Rosetta: A Realistic High-Level Synthesis Benchmark Suite for
Software Programmable FPGAs

Yuan Zhou!*, Udit Gupta®*, Steve Dai!, Ritchie Zhao!, Nitish Srivastava!, Hanchen Jin!, Joseph Featherston!,
Yi-Hsiang Lai!, Gai Liu', Gustavo Angarita Velasquez®*, Wenping Wang**, Zhiru Zhang!*

! School of Electrical and Computer Engineering, Cornell University, USA
2 Computer Science, Harvard University, USA
3 Systems Engineering and Computer Science, National University of Colombia, Colombia
* Electronic and Information Engineering, Zhejiang University, China
*{yz882,zhiruz}@cornell.edu

ABSTRACT

Modern high-level synthesis (HLS) tools greatly reduce the turn-
around time of designing and implementing complex FPGA-based
accelerators. They also expose various optimization opportunities,
which cannot be easily explored at the register-transfer level. With
the increasing adoption of the HLS design methodology and con-
tinued advances of synthesis optimization, there is a growing need
for realistic benchmarks to (1) facilitate comparisons between tools,
(2) evaluate and stress-test new synthesis techniques, and (3) estab-
lish meaningful performance baselines to track progress of the HLS
technology. While several HLS benchmark suites already exist, they
are primarily comprised of small textbook-style function kernels,
instead of complete and complex applications. To address this limita-
tion, we introduce Rosetta, a realistic benchmark suite for software
programmable FPGAs. Designs in Rosetta are fully-developed appli-
cations. They are associated with realistic performance constraints,
and optimized with advanced features of modern HLS tools. We be-
lieve that Rosetta is not only useful for the HLS research community,
but can also serve as a set of design tutorials for non-expert HLS
users. In this paper we describe the characteristics of our bench-
marks and the optimization techniques applied to them. We further
report experimental results on an embedded FPGA device as well as
a cloud FPGA platform.

ACM Reference Format:

Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava, Hanchen
Jin, Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo Angarita Velasquez,
Wenping Wang, Zhiru Zhang. 2018. Rosetta: A Realistic High-Level Synthesis
Benchmark Suite for Software Programmable FPGAs. In FPGA ’18: 2018
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
February 25-27, 2018, Monterey, CA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/lo.l 145/3174243.3174255

* Udit, Gustavo, and Wenping conducted this research when they were affiliated with
or visiting Cornell.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FPGA 18, February 25-27, 2018, Monterey, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5614-5/18/02...$15.00

https://doi.org/10.1145/3174243.3174255

1 INTRODUCTION

Field-programmable gate arrays (FPGAs) have become an attractive
option for realizing specialized accelerators thanks to their reconfig-
urability, massive fine-grained parallelism, and performance per watt
advantage. With the extreme-scale integration of modern system-
on-chip (SoC) and escalating design complexity of emerging applica-
tions, designing at a higher level of abstraction has become crucial
to achieving high productivity. To address this challenge, high-level
synthesis (HLS) tools have emerged to allow application developers
to describe the hardware accelerator using common software pro-
gramming languages like C/C++ by automatically generating RTL
from behavioral descriptions [7, 14]. With the recent advances on
HLS techniques and algorithms, modern HLS tools enable design-
ers to explore optimization opportunities that are infeasible at the
register-transfer level.

Programming FPGAs with HLS tools is drastically different from
writing traditional software code. HLS users typically need to apply
many optimization pragmas/directives to meet design constraints.
The success of such manual optimization often requires nontrivial
hardware design knowledge. For example, in image/video processing,
the right combination of SRAM-based line buffers and shift regis-
ters is needed to achieve the ideal throughput and resource usage
for pipelining the stencil code in hardware. With a more complex
dataflow structure, the user needs to further calculate and specify the
right FIFO depth to obtain the best pipeline rate without causing too
much area overhead. However, these advanced HLS optimizations
are rarely used or even required in the existing HLS benchmark
suites (e.g., [11], [23]), which primarily include relatively small ker-
nels that are designed to test some of the basic capabilities of an
HLS tool such as the synthesis support of high-level language con-
structs. In addition, for HLS tool developers and the HLS research
community at large, there is also a growing demand for a common
set of realistic and complex designs to evaluate the efficacy of new
synthesis techniques.

To this end, we introduce Rosetta! — a suite of realistic HLS bench-
marks for software programmable FPGAs. Rosetta includes popular
machine learning workloads such as logistic regression and neural
network inference, as well as real-time video processing applications
including image rendering and face detection. Unlike previous ef-
forts, Rosetta presents fully developed applications instead of small
kernel programs, and specifies realistic design constraints for each
IRosetta gets the name following the convention of a plethora of “stone” benchmark

suites. It also symbolizes that our benchmarks are specified in multiple languages (i.e.,
C++, OpenCL) and useful for evaluating HLS across different tools and platforms.

application. These design constraints are satisfied by applying ad-
vanced optimizations of state-of-the-art HLS tools, which are not
exercised by existing benchmark suites. With these features, Rosetta
is not only a set of practical benchmarks for the HLS community,
but also a design tutorial on how to build specialized FPGA accelera-
tors with advanced HLS optimizations. More concretely, our main
contributions are threefold:

« We design and present Rosetta, which couples a range of realistic
applications with real-world design constraints under different
programming models. Current Rosetta designs are written in C++
and OpenCL. The synthesized hardware accelerators are tested
on both embedded and cloud FPGA platforms.

« Rosetta demonstrates how to effectively apply advanced optimiza-
tions provided by modern HLS tools to meet the design constraints
and achieve high quality of results. Examples of these optimiza-
tions include fixed-point optimization, dataflow pipelining, and
data reuse through customized memory.

« The proposed benchmark suite is freely available in open-source
format?. We plan to continuously improve Rosetta by strengthen-
ing current cases and adding new applications from other domains.

The rest of this paper is organized as follows: in Section 2, we
introduce related work on HLS benchmarking and optimizations;
Section 3 outlines the Rosetta applications and key HLS optimiza-
tion techniques leveraged by them; details of each benchmark are
described in Section 4; we show our experimental results in Section
5, and conclude this work in Section 6.

2 RELATED WORK

FPGA programming currently differs significantly from the com-
mon practice of software programming, even with the use of HLS
tools. Instead of simply focusing on functional correctness and exe-
cution time, FPGA programmers often have to explore various com-
plex design trade-offs involving performance, power, area, and cost.
Therefore, traditional software benchmark suites cannot directly be
applied to HLS evaluation. In response, a number of HLS-specific
benchmark suites have been developed by the research community
for evaluating various aspects of hardware synthesis techniques and
tool flows. CHStone [11] is a widely used C-based HLS benchmark
suite, which contains function kernels selected from application
domains such as arithmetic, signal processing, and security. Mach-
Suite [23] is another popular HLS benchmark suite, which includes a
more diverse set of kernels and provides different algorithms for the
same kernel to facilitate comparisons at the algorithmic level. A more
recent effort, Spector [10], offers OpenCL benchmarks that are ready
to be executed on Intel (formerly Altera) FPGA platforms. Kernels
in Spector are designed to have large design spaces, which is useful
for experimentation of automatic design space exploration (DSE)
techniques. Additionally, HLS researchers have also adopted bench-
marks from other communities. For example, Rodinia [5], originally
designed for GPU benchmarking, has been used to test OpenCL-
based HLS flows [29, 31]. Polybench [21] from the software compiler
community has been adopted for assessing HLS-targeted polyhedral
transformations [22, 34, 42] and DSE techniques [24, 29, 38, 40].
While the popular kernel benchmarks are simple to run and ana-
lyze, they are insufficient for evaluating the increased capabilities of
HLS optimizations and new technology advances in FPGA devices.

