flow of size 8 may be translated to plans for
robots for the case shown in Fig. 18. Each small square is of size dg × dg .

We emphasize that the paths are constructed so that for the
incoming and outgoing dg×dg boundary areas of the “+” that
are involved, robots only move straight through it, which is not
necessary but simplifies things when we put multiple batches
together. For the cases from Fig. 18(b) and (c), illustrations
of feasible routing plan construction are given in Fig. 19(b).
Because all routing plans are parametrized, the main running
time cost is to write done the plan, which takes O(d2g) per
cell. For q1q2 cells, the total is O(q1q2d

2
g) = O(m1m2).

With a subroutine to push through G a batch of up to dg
unit circulations each step, dg such batches may be further
grouped for sequential execution, allowing the handling of up
to d2g at a time. This is established in the following lemma.

Lemma 12 (Multi-Batch Global Flow Routing). Up to d2g unit
circulations on the q1×q2 skeleton grid can be routed through
G using O(dg) makespan and O(m1m2dg) time.

Proof: For the proof, we only need to focus on a single
dg × dg boundary area of a single cell; all other boundaries
and cells will be handled similarly. Moreover, we only need
to worry about robots moving out of a cell due to symmetry.
With these reductions, we outline how to push up to d2g robots
out of the right boundary of of the “+” region of a cell, which

is a dg×dg grid. Call this dg×dg grid c. After dicing up the d2g
circulations into dg of dg sized batches, we invoke Lemma 11
to generate feasible routing plans for each dg sized batch.
Because Lemma 11 guarantees that the generated paths are
straight lines from left to right inside c, these batches can be
sequentially arranged one after another, then compacted, for
sequential routing out of the cell. An example for dg = 6 is
illustrated in Fig. 20. with each color representing a dg sized
batch to be moved out through the right in one step.

(a) (b) (c)

Fig. 20. (a) We are to route d2g circulations through the right boundary of
a cell in a dg × dg area, highlighted with the dashed square. (b) The plans
generated for the dg of dg sized batches are arranged so that earlier plans
appear on the right. For later plans, part of it get truncated. (c) The further
compacted batches for actual execution. For robots that are not shown, they
will stay in the cell and have no impact on the plan execution.

For computation time, for the d2g circulation, we need to
invoke the procedure from Lemma 11 for all q1q2 cells dg
times, which incur a cost of O(q1q2d

3
g) = O(m1m2dg)

running time, mostly used to write down the paths. To be
able to actually prepare a cell for execution, iSAG must be
invoked on the cell once, which takes O(m1m2dg) time over
all cells. This is the dominating term.

Proof of Theorem 7: For dg = o(m2), on a q1 × q2
skeleton grid GS of 5dg × 5dg cells, we first apply Lemma 9
to ensure that flows of robots across cell boundaries are uni-
direction without diagonal movements, in O(m1m2dg) time.
Then, Theorem 10 computes a decomposition of the flow into
up to 12d2g (vertex) unit circulations, in O(m1m2d

2
g) time. In-

voking Lemma 12 a constant number of times, in O(m1m2dg)
time, we may globally route the robots so that all robots will
be in the cell where its goal belongs to. We are then left with
solving an MPP for each individual cell, which again requires
O(m1m2dg) running time over all cells. Putting this together
with the cases handled by Lemma 8, the overall running time is
O(m1m2d

2
g) ⊂ O(|V |2) time, yielding a solution with O(dg)

makespan. If we use randomized matching [53], the running
time becomes Õ(m1m2dg) expected time.

We note that a slightly better O(m1m2dg) running time
is given in [2] due to a faster flow decomposition routine
that explores planarity. Our routine (Theorem 10) does not
use planarity and applies to arbitrary decompositions, which,
together with iSAG, enables PAF to work in 3D.

V. PAF IN THREE DIMENSIONS

In 3D on an m1 × m2 × m3 grid, we focus on the main
case of dg = o(m3) (recall that m1 ≥ m2 ≥ m3); other cases
can be readily addressed via applying PAF in 2D. For 3D,
we will use a partition of cells of sizes 9dg × 9dg × 9dg and
assume that 9dg divides mi, i.e., mi = qi9dg, 1 ≤ i ≤ 3. It is
straightforward to verify that PAF in 2D carries over except



it is not clear how to route d3g flow through the faces of a
9dg×9dg×9dg cell, which requires the routing of d2g flow in a
single step. Generating paths for routing robots corresponding
to the flow is significantly more involved than in the 2D case.
First, we match the up to six incoming and outgoing flows
through a single cell so that at most one face sends flow to
its opposite face. If there is a single pair of opposite faces
with one having incoming flow and one having outgoing flow,
nothing needs to be done. Otherwise, if there are multiple
such face pairs, pick two arbitrary such pairs a1, a2, b1, and
b2. Without loss of generality, assume flows fa1

