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Spatio-temporal asymmetry of local wind fields
and its impact on short-term wind forecasting.
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Abstract—The massive amounts of spatio-temporal data col-
lected in today’s wind farms have created a necessity for
accurate spatio-temporal models. Despite the growing recognition
for non-separable spatio-temporal models, a significant reliance
on separable, symmetric models is still the norm in today’s
renewable industry. We discover that the broad use of separable
models is due to the handling of wind data in a setting that
does not reveal their fine-scale spatio-temporal structure. The
contribution of this research is two-fold. First, we devise a special
pair of spatio-temporal “lens” that allows us to see the fine-scale
spatio-temporal variations and interactions, and subsequently,
we conclude that local wind fields exhibit strong signs of non-
separability and asymmetry. Using one year of turbine-specific
wind measurements, we show that asymmetry can in fact be
detected in more than 93% of the time. Second, making use
of the spatio-temporal lens, we propose an enhanced procedure
for short-term wind speed forecast. Substantial improvements
in forecast accuracy in both wind speed and wind power were
observed. When combined with certain intelligent methods such
as support vector machine, additional improvements are possible.

Index Terms—Asymmetry, kriging, spatio-temporal statistics,
wind energy, forecasting.

I. INTRODUCTION

THE installation of large-scale wind farms has been grow-
ing at a fast pace to meet the world’s increasing demand

in clean energy. According to the 2015 Wind Vision report
by the U.S. Department of Energy, wind power supplies
are projected to meet 20% of the United States’ electricity
demand by 2030 [1]. The increase in size and number of
wind farms goes hand-in-hand with growing complexities in
the associated operational analytics such as wind forecasts and
power estimations, which further impacts decision making in
turbine control, maintenance, and economic dispatch. These
activities can benefit greatly from a better understanding of
the spatio-temporal wind dynamics on a wind farm. Modern
wind farms are in fact equipped with sensors measuring wind
characteristics in a fine spatio-temporal scale, providing an
unprecedented opportunity to look into local wind dynamics.

Spatio-temporal models have emerged in the geo-statistic
field to model random processes evolving through space and
time. Let Y (s, t) be a random process such that (s, t) ⊂
Rd×R, then the key aspect is to model the covariance structure
of Y through imposing a positive-definite parametric func-
tion form K̃(·, ·, ·, ·) such that Cov

{
Y (s1, t1), Y (s2, t2)

}
=
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K̃(s1, s2, t1, t2); for details about covariance structures or
covariance functions, please refer to the classical texts [2],
[3]. By assuming stationarity, the covariance structure, also
referred to as a covariance function, only depends on the
spatial and temporal lags, u = s1 − s2 and h = t1 − t2, re-
spectively, and as such, it is denoted by K(u, h); examples of
covariance structure K are given later in Equations (3) and (4).
Intuitively, the covariance structure K defines the similarity
between a pair of spatio-temporal data points Y (s1, t1) and
Y (s2, t2) based on their spatial and temporal separations, u
and h, respectively.

Until the beginning of the 21st century, separable spatio-
temporal models dominated the related literature [3]. A co-
variance structure is said to be separable if it factors into
the product of purely spatial and temporal components such
that K(u, h) = Ks(u) · Kt(h). Despite their computational
benefits, separable models have limiting modeling capabilities
which seldom align with reality. For example, separability
overlooks the interaction between the spatial and temporal
components and implies full-symmetry in the spatio-temporal
covariance structure [3]. A number of works have pointed out
that full-symmetry is not a physically justifiable assumption
for large-scale atmospheric processes in which there exists a
dominant air or water flow over time, making the correlation in
one direction often stronger than in other directions [4]–[9]. A
covariance structure is symmetric if K(u, h) = K(−u, h) =
K(u,−h) = K(−u,−h) [4]. In other words, the correlation
between sites s1 and s2 at times t1 and t2, is the same as that
between s1 and s2 at times t2 and t1. Separability implies
symmetry, but the converse cannot be guaranteed [7].