ZReleased on Github at https:/github.com/cornell-zhang/rosetta

In particular, state-of-the-art HLS tools provide many advanced fea-
tures for achieving high design quality. Examples include arbitrary-
precision datatypes, parameterized hardware data structures (e.g.,
line buffers), and hierarchical dataflow pipelining. These features are
often used in combination with other common HLS optimizations
such as unrolling, loop pipelining [9, 15, 37], and array partition-
ing [30, 41]. Moreover, they are typically applied across multiple
kernels exhibiting different characteristics to meet the stringent
applicant-level design constraints.

We believe that a new set of full-application benchmarks is desir-
able to enable more realistic performance reporting of HLS tools and
FPGA-based acceleration. Along this line, Liu et al. [16] conducted a
comprehensive case study on an H.264 decoder, and they have open
sourced their HLS implementation. Rosetta goes one step further
by providing a suite of application benchmarks that can be used
to (1) facilitate comparisons between HLS tools, (2) evaluate new
synthesis techniques, and (3) establish meaningful baselines to track
progress of the HLS and FPGA technologies. Each application in
Rosetta includes a set of enforceable application-level design con-
straints based on real-world specifications. These constraints model
the realistic use cases for FPGA-based hardware accelerators, which
helps standardize the evaluation of future advancements in HLS
tools. Furthermore, the applications in Rosetta leverage advanced
features of HLS tools to achieve high quality of results (QoRs) across
a distinct set of hardware designs. Hence these benchmarks can
also serve as useful design tutorials for FPGA programmers to build
high-performance hardware accelerators using HLS.

3 ROSETTA OVERVIEW

Rosetta currently contains six realistic benchmarks selected from
machine learning and video processing fields, where FPGAs are com-
petitive on energy efficiency compared to CPUs and GPUs.> For each
Rosetta design, we provide the unoptimized software version, and the
optimized HLS implementations written in either C++ or OpenCL.
Table 1 lists the current Rosetta collection. Two of these benchmarks,
binarized neural network and face detection, are adopted from our
previously published work [25, 39], while the rest are new designs.
Rosetta contains both compute-bound and memory-bound appli-
cations comprised of a rich set of kernels. These applications and
kernels expose diverse sources of parallelism. Our current HLS im-
plementations typically exploit instruction-level parallelism (ILP)
through fine-grained pipelining, and in some cases also expose task-
level parallelism (TLP) by overlapping the execution of different
kernels. Additionally, each benchmark is associated with realistic
design objectives — the machine learning applications require ei-
ther low latency or high throughput depending on the use-case
scenario, while video processing applications must meet a real-time
throughput target of at least 30 frames per second. In order to achieve
these application-level constraints, Rosetta designs are customized
using a variety of HLS optimization techniques, which are concisely
summarized as follows:

« Datatype customization — Customized data types such as fixed-
point types allow an FPGA accelerator to compute at the desired
numerical accuracy, and often lead to significant performance and
area improvements over the design using full-precision floating-
point types.

3For the time being, we are not targeting traditional benchmarks from cryptography
(e.g., AES) and digital signal processing (e.g., DCT, FFT), since they are already included
in several other benchmark suites [10, 23].

Table 1: The current set of the Rosetta applications — Rosetta contains both compute-bound and memory-bound applications with
different workloads. Kernels in each application expose different sources of parallelism: SLP = subword-level parallelism; DLP = data-level
parallelism; ILP = instruction-level parallelism. Different types of parallelism available in each compute kernel are listed in parentheses.

Application Categorization

Major Compute Kernels

Major HLS Optimizations

Video processing
Compute bound
Integer operation intensive

3D Rendering

Dataflow pipelining

Int ithmetics (ILP . o
nteger arithme ics (ILP) Communication customization

Machine learning

Hamming distance (SLP, DLP, ILP)

Loop unrolling

Digit Recognition _ Compute bound KNN voting (ILP) Loop pipelining
Bitwise operation intensive
Machine learning Dot p rgdqct (D LP, ILP) Dataflow pipelining
S Filteri Memory bound Scalar multiplication (DLP, ILP) Datatype customization
pam Fiitering . . Ty bOUNC . Vector addition (DLP, ILP) }fp s o
Fixed-point arithmetic intensive . . . Communication customization
Sigmoid function (ILP)
Video processing . Dataflow pipelining
Optical Flow Memory bound LD convolution (DLP, ILP) Memory customization

Floating-point arithmetic intensive

Outer product (DLP, ILP) Communication customization

Machine learning
Compute bound
Bitwise operation intensive

Binarized Neural
Network (BNN) [39]

Binarized 2D convolution (SLP, DLP, ILP)
Binarized dot product (SLP, DLP, ILP)

Memory customization
Datatype customization
Communication customization

Video processing
Compute bound
Integer arithmetic intensive

Face Detection [25]

Cascaded classifiers (DLP, ILP)

Image scaling (DLP, ILP) Memory customization

Datatype customization

« Compute customization — Compute customization improves
the latency and/or throughput of the design through paralleliza-
tion and pipelining. Loop unrolling, loop pipelining, and dataflow
pipelining fall into this category.

Memory customization — FPGA accelerators typically demand
very high on-chip memory bandwidth to enable highly distributed
control and computation. Therefore, it is critical to set up cus-
tomized memory hierarchy to provide the required bandwidth
through data reuse and memory banking.

Communication customization — The limited data bandwidth
between off-chip memories and the FPGA accelerators often be-
comes the performance bottleneck for memory-bound applica-
tions. Hence it is crucial to customize the communication channel
and protocol used by the hardware accelerator to fully utilize off-
chip memory bandwidth through proper data packing and careful
design of the data layout.

4 BENCHMARK DESCRIPTION

This section discusses Rosetta applications in detail. For each bench-
mark, we first briefly introduce its functionality and design con-
straints; we then describe its major compute kernels, explain the
rationale behind our categorizations in Table 1, and discuss the key
HLS optimizations applied to this design.

4.1 3D Rendering

The 3D rendering benchmark renders 2D images from 3D triangle
mesh models [20]. Taking in 3D coordinates of triangle vertices, the
application projects the triangles onto a 2D image, and colors the
image pixels according to the "altitude" of the projected triangle.
Our implementation works on 256x256 images where pixels are
represented with 8-bit integers. The provided dataset contains the

1 TRIANGLES: for (int i = @; i < NUM_3D_TRI; i++) {

2 dtpragma HLS dataflow

3 // five stages for processing each 3D triangle

4 projection(triangle_3ds, &triangle_2ds, angle);

5 flag = rasterizationl(triangle_2ds, max_min,

6 &triangle_2ds_same, max_index);
7 size = rasterization2(flag, max_min, max_index,

8 triangle_2ds_same, fragment);
9 size_pixels = zculling(i, fragment, size, pixels);
10 coloringFB(i, size_pixels, pixels, frame_buffer);
1 }

Figure 1: Main loop for 3D Rendering. One triangle is pro-
cessed by five image processing stages in each iteration.