> 0, fa2
<

0, fb1 > 0, and fb2 < 0 (this is similar to the case illustrated in
Fig. 18(b)). If fa1

≤ |fb2 |, then we route all fa1
flow into a1 to

go out through b2, which then avoids the need for routing any
flow into a1 to go out from a2. If fa1 > |fb2 |, we do the same,
which means that no flow from b1 needs to go out through
b2. Either way, we effectively get rid of a dimension i where
fi1 ∗ fi2 < 0. Doing this iteratively then leaves at most one
such dimension where we may need to route any flow between
the two opposite faces associated with that dimension.

We now show how we may route flow from one face to
other five faces through a 9dg × 9dg × 9dg cell. Without loss
of generality, we will show how to route flow coming in from
the top face to the right face. Routing to the opposite face
will be briefly explained afterward. We will route the flow to
go through the center dg × dg regions on the six faces of the
9dg × 9dg × 9dg cell and assume that a protocol is agreed on
how the flow will be shaped between difference cells so the
robot flows can be matched at cell boundaries. For example,
on the top face, the d2g flow may be ordered row by row (e.g.,
the 24 robots on the top of Fig. 22(a)), which result in a
contiguous 2D shape inside a dg×dg region. Depending on the
flow routing plan, this up to d2g amount of flow is partitioned
into 5 pieces (left, right, front, back, and center). We note that
these pieces can again be made contiguous and in particular
do not interlock with each other (bottom of Fig. 22(a)). Based
on the partition, the proper amount of flow to each face is
then pivoted to go sideways row by row (see left figure of
Fig. 22(b)), except for flow that goes to the opposite face.

(a) (b)
Fig. 21. Illustration of how a certain amount of flow may be routed sideways.
Only the top-right-middle 5dg × 5dg × 5dg portion of the cell is shown in
(a). (b) is a projective view from the front.

For the flow going to the right face, we rearrange them to
a row-majored shape using a 2dg ×dg ×dg grid, as illustrated
in Fig. 22(b). At this point, we note that by symmetry, the
same procedure can be applied to the flow going out of the
right face in the reverse direction. Using a dg × dg × dg grid
(the green one in Fig. 21(b) and Fig. 22(b)) as a buffer zone,

these two separately crafted routes can be perfectly matched,
completing the routing plan for a pair of faces. For routing
flow to an opposite face, we simply let the flow to go down
two more dg × dg × dg grids after going through the blue
dg × dg × dg grid, after which we can do the same reshaping
procedure. Once we can route d2g flow through using a single
step, we can do dg batches of these, pushing d3g flow in O(dg)
makespan.

(a) (b)
Fig. 22. (a) Incoming d2g flow may be broken into non-interlocking pieces
going to difference faces. This dg × dg × dg grid corresponds to the cyan
topped grid in Fig. 21(a).(b) A projective view (from the front) of how the
three rows of red robots can be routed and reshaped into two row-major
ordered rows, going downwards.

Our main goal so far is to show that it is feasible to route
d3g flow in O(dg) make span. To actually create the plan, we
apply the max-flow algorithm (e.g., [54]) to an augmented
direct graph generated on the 9dg × 9dg × 9dg grid via vertex
splitting, a standard technique used in finding vertex disjoint
paths. We summarize the results in the following theorem.

Theorem 13 (PAF, 3D). Let G = (V,E) be an m1 ×m2 ×
m3 grid and p be an arbitrary MPP instance on G. Then,
a solution with O(dg(p)) makespan can be computed in both
O(d3g(p)|V |) and O(|V |2) time.

Proof: We only cover the case of dg = o(m3). Following
similar analysis as in the 2D case, the algorithm produces
an O(dg) makespan solution. For running time, there are
three main costs: (i) iSAG calls, (ii) matching for flow de-
composition, and (iii) max-flow based global robot routing
plan generation. For (i), q1q2q3 parallel calls to 3D iSAG is
needed, demanding a time of O(q1q2q3d

4
g) = O(dg|V |). For

(ii), flow decomposition is now performed on O(d3g) flow on
a graph with O(q1q2q3d

3
g) edges, requiring O(d3g|V |) time.

For (iii), using Ford-Fulkerson [54], the total running time is
O(q1q2q3d

6
g) = O(d3g|V |).

VI. DISCUSSION

In this work, having provided a complete description of
iSAG for k-D and PAF for 2D and 3D, we comment that PAF
extends to k-D using arguments similar to that used for 3D
PAF (see [6]). Further extensions over k-D PAF can be readily
made following [2], [55], which address lower robot densities
and continuous setups.
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