The limiting capabilities of separable models in captur-
ing the complex correlation patterns in real-world processes
motivated the geo-statistic community in the past decade to
establish classes of non-separable, but still symmetric, models
that capture spatio-temporal interactions [4], [10], as well
as asymmetric non-separable models that, in addition to the
interactions, account for the lack of spatio-temporal symme-
try [6]–[8], [11]. By establishing an analogy between the
atmospheric processes studied in the aforementioned literature
and the wind field on a farm, one expects that the lack
of symmetry is extended to the farm-level wind dynamics,
and thus, anticipates a successful application of non-separable
asymmetric models in short-term wind forecasting. Our review
of the literature, however, has suggested the contrary – to the
best of our knowledge, the physical phenomenon of spatio-
temporal asymmetry has not been reported or made use of in
the wind energy applications [12]–[14].

Triggered by that observation, our goal is to explore the
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existence of this physical phenomenon in the context of a
local wind field and the reasons behind its disregard in the
related literature. We understand that the large-scale atmo-
spheric processes referenced above are usually measured at
a few, spatially distant sites over the span of several days.
These measurements may be compatible with the spatial and
temporal resolution in those large-scale processes but such
setting is too coarse for understanding the wind dynamics on
a farm. We are fortunate to have in possession a year worth
of hourly wind data from 200 turbine-mounted anemometers
scattered over a wind farm of roughly 15-by-10 miles. This
anemometer network provides a coverage of spatial resolution
of one mile and a temporal resolution of one hour, supposedly
sufficient to allow finer-scale wind dynamics to be unearthed.

We show, however, that a straightforward use of this spatio-
temporal dense data would lead to the conclusion that local
wind fields are approximately symmetric; a conclusion that
explains the widespread use of separable models. Our later
findings, however, suggest that this conclusion is misleading
because it overlooks the physical nature of local wind fields,
where the local wind dynamics take place on a much more
granular scale compared to large-scale processes. In order
to see the fine-scale asymmetric patterns, unnoticed previ-
ously in the spatio-temporal data, we need some magnifying
mechanisms that look deeper into the spatial and temporal
scales, analogous to the use of optical lens for seeing tiny
specimens and features transparent to naked eyes. The magni-
fying mechanisms are pertinent to the data in space and time,
thereby referred to as a pair of “spatio-temporal” lens. These
lens are apparently not a physical lens but realized instead
through statistically-motivated computational algorithms. Us-
ing the lens, we conclude that, contrary to common practice,
asymmetry does exist in the wind farm data.

In light of these findings and making use of the devised
spatio-temporal lens, we propose an enhanced short-term wind
forecasting procedure, which is based on an asymmetric non-
separable model that takes into account the wind directional-
ity information. Short-term wind forecasting is an important
task in wind farm analytics [15] and is a corner stone for
subsequent operations such as power estimations, turbine
control and others [16]. The current literature for short-term
forecast either uses simplistic methods such as persistence
forecasts, or time series methods that do not account for spatial
correlations such as autoregressive (AR) and autoregressive
moving average (ARMA) models and support vector machines
(SVMs) [17]–[19], or separable spatio-temporal models that
take into account both the spatial and temporal aspects, but
over-simplify the spatio-temporal structure by ignoring spatio-
temporal interactions and asymmetries [14]. We show that
significant improvements in forecast accuracy, in both wind
speed and power, are achievable when an appropriate non-
separable spatio-temporal model is adopted. When combined
with certain intelligent methods such as support vector ma-
chine, additional improvements can be expected.

II. DATA DESCRIPTION

The data used in this study consists of one year of spatio-
temporal measurements, between 2010 and 2011, from an

onshore wind farm in the United States. Due to confidentiality
reasons, we randomly selected 200 turbines, noting that this
represents a vast majority of the whole turbine set. The data
consists of turbine-specific hourly wind speeds measured by
the anenometers mounted on each turbine at the hub height
of 80 meters. In addition, one year of hourly wind speed and
direction measurements are available at a mast located in the
northeastern part of the wind farm. We shift the coordinates
of the turbines by a constant, so that the relative positions of
the turbines and the mast remain faithful to the actual layout
but their true geographic information is kept confidential; see
Figure 1. The farm is located on a rather flat terrain.

The histogram of wind speeds recorded at the mast, as
well as the rose plot that illustrates the wind speed and
direction are presented in Figure 2. The yearly median and
standard deviation of the wind speeds at the wind farm are
6.60 ms−1 and 3.29 ms−1, respectively. The most dominant
wind occurring in the wind farm throughout the year is
westerly, i.e., it blows from west to east. The average yearly
wind direction is at θ̄ = 264.24◦.