Time
Triangle 0 | projection rastl rast2 zculling | coloringFB
Triangle 1 projection rastl rast2 zculling | coloringFB
Triangle 2 projection rastl rast2 zculling | coloringFB

Figure 2: Dataflow optimization overlaps different pipeline
stages in 3D rendering.

coordinates of 3192 triangles. Target throughput is 30 frames per
second.

The HLS design contains a typical image processing pipeline as
shown in Figure 1. The coordinates of each triangle go through
four kernel functions before updating the output frame buffer in
coloringFB. Integer operations form the primary workload inside
the kernels: projection and rasterization2 are rich in integer

__local WholeDigitType training_set[NUM_TRAINING]
__attribute__((xcl_array_partition(block,PAR_FACTOR,1)));

1

2

3

4 __attribute__((xcl_pipeline_loop))

5 TRAINING_LOOP:

6 for (int i = @; i < NUM_TRAINING / PAR_FACTOR; i ++) {
7 __attribute__((opencl_unroll_hint))

8
9

LANES:

for (int j = @; j < PAR_FACTOR; j ++) {
10 // Read a new instance from the training set
11 int train_id = j * NUM_TRAINING / PAR_FACTOR + i;
12 WholeDigitType training_instance;
13 training_instance = training_set[train_id];
14 // Update the KNN set
15 update_knn(test_instance, training_instance,
16 &knn_set[j*K_CONST]);
17}
18 }

Figure 3: Main compute loop nest for KNN calculation in
OpenCL.

arithmetic, while rasterization1 and zculling are heavy on in-
teger comparisons. Each triangle requires a large amount of com-
putation relative to its memory size. Therefore, the application is
categorized as compute-bound.

3D rendering is a prime example of dataflow optimization, which
is applied in the HLS code on line 2 of Figure 1. Dataflow optimiza-
tion exploits task-level parallelism by overlapping different stages
of the image processing pipeline, as shown in Figure 2. Although
the latency of processing each triangle is not reduced, dataflow opti-
mization improves throughput and ensures no hardware module in
the pipeline is idle in the steady state.

Design parameters. We provide a switch in the source code to
enable/disable dataflow optimization.

4.2 Digit Recognition

Digit recognition classifies hand-written digits using the K-nearest-
neighbor (KNN) algorithm. The application works on a downsampled
subset of the MNIST database [13], with 18000 training samples and
2000 test samples evenly split amongst the ten digit classes. Each
MNIST image is downsampled to 14x14 and each pixel is represented
as a single bit; thus, each image can be stored as a 196-bit unsigned
integer. The KNN algorithm computes the Hamming distance be-
tween a test input and each training sample, stores the labels of the
training samples with the K shortest distances, and votes among the
K labels to decide the label of the test sample. The design objective
for digit recognition is to minimize the total latency of classifying
the 2000 test samples.

Digit recognition includes two major compute kernels: Hamming
distance calculation and KNN voting. The Hamming distance kernel
computes the Manhattan distance between two samples; as each
sample is comprised of 1-bit pixels, this is done via bitwise XOR on
the inputs, followed by computing a population count of the result.
The kernel is therefore rich in bitwise logic. The Hamming distance
must be calculated between a test input and every training sample.
As a result, Hamming distance calculation is the dominant workload
of digit recognition. The KNN voting kernel examines the list of
Hamming distances to find the K nearest training samples, and out-
puts the classification result as the most frequent label amongst them.
The main workload in this kernel is integer comparison and sorting.

These two kernels have very different characteristics: while we can
easily exploit the bit-level and data-level parallelism in the Hamming
distance kernel, the KNN voting kernel is harder to parallelize.

Digit recognition has a high compute to communication ratio.
For each test instance, Hamming distance calculation requires 100s-
1000s of cycles depending on the parallelization factor, and KNN
voting requires 10s-100s of cycles depending on K and the paralleliza-
tion factor. The training samples and their labels are stored on-chip
and reused for all test instances. As a result, digit recognition is a
compute-bound application.

Figure 3 shows the main compute loop nest for KNN calcula-
tion, alongside key HLS optimizations. TRAINING_LOOP iterates over
training samples, while the inner loop, LANES, instantiates different
Hamming distance units. In addition to compute optimizations in
the form of loop pipelining and unrolling (lines 4 and 7 of Figure 3),
memory optimization is needed since the default implementation of
on-chip array training_set only has two memory ports, it cannot
supply PAR_FACTOR training instances per cycle. The training_set
array is partitioned in line 2. With these optimizations, we can exploit
the data-level parallelism between training instances.

Design parameters. The user can tune the following knobs:

e K: number of nearest neighbors.
e PAR_FACTOR: number of parallel Hamming distance units.

These two parameters present an interesting trade-off between
classification accuracy, latency, and resource utilization. Increasing
PAR_FACTOR reduces the latency of the Hamming distance kernel,
but complicates the KNN voting kernel. Parallelization also causes
frequency to drop. Furthermore, the complexity of both kernels in-
creases with K. Additional results and analysis on the design space
are presented in Section 5.

4.3 Spam Filtering

The spam filtering application uses stochastic gradient descent (SGD)
to train a logistic regression (LR) model for spam email classifica-
tion [19]. The input is a dataset containing 5000 emails, 4500 for
training and 500 for testing [26]. Each email is represented as a 1024-
dimensional vector whose elements are relative word frequencies
stored as 16-bit fixed-point numbers. The SGD training process pro-
duces a vector of 32-bit fixed-point parameters for the LR model.
We use five training epochs and a minibatch size of one; each epoch
processes every training sample once and updates the parameters
after each sample.

The performance target of spam filtering is to minimize training
latency. Critical resource constraints are the number of hardened
DSP blocks and the size of on-chip storage, which limits the level of
compute parallelization and the amount of data stored on the FPGA.
The SGD algorithm contains kernels commonly found in machine
learning applications, including dot product, vector addition, and
sigmoid.

Our spam filtering design exploits datatype customization and
approximation of complex arithmetic operations on the FPGA. Fig-
ure 4 shows the optimized sigmoid function. Lines 1-3 show the
customized datatypes used to avoid expensive floating-point arith-
metic. We also eliminate most of the compute by taking advantage
of the properties of the sigmoid function. Sigmoid asymptotically
approaches one when the input is large and zero when the input is
small (i.e. large negative). Sigmoid values when the input is between
minus four and four are hardcoded in a look-up table.

1 typedef fixed<F_TWIDTH,F_IWIDTH> FeatureType;

2 typedef uint<LUT_TWIDTH> IdxFixed;

3 typedef fixed<LUT_TWIDTH, LUT_IWIDTH> LutInFixed;

4 // values of sigmoid function stored in a look-up table
5 FeatureType useLUT(LutInFixed in) {

6 IdxFixed index;

7 if (in < Q) {

8 in = -in;

9 index = LUT_SIZE - (in << (LUT_TWIDTH - LUT_IWIDTH));
10 3}

11 else

12 index = (in << (LUT_TWIDTH - LUT_IWIDTH));

13 return lut[index];

14 3}

15 // sigmoid function
16 FeatureType Sigmoid(FeatureType exponent) {
17 if (exponent > 4)

18 return 1.90;

19 else if (exponent < -4)

20 return 0.90;

21 else {

22 LutInFixed inLut = (LutInFixed)exponent;
23 return useLUT(inLut);

24 3}

25 %}

Figure 4: Datatype and compute optimization to the Sigmoid
function — Specialized datatypes are used throughout the whole
hardware function to avoid expensive floating-point arithmetic. We
use a look-up table to store the values of the sigmoid function so that
the complex arithmetic operations can be reduced. In our implemen-
tation F_TWIDTH =32, F_IWIDTH = 13, LUT_TWIDTH = 12, LUT_IWIDTH
=4.