At any given time, we can characterize the wind measured
at a turbine by its wind direction and the wind speed. By
considering measurements from multiple turbines, a vector of
wind directions and speeds can be formed at each wind turbine
and it evolves as a time series. It is in these time series vectors
that the spatio-temporal correlation information is stored,
which we need to decipher. Because wind has a transport effect
due to its directionality, this spatio-temporal correlation is
dependent on the wind direction, which could rapidly fluctuate
in as short as 6 hours, as shown later in Section III. In
other words, the spatio-temporal correlation in the along-wind
direction is stronger than in other directions, creating the so-
called “spatio-temporal asymmetry”. Fortunately enough, the
spatio-temporal resolution of our data allows us to characterize
the fine-scale direction-dependent spatio-temporal correlations
and interactions in local wind dynamics. Such characterization
of the directional wind dynamics enables us to improve short-
term wind speed forecasts, and subsequently, enhance turbine-
specific power estimations. These practical implications are
discussed in Section IV.

Fig. 1. Wind farm layout:“T” refers to turbines and “M” refers to the mast.

III. ASYMMETRY DETECTION & QUANTIFICATION

An empirical method to quantify asymmetry is proposed
in [6] in terms of spatio-temporal semi-variogram, which is a
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Fig. 2. Left panel: histogram of wind speeds as recorded at the mast. Right
panel: wind rose plot as recorded at the mast.

negative-definite measure of dissimilarity in geostatistics [3].
Specifically, let Y (s, t) represent the wind speeds at multiple
locations {si}ni=1 at discrete times {tj}mj=1 such that N =
n×m, then the spatio-temporal empirical semi-variogram of
Y between s1 and s2 at time lag h is defined as:

g(s1, s2, h) =
1

2(m− h− 1)

m−h−1∑
j=1

{Y (s1, tj + h)− Y (s2, tj)}2. (1)

Introduce two semi-variograms between s1 and s2:
g(s1, s2, h) and g(s2, s1, h). Both of them represent the dis-
similarity between the two spatial sites, but g(s1, s2, h) means
that measurements taken at s2 are h time lag behind that at s1,
whereas g(s2, s1, h) means that measurements at s1 are behind
those at s2. Assuming Y is stationary in space-time with a
positive-definite covariance function K, then E[g(s1, s2, h)−
g(s2, s1, h)] = K(s2 − s1, h) − K(s1 − s2, h) [6]. As such,
when the two semi-variogram quantities are the same, the wind
field is said to be symmetric because their expected difference,
which is equal to the expected difference in covariances,
is zero. But when there is a dominant wind blowing from
s1 towards s2, the propagation of wind velocities from s1
towards s2 would generate a significantly positive value for the
difference a(s1, s2, h) := g(s1, s2, h)−g(s2, s1, h), indicating
a lack of symmetry. In a more general sense, when there
is a dominant wind direction, denoted by θ (in the above
example, from s1 towards s2), a non-zero a(s1, s2, h) exhibits
itself as a positive value most of the time. In our research,
we signify the dominant wind direction through an extra
input, i.e., a(s1, s2, h, θ), and use it to detect the existence
of asymmetry in wind data and quantify its strength.

A. Yearly Scenario

We first show the conclusion that would result when at-
tempting to quantify asymmetry in a local wind field by
using the metric described above and following the procedure
proposed in [6], which was originally designed for a large-
scale atmospheric process.

To account for non-stationarity in E[Y (s, t)], we fit a
parametric diurnal trend for the wind speed data using least
squares estimation. Specifically, we use the diurnal trend
function originally proposed by [20], which captures the global
temporal variation in wind speeds. The fitted trend is then
subtracted from the actual wind speed data to get the residuals,
which will be used in quantifying asymmetry.