1 typedef uint<VDWIDTH> VectorDataType;

2 typedef fixed<D_TWIDTH, D_IWIDTH> DataType;

3 void read_data(VectorDataTypex data,

4 DataTypex* training,
int tid)

#pragma HLS pipeline

5
6
7 for (int i = @; i < N_FEATURES/(VDWIDTH/D_TWIDTH); i++) {
8
9 // read in the data

10 int idx = tid * N_FEATURES / (VDWIDTH/D_TWIDTH) + i;

11 VectorDataType tmp = datalidx];

12 // distribute into local buffer

13 for (int j = ©; j < (VDWIDTH/D_TWIDTH); j++) {

14 int loc_idx = i * (VDWIDTH/D_TWIDTH) + j;

15 training[loc_idx] = tmp((j+1)*D_TWIDTH-1, j*D_TWIDTH);
16 33

17 }

Figure 5: Communication optimization for spam filtering —
In our implementation D_TWIDTH = 16, D_IWIDTH = 4, N_FEATURES =
1024. Users can tune the VDWIDTH parameter to control the off-chip
communication bandwidth.

Our target FPGA devices do not have sufficient on-chip memory
to store the complete training set, necessitating the streaming of
training instances from off-chip memory. Dataflow optimization
(introduced in Section 4.1) is applied to overlap communication and
compute. To fully utilize off-chip memory bandwidth, we apply ele-
ment packing as shown in Figure 5. Data is transferred from off-chip
storage as VectorFeatureType, which is a wide, custom-bitwidth

Gradient N

—>»| Unpack

il =aN
Weight_y
Gradient ’j:}/
z

Outer . I
product ‘-EE* Weight_x
v

¥ Tensor_y <{I<-

j:ll Compute
flow
Optical Flow Accelerator

Output Flow
Image Frames
N Vectors

Off-chip Memory

Tensor_x

Figure 6: Hardware diagram for optical flow — The kernels are
connected by FIFOs for streaming dataflow pipelining.

integer type. Inside the FPGA, the data is unpacked into 16-bit train-
ing vector elements, resulting in a communication throughput of
multiple elements per cycle. Despite this optimization, the through-
put of the dataflow pipeline is still determined by the communica-
tion latency because of the relatively simple and highly parallelized
compute units for LR. Therefore, spam filtering is classified as a
memory-bound application.

Design parameters. The design space of spam filtering consists of
the following parameters:

® PAR_FACTOR: the parallelization factor of the vector compute
kernels.

e VDWIDTH: the width of the packed vector data type, which con-
trols the upper-bound of the off-chip communication band-
width of the hardware function.

Our results and analysis on the design space are shown in Section 5.

4.4 Optical Flow

Optical flow captures the motion pattern of objects between consec-
utive image frames. It is an important step for object detection and
is integrated into several image/video processing toolsets such as
OpenCV and the Computer Vision toolbox of MATLAB. Our imple-
mentation is based on the Lucas-Kanade method which is friendly
for FPGAs [32]. The output is a 2D vector field of the same size,
where each vector shows the movement of the pixel in the input
image frames. Currently, pixels of input images are represented with
8-bit integers, while the output and all intermediate results are rep-
resented with 32-bit floating-point numbers. We use the MPI Sintel
dataset [4] for testing this benchmark. The resolution of the image
frames in this dataset is 436x1024.

Optical flow must satisfy a real-time throughput constraint of
30 frames per second. In addition, the limited amount of on-chip
storage prevents us from buffering the image frame on chip. Fig-
ure 6 shows the image processing pipeline with eight stages. The
main compute kernel for stages Gradient, Weight, and Tensor is
1D convolution; the Outer product stage performs outer product of
three-dimensional vectors. Output is generated in the Compute flow
stage. Currently, we are using floating-point arithmetic in these ker-
nels. Data packing optimization introduced in Section 4.3 is applied

Image Buffer Line Buffer
abc01234ir-c“i<—01234
6|17|18|9|A|B]|C o 5/6|]7|8|9|A|B|C
D|E]|F|x D|IE]|F]|x

Window Buffer

Previous Window

alb|c|Ooj1|2]3]4 F=m

tal [o]c] 4—]|o]
6[7]s|o|a]s b=

tsie|6[7] 4—|8]
E|F|x —

iot [e]r] 4—[x]

Current Window

Figure 7: Example of a 2-row line buffer and a 3x3 window
buffer — Pixels a, b, ¢ and 0-F are already visited, while x is a new
pixel. The line buffer stores pixels in the two most recently visited
rows, and reads in one pixel from the image buffer every cycle. The
3x3 window buffer stores recently visited pixels in the 3x3 sliding
window. When the sliding window shifts to the right, the left-most
pixels in the window buffer are shifted out, while two pixels stored
in the line buffer (0 and 8) and the new pixel x are shifted in. The
new pixel x is also stored into the line buffer and pixel c is removed
from the line buffer.

to avoid contention on the off-chip memory. Each packet contains
one pixel from each image frame, and the Unpack stage distributes
the pixels to on-chip FIFOs. Similar to 3D rendering, we use dataflow
optimization to construct channels between stages of the image pro-
cessing pipeline. The major difference between the two benchmarks
is that all pipeline stages in optical flow produce and consume pix-
els in a strict sequential order. In addition, the pipeline stages have
perfectly balanced rates. Therefore, the channels between pipeline
stages can be implemented as fixed-depth FIFOs, as shown in Fig-
ure 6. The whole accelerator is a very deep, fine-grained pipeline
with different stages perfectly overlapped.

Memory customization is also necessary for optical flow to achieve
high throughput. Here we introduce the common specialized mem-
ory structures for image processing applications: line buffer and
window buffer. Figure 7 gives a pictorial illustration of a 2-row line
buffer and a 3x3 window buffer. The line buffer reads in one pixel per
cycle and stores pixels in recently visited rows. The window buffer
is completely partitioned into registers for parallel data access, and
it consistently reads from the line buffer. These specialized memory
structures exploit the data reuse in stencil applications with sliding
processing windows, and minimize memory accesses to the next-
level memory hierarchy. The convolution kernels in optical flow are
good candidates for this memory customization. Figure 8 shows how
we construct and maintain a line buffer and a window buffer in the
gradient_xy kernel. Proper conditions need to be applied to avoid
out-of-bound array accesses.

With the optimizations described above, we classify optical flow
as a memory-bound application because the off-chip memory band-
width directly determines the throughput of the streaming dataflow
pipeline. However, this is because our current implementation does
not exploit data reuse between input frames. We plan to further
optimize this design to achieve a higher throughput.