Next, for every pair of turbines i and j located at si and sj
such that si is west of sj , we compute g(si, sj , h)−g(sj , si, h)
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Fig. 3. The 25th, 50th and 75th percentiles of asymmetry values A(s, h)
versus different time lags h.

using the residuals in place of Y in (1). We repeat this
computation for every pair of turbines and for different time
lags ranging from 0 to 24 hours. All of the computed quantities
are then transformed into the correlation scale. For the `-th
pair of turbines, the resulting quantities at each temporal lag h
are the spatio-temporal asymmetry, denoted by a`(si, sj , h, θ̄),
where θ̄ is the average yearly wind direction at the wind farm.
For our wind data, θ̄ = 264.24◦ (where 0◦ represents north),
meaning that the average dominant wind on the wind farm is
from west to east, as shown in the right panel of Figure 2.

Denote the collection of asymmetry values at each temporal
lag by A(s, h) = {a`(si, sj , h)}L`=1, where L is the total
number of turbine pairs, and its 50th percentile as Ā(s, h).
Figure 3 shows the 25th, 50th and 75th percentiles of A(s, h)
for h ∈ {0, . . . , 24} with a 3-hour increment. All median
asymmetry values in Figure 3 are slightly positive, indicating
a potential tendency towards asymmetric behavior. The largest
median occurs at h∗ = 12 and is approximately 0.024 on the
correlation scale. To put this value in the context, we note
that the work of [4] reports an asymmetry value of 0.12
for asymmetric large-scale wind flow over Ireland. Similar
figures are reported in [7], ranging between 0.04 to 0.14 and
averaged at 0.11. As such, an asymmetry of 0.024 appears
to be rather weak to justify the existence of asymmetry in
the local wind field. From a modeling perspective, one would
understandably trade such weak asymmetry for computational
efficiency and simplicity gained by the symmetry assumption.
This conclusion explains the broad use of separable models in
the wind application literature.

Our hypothesis, however, is that the weak asymmetry in
Figure 3 is due to the non-optimal handling of wind farm
data. In general, the common practice is to decompose data
using regular calendar periods, like a week, a month, or a
year. The wind data is grouped for the whole year when
producing Figure 3. In a large-scale atmospheric process, a
dominant wind can persist for a sustained period of time
and travel a substantial distance; these patterns can be pre-
identified through climatological expertise over a region of
interest, and as such, regular calendar decompositions appear
to be a reasonable choice. For a local wind field, however,
observational data suggest that alternations in local winds
occur at a relatively high rate, resulting in several distinct
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Fig. 4. The 25th, 50th and 75th percentiles of asymmetry values of temporal
decompositions versus separating distance in kilometers.

wind characteristics at each wind alternation. In such setting,
regular calendar periods rarely contain a single dominant wind
scenario; rather, they contain various dominant winds that
create multiple asymmetries having distinct directions and
magnitudes. Consequently, aggregating the heterogeneous, and
perhaps opposite, asymmetries leads to an underestimation of
the true asymmetry level.

The physical differences between local wind fields and
large-scale atmospheric processes require special adjustments
to spatio-temporal resolution used to analyze wind measure-
ments, in order to reveal the underlying asymmetry pattern. We
show next that upon implementing a pair of spatio-temporal
“lens” that accounts for the fine-scale variations in local wind
fields, strong degrees of asymmetry are detected.

B. Spatio-temporal lens for asymmetry quantification

We propose a spatio-temporal lens that allows us to unearth
the underlying asymmetric behavior of local wind fields.
The devised lens comprises of two components: a temporal
adjustment and a spatial adjustment.

1) Temporal adjustment: We start off with performing a
series of arbitrary, calendar period-based temporal decom-
positions. Specifically, we perform seasonal, monthly and
weekly decompositions of the wind farm data and compute
the asymmetry level in each sub-interval. Take the seasonal
decomposition as an example, the average wind direction is
computed for the fall season and is denoted by θ̄1 and the
asymmetry level between all pairs of turbines within that
season is computed at the time lag h∗1 that maximizes the
median asymmetry level for the fall season, resulting in the
vector {a`(s1, s2, h∗1, θ̄1)}n1

`=1. We repeat this process for the
remaining three seasons, resulting in the wind directions Θ̄ =
{θ̄1, θ̄2, θ̄3, θ̄4}, the optimal time lags h∗ = {h∗1, h∗2, h∗3, h∗4}
and the corresponding asymmetry vectors. We then group the
asymmetry values into three subgroups, corresponding to three
distance ranges: 0-10 kilometers (km), 10-20 km, and 20-30
km. The 25th, 50th and 75th percentiles of asymmetry values
in each subgroup are computed and displayed in Figure 4. We
then repeat this process for all the temporal decompositions
and display the 25th, 50th and 75th percentiles of asymmetry
values under each scenario for the three distance subgroups.