1 void gradient_xy(pixel_t frame[MAX_HEIGHT][MAX_WIDTH],

2 pixel_t gradient_x[MAX_HEIGHT][MAX_WIDTH],

3 pixel_t gradient_y[MAX_HEIGHT][MAX_WIDTHI)

4 {

5 // specialized line buffer and window buffer

6 hls::LineBuffer<5,MAX_WIDTH,pixel_t> buf;

7 hls::Window<5,5,pixel_t> window;

8 GRAD_XY_OUTER: for (int r = @; r < MAX_HEIGHT + 2; r ++) {
9 GRAD_XY_INNER: for (int ¢ = @; ¢ < MAX_WIDTH + 2; c ++) {

10 #pragma HLS pipeline II=1

11 // fill the line buffer

12 if (r < MAX_HEIGHT && c < MAX_WIDTH) {

13 // shift up pixels in column c

14 buf.shift_pixels_up(c);

15 // insert new pixel into column c of the last row
16 buf.insert_bottom_row(frame[r]lc], c);
17 } else if (c < MAX_WIDTH) {

18 buf.shift_pixels_up(c);

19 // zero padding

20 buf.insert_bottom_row(@,c);

21 3}

22 // fill the window buffer

23 if (r < MAX_HEIGHT && c < MAX_WIDTH) {

24 // shift pixels to the left

25 window.shift_pixels_left();

26 for (int 1 = 0; i < 4; i ++)

27 // read from the line buffer

28 // and insert to the right-most column
29 window.insert_pixel (buf.getval(i, c), i, 4);
30 } else {

31 window.shift_pixels_left();

32 for (int 1 = 0; i < 4; i ++)

33 // zero padding

34 window.insert_pixel(@, i, 4);

35 3}

36 // compute

37 /]

38 33}

Figure 8: Gradient kernel optimized with line buffer and win-
dow buffer — hls: :LineBuffer and hls: :Window classes provide
parameterized implementations of line buffers and window buffers.

Convolvers fout OUtput streams \
| — 1

Input I
BitSel [I*
words T T '
o o |l 0uoue
Input T T T 1 Binarize words
BitSel | Integer
words T 1 e

Variable-width
Line Buffer

four Conv
Weights

Figure 9: Hardware structure of the BNN accelerator (figure
adapted from [39]).

4.5 Binarized Neural Network

Accelerating convolutional neural networks (CNNs) has become
an important research topic for the FPGA community. Academic
and industry researchers have implemented different CNN models
on a variety of FPGA platforms [3, 18, 35, 36]. Recently, binarized
neural networks (BNNs) were shown to be a natural fit for FPGA
hardware [6, 27, 33, 39]. BNNs constrain weights and intermediate
activations to +1 or -1; this converts most of its multiplies to binary
XORs and takes full advantage of the FPGA logic fabric. We adopt
an open-source implementation of BNN by Zhao et al. [39] as a
representative neural network application in Rosetta.

Input Word Line Buffer Image Line Buffer
Image Buffer —
Input width 32 I 112
P 2 fine 1 alb|clo]1]2]3 Led 0 3
| L | line 2 slel7]s]o[a]B]c >|6]7[8|9]A[B
~— line 3 DIE|F] x
DleE|F|x :

Input width 8 Image Window Buffer
,_L Yo | line 3 | line 4 | line 5 | line 6 | DU Y o g g I n

[line 5 [line 6 [line 7 [line 8 |— [line 4 [line5 [line 6 [line 7 |
\—’l line 5 | line 6 I line 7 | line 8 |

Figure 10: Example usage of variable-width line buffer for 8-
wide and 32-wide feature maps (figure adapted from [39]).

Zhao et al. implement the BNN model described in [8], which
operates on the CIFAR-10 dataset [12]. It contains six convolutional
layers, three pooling layers, and three fully-connected layers. Fig-
ure 9 shows the hardware diagram of the BNN accelerator, which
uses a configurable number of convolvers to exploit data-level paral-
lelism in a scalable manner. The authors target a small FPGA device
with limited on-chip storage. As a result, the BNN weights cannot
fit on-chip and the accelerator must be invoked multiple times to
classify an image; each time new weights are loaded from off-chip
memory.

There are two major kernels in BNN: binarized convolution and
binarized dot product. Both kernels are intensive of bitwise logic
operations. Binarized convolution comprise the majority of opera-
tions in classifying an image, and is heavily parallelized as a result.
In contrast, the binarized fully-connected layers, which use the dot
product kernel, are limited by off-chip memory-bandwidth. We cate-
gorize BNN as compute-bound since latency improvement mostly
comes from accelerating compute in the convolutional layers.

Since 2D convolutional layers have a sliding window access pat-
tern, line buffers are used to exploit data locality. In particular, a
variable-width line buffer (VWLB) is designed to keep the hardware
convolvers fully utilized despite the varying sizes of the feature maps.
Figure 10 shows how the VWLB works for different input widths. For
input feature map with a width of 32, the VWLB operates identically
to a conventional line buffer. For a smaller feature map with a width
of 8, each row in the VWLB stores multiple rows of the input. The
rows are carefully arranged in the VWLB so that the convolutional
filter can slide through and produce correct results.

Design parameters. The BNN benchmark allows users to tune the
number of convolvers in the accelerator. Other parameters such as
the size of buffers are automatically scaled.

4.6 Face Detection

The face detection application is adopted from [25]. It uses the Viola-
Jones algorithm [28] to detect human faces in a given image. More
specifically, the accelerator takes an 320x240 greyscale image as
input, which is scaled to construct an image pyramid; afterwards, an
integral image is constructed from each image in the image pyramid,
and a set of cascaded classifiers are applied to a fixed-size window
which scans through the integral image; eventually, the positions
and sizes of the human faces are returned.

As mentioned in [25], the throughput target for face detection
is 30 frames per second. In addition, the application is subject to
hardware constraints including limited on-chip storage and rout-
ing resources. The two major compute kernels in face detection are
image scaling and cascaded classifiers. Image scaling is a common

Previous Window

D i i i 2 11 <4 n

4
Bl c -« t-«—f--4—<—

slef[7[8]9o]a
DE|F[x

Integral Image

Current Window A, Window Buffer

Figure 11: Specialized line buffer and window buffer for face
detection [25] — Here we show a 3x3 example, but the actual imple-
mentation uses 25x25 windows. Solid arrows refer to normal register
shifting, while dashed arrows refer to addition. The image window
buffer accumulates the incoming pixels and construct the integral
image on the fly. The integral image window buffer accesses the
image window buffer for new data.

Table 2: Device capacity of the two FPGA platforms and the
resource utilization of the platform logic (shell) on AWS F1 —
The last row reports the average resource utilization of the shell,
with the standard deviation in parentheses.

#LUTs # FFs # BRAMs # DSPs
AWS F1Total 1181768 2363536 2160 6840
ZC706 Total 218600 437200 545 900
AWS F1 Shell 293209 (+£3693) 381853 (+5138) 545 (£0) 12 (0)

kernel in feature extraction applications such as SIFT [17], as well
as the pooling layers of CNNs. The cascaded classifiers are the domi-
nant workload for the face detection application. The authors of [25]
parallelize the first three classifier stages and pipeline the rest of
the stages to exploit data-level parallelism. This kernel also exposes
an irregular memory access pattern — each classifier accesses ei-
ther eight or twelve pixels, and the classifiers have different access
patterns. This feature itself makes the kernel interesting for HLS
memory optimization techniques. Customized memory partitioning
is applied to improve kernel frequency and reduce routing effort [41].