It is apparent that adjusting the temporal lens by which
we search for the asymmetry to capture the fine temporal

details leads to estimates of stronger asymmetries. However,
the adjustment based purely on calendar periods seems not
effective enough, because the decomposition intervals are
created arbitrarily. If we can identify the time points when
the dominant wind changes its direction, say, from northerly
to westerly, we can then isolate the time intervals in which
a unique dominant wind persists and consequently detect the
underlying asymmetry in such intervals. We call such intervals
as the “prevailing periods.” This calls for the use of a change
point detection procedure.

In order to identify the change points of the wind direction
over the year, we implement a rolling binary segmentation
of a circular change point detection algorithm, which is a
modified version of the method described in [21]. Given hourly
wind direction observations for one year, denoted by Θ =
{θ1, θ2, ..., θq}, where q is the total number of wind direction
observations, we are interested in detecting the intermediate
points at which changes have occurred in the wind direction.
We assume that the wind direction variable θ follows a von
Mises distribution with parameters 0 ≤ µ < 2π and κ ≥ 0
as the mean and concentration parameters, respectively. The
choice of the distributional form is motivated by the fact
that wind direction is a circular variable and the von Mises
distribution can characterize its directionality [22].

The parameter vector for the change detection test would
be {ω, µ1, µ2, κ}, where ω is the index of the change point
to be detected, µ1 and µ2 are the means of the before
and after subsequences and κ is the concentration parameter.
Specifically, the null hypothesis for this change point test
is that H0 : ω = q indicating no change versus H1 :
1 ≤ ω ≤ q − 1 indicating a change occurring at the ωth

observation. The generalized likelihood ratio method is used
to conduct the test, where H0 is rejected whenever λω > c
such that λω = sup

j∈{1,...,q}
(Q1j + Q2j) − Q where Q, Q1j

and Q2j denote the resultant lengths for the sequence and the
resulting subsequences, respectively, and c is a critical cut-
off value determined by the prescribed significance level; for
more details, please refer to [21]. Because the test has no
simple known distributional form, we resort to Monte Carlo
simulation, as guided by [21] in order to determine the 95th

cut-off value which will be used in this test. In the Monte
Carlo simulation, we initially tried a run size of 10,000 runs,
but it turned out that the results are only trivially different
from that obtained at a run size of 1,000 runs.

Since we are searching for an unknown number of potential
change points, a common approach is to implement a binary
segmentation algorithm, where the most significant change
point in the whole dataset is detected, then the next significant
change point is searched for in the resulting subsequences
before and after the already-detected change point. For more
details about binary segmentation, please refer to [23]. Since
we are expecting change points to occur on a fine temporal
resolution in local wind fields, we implement a one-month
rolling binary segmentation, in which the first month of data
is analyzed separately and then the period of interest is shifted
by one month from the last change point detected in the first
month for the next round of detection.
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Fig. 5. Left panel: Change detection for first two weeks of wind direction
data. Right panel: Distribution of the prevailing periods’ length in days.

The left panel of Figure 5 shows the detected change points
for the first two weeks of data. The right panel of Figure 5
shows the distribution of the length of the prevailing periods.
The results show that, on average, a dominant wind direction
lasts for 3.04 days with a standard deviation of 2.46 days. For
50% of the prevailing periods, the wind direction alternated in
less than 2.27 days. The maximum interval of time in which a
dominant wind direction is found to be persistent is 15.5 days,
while the shortest prevailing period’s length is found to be 6
hours. A total of 119 change points are detected in the year
long wind data, leading to 120 prevailing periods identified
over the year. These statistics indicate the fine temporal scale
at which wind dynamics take place, resulting in a dynamic
alternation of dominant winds over time. Quantifying asym-
metry for individual prevailing periods would capture the lack
of symmetry associated with each distinct dominant wind, and
hence, provide reliable asymmetry estimates.

2) Spatial adjustment: On the spatial level, the relative
position of the turbines on a wind farm is a factor that affects
the asymmetry level at any given time. Physically, asymmetry
exists when wind propagates from an upstream turbine to a
downstream one, implying that the latter is in the along-wind
direction with respect to the former. To show the effect of the
spatial configuration of turbines on asymmetry, we pick an 8-
hour prevailing period, where the wind is easterly, as illustrated
in Figure 6. We compute the Pearson correlations between the
wind speeds at the upstream turbine (UT) and those in a subset
of 8 arbitrarily-selected downstream turbines (DTs 1-8) after
a time lag of h = 3 hours; we denote this correlation by C1.
It is apparent that the correlations in the along-wind direction
(between UT and DTs 1-4) is larger than those in the span-
wind direction (between UT and DTs 5-8). Also, we compute
the pairwise correlations at a time lag of −h (when the DTs are
leading the UT) and denote it by C2. The difference between
C1 and C2, denoted by ∆C, is largely positive for the along-
wind DTs, indicating the existence of a strong asymmetry
pattern. These observations prompt the need to select only
the along-wind turbines in asymmetry quantification.

For a given prevailing period p, the dominant wind direction
is denoted as θp and a distinct spatial bandwidth bp will be
selected. Our spatial bandwidth selection procedure, as illus-
trated in the upper left corner of Figure 6, executes as follows:
we vary the bandwidth in the range [2.5◦, 45◦] in increments
of 2.5◦ and then select the bandwidth that maximizes the
median asymmetry as the optimal bandwidth b∗p. With the
spatial adjustment, the asymmetry metric a(·) takes in one

Fig. 6. Effect of spatial position on asymmetry quantification. “UT” and “DT”
denote an upstream and a downstream turbine, respectively.
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Fig. 7. The 25th, 50th and 75th percentiles of asymmetry values of different
scenarios versus separating distance in kilometers.

more input and is now denoted as a(s1, s2, hp, θp, bp).
3) Asymmetry quantification: In light of the spatio-

temporal lens adjustments described above, we determine an
optimal time lag h∗p and bandwidth b∗p that constitute our
final pair of spatial and temporal lens, maximizing the median
asymmetry level in each prevailing period Ā(s1, s2, h

∗
p, θp, b

∗
p).

Figure 7 shows the 25th, 50th and 75th percentiles of the
asymmetry level versus the separating distance subgroups
for the different scenarios thus considered: yearly, seasonal,
monthly, weekly, temporal-only lens scenario and spatio-
temporal lens scenario. It is apparent that applying the spatio-
temporal lens detects much higher asymmetry levels. For
instance, at separating distances greater than 20 km, all of
the turbine pairs exhibit positive asymmetry and 50% of
them exhibit an asymmetry level higher than 0.2 on the
correlation scale, a level considered significant in the past
study [4] and nearly an order of magnitude greater than the
median asymmetry of 0.024 detected earlier on the yearly
data. The median asymmetry values of all distance subgroups
are classified in Table I, where 93% of the prevailing periods
exhibit positive median asymmetry, nearly a quarter of them
exhibit a greater than 0.2 median asymmetry, and more than
41% of them exhibit a median asymmetry larger than 0.1, the
level of asymmetry previously reported in [4], [7] for signaling
the existence of appreciable asymmetric behavior in the large-
scale atmospheric processes.

The findings made above indicate that not only does strong
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TABLE I
CLASSIFICATION OF PREVAILING PERIODS ACCORDING TO THE MEDIAN

ASYMMETRY LEVEL.

Group Range Percentage
1. Ā(s1, s2, h∗p, θp, b

∗
p) ≤ 0 7%

2. 0 < Ā(s1, s2, h∗p, θp, b
∗
p) < 0.05 27%

3. 0.05 ≤ Ā(s1, s2, h∗p, θp, b
∗
p) < 0.1 25%

4. 0.1 ≤ Ā(s1, s2, h∗p, θp, b
∗
p) < 0.2 20%

5. 0.2 ≤ Ā(s1, s2, h∗p, θp, b
∗
p) 21%
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Fig. 8. Wake effect and its implications on spatio-temporal asymmetry.

asymmetry exist in local wind fields, but also the discovered
asymmetry appears to fluctuate spatially and temporally, and
in both magnitude and direction. Each prevailing period ap-
pears to have unique asymmetry pattern, creating a temporal
fluctuation of asymmetry throughout the year. The asymmetry
appears to exhibit a spatial variation as well, by taking on
high values in the along-wind and low values in the span-wind
directions. As such, separable spatio-temporal models appear
overly-simplified in modeling farm-level local wind dynamics.