The cascaded classifiers operate on a sliding window of the inte-
gral image. As a result, face detection can also benefit from the line
buffer and window buffer optimization introduced in Section 4.4.
However, constructing the whole integral image before applying
the classifiers would require a significant amount of on-chip storage
and incur performance loss. Therefore, the authors of [25] modified
the window buffer to construct the integral image efficiently. The
operation of this buffer is depicted in Figure 11, where the modified
image window buffer accumulates pixels on the diagonal to compute
the pixel values in the integral image.

5 EXPERIMENTAL RESULTS

We have synthesized the Rosetta benchmarks targeting an embedded
FPGA as well as a cloud FPGA instance. We use Xilinx ZC706 for
the embedded platform, which contains a Kintex-7 FPGA with a

Table 3: Rosetta results on Xilinx ZC706 Platform — The Runtime column shows overall
execution time. Resource numbers show the total resource usage of the designs, including
both kernel function and shell logic. Bitstreams are generated by Xilinx SDSoC 2017.1.

Benchmark #LUTs #FFs #BRAMs # DSPs Runtime (ms) Throughput
3D Rendering 8893 12471 48 11 4.7 213 frames/s
Digit Recognition! 41238 26468 338 1 10.6 189k digits/s
Spam Filtering? 12678 22134 49 160 78.9 285k samples/s
Optical Flow 42878 61078 54 454 243 41.2 frames/s
Binarized Neural Network® 46899 46760 102 4 4995.2 200 images/s
Face Detection 62688 83804 121 79 33.0 30.3 frames/s

1. K = 3, PAR_FACTOR = 40.
3. Eight convolvers, 1000 test images.

2. Five epochs, PAR_FACTOR = 32, VDWIDTH = 512.

Table 4: Rosetta results on AWS F1 Platform — Kernel: execution time on the FPGA; Comm.: time of data transfer between
host and global memory; Runtime: overall execution time. Performance-Cost Ratio is calculated based on the hourly rate (in
US Dollar/$) of the AWS f1.2xlarge instance [1]. Resource numbers are for kernel functions only. Bitstreams are generated by

Xilinx SDAccel 2017.1.

Performance-Cost

Benchmark #LUTs #FFs # BRAMs # DSPs Kernel (ms) Comm. (ms) Runtime (ms) Throughput Ratio
3D Rendering 6763 7916 36 11 3.6 0.19 4.4 227 frames/s 496k frames/$
Digit Recognition! 39971 33853 207 0 9.9 0.55 1.1 180k digits/s 393M digits/$
Spam Filtering? 7207 17434 90 224 25.1 4.8 30.9 728k samples/s 1.6G samples/$
Optical Flow 38094 63438 55 484 2.6 4.8 8.4 119 frames/s 260k frames/$
Face Detection 48217 54206 92 72 20.2 0.47 215 46.5 frames/s 101k frames/$

1. K = 3, PAR_FACTOR = 40.

target clock frequency of 140MHz. For the cloud FPGA platform, we
choose the AWS f1.2xlarge instance (F1), which is equipped with
a Xilinx VU9P FPGA. The target clock frequency for our experi-
ments on F1 is 250MHz. These two platforms have different memory
systems — on ZC706, the FPGA shares the same DRAM with the
embedded CPU, while on F1 the FPGA has its own on-board DRAM
and communicates with the CPU through PCle. In the rest of this
section, we use the term global memory to refer to the DRAM on
the FPGA side, and use host memory for the DRAM on the CPU side.
The BNN benchmark is originally designed for embedded FPGA
platforms and requires nontrivial effort to be retargeted to AWS F1.
We leave this for future work, and will only present BNN results on
ZC706 in this paper. For other benchmarks, the HLS code for the
two platforms share the same optimization techniques, with some
platform-dependent variances such as datatype and interface. Xilinx
SDSoC 2017.1 is used to generate bitstream for ZC706, and SDAccel
2017.1 is used for F1.

We run the F1 applications remotely through the FPGA developer
AMI flow provided by AWS, whereas the experiments on ZC706 are
performed locally. Table 2 shows the available resource counts of the
two platforms. On the F1 platform, the AWS platform logic (or shell)
consumes a considerable amount of resources to provide peripheral
connections for PCle data transfer, DRAM access, and interrupts [2].
In the third row of Table 2, we report the statistics of the resource
usage by this shell across different applications. For ZC706, Xilinx
SDSoC also automatically generates shell logic for communications
among accelerators, processors, and DRAM. However, the size of
these shells greatly vary across designs, and are typically small
compared to that of the core logic. Hence we choose to simply report
the total resource utilization for ZC706 results.

2. Five epochs, PAR_FACTOR = 32, VDWIDTH = 512.

Table 5: 3D rendering without dataflow on AWS F1.

#LUTs #FFs # BRAMs #DSPs Kernel (ms)

6323 7737 36 11 5.3

Tables 3 and 4 show our experimental results on the two plat-
forms. All resource usage numbers are extracted from Vivado reports
after place and route. Resource numbers in Table 3 show the total
resource utilization of the designs on ZC706, while Table 4 reports
resource usage on F1 without the shell logic. The total runtime of
the applications, including hardware kernel time, communication
time, and the overhead of necessary software function calls, are
measured on both platforms. On AWS F1, we further break down the
kernel and communication time with the help of the SDAccel profiler.
Rosetta benchmarks generally have better performance on AWS F1
because of its higher frequency and off-chip memory bandwidth,
except for digit recognition. For some applications, however, this
performance gap is narrow due to the communication latency and
additional overhead incurred by OpenCL runtime.

Since cost efficiency is an important aspect of platform selection
and accelerator design, we further provide the performance-cost
ratio as a metric for F1 applications based on the hourly rate of the
f1.2xlarge instance (currently at $1.65 per hour).

In the remainder of this section we summarize the results for the
four new benchmarks. As for BNN and face detection, interested
readers can refer to [39] and [25], respectively, for more results and
detailed performance analysis.

3D Rendering. For our test dataset, the total execution time of 3D
rendering is 4.7 ms and 4.4 ms on the two platforms, respectively.
Converting to throughput, our design achieves 213 frames per second

Table 6: Digit recognition accuracy vs. K value.

K 2 3 4 5

Accuracy (%) 92.9 93.9 94.3 94.3

60

—e—PAR_FACTOR=10
_ & PAR_FACTOR=20
507 |-m PAR_FACTOR=40

—&—PAR_FACTOR=10
A PAR_FACTOR=20
—® PAR_FACTOR=40

LUT Usage (x1000)

Kernel Time (ms)

(@ (b)

Figure 12: Digit recognition design space, results are for AWS
F1 platform — (a) Kernel time vs. K value. Difference in kernel time
is caused by variance in latency and kernel frequency. (b) LUT usage
vs. K value.

on ZC706 and 227 frames per second on F1. While the throughput
calculated with our test input is much higher than the target, both
kernel time and communication time increase with more triangles
in the input. Communication latency is not significant on F1, but
the software API calls in OpenCL runtime incur a 0.6 ms overhead,
which is not negligible for this specific application. These API calls
initiate data transfer, enqueue the kernel function, and set proper
kernel arguments.

Table 5 shows the resource utilization and kernel time of a baseline
design where dataflow optimization is not applied. Comparing with
the first row of Table 4, enabling dataflow optimization improves the
kernel time by around 30% without significant resource overhead.
This result demonstrates the efficacy of dataflow optimization in
image processing pipelines.

Digit Recognition. In contrast to other benchmarks, the perfor-
mance of digit recognition is currently slightly worse on F1 than
ZC706. The overall throughput is 189k digits per second on ZC706
and 180k digits per second on F1. Although F1 has a shorter kernel
time of 9.9ms, the latency of communication and other overhead in
OpenCL runtime seem to have offset this advantage. According to
our analysis, this is likely due to a missing feature in the specific
version of the tool we are using, where async_group_copy is not
pipelined to the full extent. Hence we expect to achieve a higher
performance on F1 in the near future once this issue is resolved.

As mentioned in Section 4.2, digit recognition has a complex de-
sign space. Table 6 shows the classification accuracy of different
K values. Figure 12 shows kernel time and resource utilization of
different design points. We only show kernel time in Figure 12a
because host-global memory communication time is not affected by
kernel implementation. In Figure 12b, only the most critical resource
LUT is shown. As we can see from Table 6 and Figure 12, the two
design parameters expose interesting design trade-offs. Increasing
the K value improves classification accuracy at a cost of significant
increase in kernel time, which is caused by the frequency drop and
the worsened latency of the KNN voting kernel. Additionally, the
benefit of increasing PAR_FACTOR diminishes when PAR_FACTOR is

60
—e— VDWIDTH=512
” +-Ae- VDWIDTH=256| |
—® VDWIDTH=128| |
v —4--VDWIDTH=64
g4s5 |
240 7
=
= 35 |
£
Q
VEL =" n
25 - |
...................... A
20 By WESPPU I 4
15
» 128

PAR_FACTOR

Figure 13: Spam filtering design space, results are for AWS F1
platform — Off-chip memory bandwidth is controlled by VDWIDTH.
This parameter strictly limits the performance of the hardware ker-
nel, showing that spam filtering is a memory-bound application.

already large. When the Hamming distance kernel is highly paral-
lelized, the KNN voting kernel, which is highly sequential, becomes
the performance bottleneck. The performance can be further im-
proved by optimizing the KNN voting kernel, and finding an optimal
combination of the K value and PAR_FACTOR.

Spam Filtering. The performance of spam filtering significantly
differs on two platforms. The kernel time on F1 is 3.1x shorter than
ZC706, and the total execution time on F1 is 2.6x shorter, despite the
additional 4.8 ms latency for host-global memory communication.
In addition to the frequency improvement, this performance gap
is mainly caused by the difference in off-chip memory bandwidth.
Since we apply dataflow optimization to overlap communication and
compute, the overall latency of the design is determined by the max-
imum of compute and communication latency. Because the compute
kernels are highly parallel, the low communication bandwidth on
ZC706 results in a much longer latency of the dataflow pipeline.

Figure 13 shows the kernel time on AWS F1 with different com-
binations of PAR_FACTOR and VDWIDTH. Here PAR_FACTOR specifies
the degree of parallelism in vector kernels, and VDWIDTH controls the
off-chip communication bandwidth. With the same off-chip band-
width, increasing PAR_FACTOR beyond 64 does not result in much
performance gain, since the communication latency already dom-
inates the compute latency. When off-chip bandwidth is reduced,
communication latency further increases, and kernel time degrades
for all PAR_FACTOR values we tested. The best-achievable perfor-
mance improves with a higher off-chip memory bandwidth. These
results confirm that spam filtering is a memory-bound application.

Optical Flow. The total execution time of optical flow is 8.4 ms on
F1 and 24.3 ms on ZC706. Both implementations satisfy the through-
put constraint. On the AWS F1 platform, host-global memory com-
munication time takes up approximately 60% of the total execution
time due to the large input/output data size. If we only consider ker-
nel time, it is 9.3x shorter on F1 than on ZC706. Similar with spam
filtering, this behavior is also caused by the difference in off-chip
memory bandwidth. The optical flow accelerator is reading from and
writing to the off-chip memory at the same time due to the stream-
ing dataflow optimization. The F1 platform has multiple off-chip

DDR banks to handle concurrent read and write requests. On ZC706,
however, these concurrent requests would cause contention on the
off-chip memory, and the accelerator is often stalled due to the lack
of input data.

6 CONCLUSIONS AND FUTURE WORK

We have presented Rosetta, an open-source, realistic benchmark
suite for high-level synthesis targeting modern FPGA platforms.
Rosetta is designed to be a collection of real applications which are
optimized for performance and resource constraints. All Rosetta
applications are ready to be executed on the supported embedded
and cloud platforms. We believe that Rosetta can serve as a useful
benchmark suite for HLS algorithms and tools, as well as a set of
design tutorials for application developers interested in FPGA-based
accelerated computing.

Rosetta will be continuously improved in the future. We will
extend Rosetta to include more realistic applications from emerging
domains. For the existing benchmarks, we plan to provide both
C++ and OpenCL implementations for every benchmark to embrace
different programming models commonly supported by HLS tools.
The benchmarks will also be further optimized for achieving higher
performance and resource efficiency.

ACKNOWLEDGEMENTS

This research was supported in part by a DARPA Young Faculty
Award, NSF Awards #1337240, #1453378, and a research gift from
Xilinx, Inc. We thank Dr. Sumit Roy from Xilinx for providing helpful
feedback on the Rosetta designs. We also thank Ackerley Tng, Edgar
Munoz, Wendian Jiang, Lin Wang, Yun Qing, Nithya Subramanian,
Nikita Patil, Surabhi Singh, Judy Stephen, and Ian Thompson for
their contributions to the baseline designs of digit recognition, 3D
rendering, spam filtering, and optical flow.

REFERENCES

[1] Amazon Web Services. AWS FPGA Developer AML. https://aws. amazon. com/-
marketplace/pp/B06VVYBLZZ, Dec 2017.

[2] Amazon Web Services. AWS Shell Interface Specification. https:/github.
com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md,
Dec 2017.

[3] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu. An OpenCL
Deep Learning Accelerator on Arria 10. Int’l Symp. on Field-Programmable Gate
Arrays (FPGA), Feb 2017.

[4] D.J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A Naturalistic Open Source
Movie for Optical Flow Evaluation. European Conference on Computer Vision
(ECCV), Oct 2012.

[5] S.Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron. Ro-
dinia: A Benchmark Suite for Heterogeneous Computing. Int’l Symp. on Workload
Characterization (IISWC), Oct 2009.

[6] P. Colangelo, R. Huang, E. Luebbers, M. Margala, and K. Nealis. Fine-Grained Ac-
celeration of Binary Neural Networks Using Intel Xeon Processor with Integrated
FPGA. Int’l Symp. on Field-Programmable Custom Computing Machines (FCCM),
Apr/May 2017.

[7] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-Level
Synthesis for FPGAs: From Prototyping to Deployment. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 30(4):473-491, 2011.

[8] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized

Neural Networks: Training Deep Neural Networks with Weights and Activations

Constrained to + 1 or -1. arXiv preprint arXiv:1602.02830, Mar 2016.

S. Dai, R. Zhao, G. Liu, S. Srinath, U. Gupta, C. Batten, and Z. Zhang. Dynamic

Hazard Resolution for Pipelining Irregular Loops in High-Level Synthesis. Int’l

Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2017.

Q. Gautier, A. Althoff, P. Meng, and R. Kastner. Spector: An OpenCL FPGA

Benchmark Suite. Int’l Conf. on Field Programmable Technology (FPT), Dec 2016.

[11] Y. Hara, H. Tomiyama, S. Honda, and H. Takada. Proposal and Quantitative

Analysis of the CHStone Benchmark Program Suite for Practical C-Based High-
Level Synthesis. Journal of Information Processing, Vol. 17, pages 242-254, Oct
2008.

[12] A.Krizhevsky and G. Hinton. Learning Multiple Layers of Features from Tiny

Images. Technical report, University of Toronto, Apr 2009.

[9

=

[10]

[13]

[14

[15]

[24]

[25]

[26

[28

[29]

[30]

[31]

[32

[33]

[34

[35

[36

[37

[38

[39]

[40

[41

[42]

Y. LeCun. The MNIST Database of Handwritten Digits. http://yann. lecun. com/exd-
b/mnist/, Dec 2017.

Y. Liang, K. Rupnow, Y. Li, D. Min, M. N. Do, and D. Chen. High-Level Synthesis:
Productivity, Performance, and Software Constraints. Journal of Electrical and
Computer Engineering, 2012:1:1-1:1, Jan 2012.

G. Liu, M. Tan, S. Dai, R. Zhao, and Z. Zhang. Architecture and Synthesis for
Area-Efficient Pipelining of Irregular Loop Nests. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2017.

X. Liu, Y. Chen, T. Nguyen, S. Gurumani, K. Rupnow, and D. Chen. High Level
Synthesis of Complex Applications: An H. 264 Video Decoder. Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), Feb 2016.

D. G. Lowe. Object Recognition from Local Scale-Invariant Features. Int’l Conf. on
Computer Vision (ICCV), Oct 1999.

Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo. Optimizing Loop Operation and Dataflow
in FPGA Acceleration of Deep Convolutional Neural Networks. Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), Feb 2017.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

J. Pineda. A Parallel Algorithm for Polygon Rasterization. ACM SIGGRAPH
Computer Graphics, 22(4):17-20, 1988.

L.-N. Pouchet. Polybench: The Polyhedral Benchmark Suite. http:/www. cs. ucla.
edu/pouchet/software/polybench, Dec 2017.

L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong. Polyhedral-Based Data Reuse
Optimization for Configurable Computing. Int’l Symp. on Field-Programmable Gate
Arrays (FPGA), Feb 2013.

B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks. Machsuite: Benchmarks
for Accelerator Design and Customized Architectures. Int’l Symp. on Workload
Characterization (IISWC), Oct 2014.

Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. Aladdin: A Pre-RTL, Power-
Performance Accelerator Simulator Enabling Large Design Space Exploration of
Customized Architectures. Int’l Symp. on Computer Architecture (ISCA), Jun 2014.
N. K. Srivastava, S. Dai, R. Manohar, and Z. Zhang. Accelerating Face Detection on
Programmable SoC Using C-Based Synthesis. Int’l Symp. on Field-Programmable
Gate Arrays (FPGA), Feb 2017.

The Apache Software Foundation. Public Corpus. http://spamassassin. apache.
org/old/publiccorpus/, Apr 2017.

Y. Umurogluy, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vis-
sers. FINN: A Framework for Fast, Scalable Binarized Neural Network Inference.
Int’l Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2017.

P. Viola, M. J. Jones, and D. Snow. Detecting Pedestrians using Patterns of Motion
and Appearance. International Journal of Computer Vision, 63(2):153-161, Jul 2005.
S. Wang, Y. Liang, and W. Zhang. FlexCL: An Analytical Performance Model for
OpenCL Workloads on Flexible FPGAs. Design Automation Conf. (DAC), Jun 2017.
Y. Wang, P. Li, and J. Cong. Theory and Algorithm for Generalized Memory
Partitioning in High-Level Synthesis. Int’l Symp. on Field-Programmable Gate
Arrays (FPGA), Feb 2014.

Z. Wang, B. He, W. Zhang, and S. Jiang. A Performance Analysis Framework for
Optimizing OpenCL Applications on FPGAs. Int’l Symp. on High Performance
Computer Architecture (HPCA), Mar 2016.

Z. Wei, L. Dah-Jye, and B. E. Nelson. FPGA-Based Real-Time Optical Flow Algo-
rithm Design and Implementation. Journal of Multimedia, 2:38-45, Sep 2007.

H. Yonekawa and H. Nakahara. On-Chip Memory Based Binarized Convolutional
Deep Neural Network Applying Batch Normalization Free Technique on an FPGA.
Int’l Parallel and Distributed Processing Symp. Workshops (IPDPSW), May 2017.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimizing FPGA-Based
Accelerator Design for Deep Convolutional Neural Networks. Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), Feb 2015.

C. Zhang and V. K. Prasanna. Frequency Domain Acceleration of Convolutional
Neural Networks on CPU-FPGA Shared Memory System. Int’l Symp. on Field-
Programmable Gate Arrays (FPGA), Feb 2017.

J. Zhang and J. Li. Improving the Performance of OpenCL-Based FPGA Accelerator
for Convolutional Neural Network. Int’l Symp. on Field-Programmable Gate Arrays
(FPGA), Feb 2017.

Z. Zhang and B. Liu. SDC-Based Modulo Scheduling for Pipeline Synthesis. Int’l
Conf. on Computer-Aided Design (ICCAD), Nov 2013.

J. Zhao, L. Feng, S. Sharad, W. Zhang, Y. Liang, and B. He. COMBA: A Com-
prehensive Model-Based Analysis Framework for High Level Synthesis of Real
Applications. Int’l Conf. on Computer-Aided Design (ICCAD), Nov 2017.

R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. B. Srivastava, R. Gupta, and
Z.Zhang. Accelerating Binarized Convolutional Neural Networks with Software-
Programmable FPGAs. Int’l Symp. on Field-Programmable Gate Arrays (FPGA), Feb
2017.

G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar. Lin-Analyzer: A High-Level
Performance Analysis Tool for FPGA-Based Accelerators. Design Automation Conf.
(DAC), Jun 2016.

Y. Zhou, K. M. Al-Hawaj, and Z. Zhang. A New Approach to Automatic Memory
Banking using Trace-Based Address Mining. Int’l Symp. on Field-Programmable
Gate Arrays (FPGA), Feb 2017.

W. Zuo, P. Li, D. Chen, L.-N. Pouchet, S. Zhong, and J. Cong. Improving Poly-
hedral Code Generation for High-Level Synthesis. Proc. of the 8th Int. Conf. on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), Sep/Oct 2013.

	Abstract
	1 Introduction
	2 Related Work
	3 Rosetta Overview
	4 Benchmark Description
	4.1 3D Rendering
	4.2 Digit Recognition
	4.3 Spam Filtering
	4.4 Optical Flow
	4.5 Binarized Neural Network
	4.6 Face Detection

	5 Experimental Results
	6 Conclusions and Future Work
	References