4) Asymmetry and wake effect: The implications of cap-
turing the asymmetry in a local wind field can enrich our
understanding of complex physical phenomena on a wind farm
such as the wake effect. The spatio-temporal dynamics within
a wind farm are affected by the wake effect because the rotat-
ing turbine blades cause changes in the speed, direction and
turbulence intensity of the propagating wind [24]. In Figure
8, we divide the wind farm for each prevailing period based
on the wind direction into two regions having approximately
the same number of turbines. The first region is considered
as the set of “free-stream” wind turbines that receive a
relatively wake-free, less turbulent wind and the second region
is considered as the set of “wake” wind turbines which are in
the wake of other turbines and receive the disturbed, turbulent
wind. We plot the medians of the asymmetry for each region.
The free-stream region appears to exhibit higher asymmetry,
which is consistent with the physical understanding since the
less-turbulent wind is the driving force creating the asymmetry.
This analysis indicates that asymmetry level spatially varies
on a wind farm due to wake effect. Incorporating such pattern
in a spatio-temporal model could benefit model fitting and
prediction, as well as aid researchers in wake characterization.

IV. ENHANCED SHORT-TERM WIND FORECASTING BASED
ON NON-SEPARABLE ASYMMETRIC MODELING

The modeling of asymmetry in local wind fields can have
a vital impact on wind farm operations. The most obvious
application is in wind forecasting. Accurate wind speed fore-
casting, for instance, can lead to tremendous improvements
in power production estimation, which is pivotal to risk and
cost reduction in grid integration [25]. Wind direction and
speed forecasts can greatly benefit active turbine control and
economic dispatch operations [26]. For short-term forecasts,
like a couple of hours ahead, data-driven models are known
to be more powerful than the physics-based numerical weather
prediction models [14], [15]. In a spatio-temporal context,
the performance of the data-driven forecasts hinges upon the
quality of an adequate probabilistic model that can capture
the spatio-temporal dynamics for it to perform well in the
forward-kriging prediction mechanism [20], [27], [28].

In light of the findings of Section III, we devise a framework
for short-term wind forecasting that takes into account the
asymmetric nature of local wind dynamics. There is a rich
body of literature on short-term wind forecast [15], [16], but
we set ourselves apart in terms of the following three aspects:

• Spatial correlation: Our focus is to take advantage of the
spatial correlation among the neighborhood turbines on
a wind farm while making turbine-specific wind speed
forecasts, as opposed to obtaining a single time-series
prediction for one turbine or a single aggregated time
series for the whole farm [29], [30].

• Spatio-temporal resolution: The within-farm local wind
field provides us a spatially and temporally dense wind
dataset, as opposed to the situations where measurements
come from a small number of locations spread over
large areas, as in [20], [25], [31], i.e., the between-farm
forecast. As mentioned before, the spatial and temporal
resolutions of our wind data are one mile and one hour,
respectively, which are at a finer scale than those in the
between-farm settings.

• Lack of spatio-temporal symmetry: As shown in Sec-
tion III, local wind dynamics are strongly asymmetric.
Our framework takes into account this lack of symmetry.
To our best knowledge, there exists no methodology for
short-term wind forecasting on a wind farm that considers
this physical phenomenon.

The flowchart in Figure 9 presents the steps of the proposed
forecasting procedure. We want to note that to perform h-hour
ahead forecasts and following the terminology presented in
Section III, only the data in the preceding prevailing period
that share similar wind and asymmetry characteristics is used
for model training. This implies that a small subset of data
relevant to the current prevailing period is used for model train-
ing. Doing so, the benefit is two-fold. First, it eliminates the
computational burden of fitting non-separable spatio-temporal
models. Second, it makes use of a local informative spatio-
temporal neighborhood that is most relevant to short-term
horizons. We note that Pourhabib et al. [14] used informative
spatial neighborhoods for short-term speed forecast and Yan
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Fig. 9. Flowchart of short-term forecast using asymmetric modeling.

et al. [30] used local temporal windows for short-term time-
series power predictions.

A. Models for short-term wind forecast

1) Asymmetric non-separable spatio-temporal model: In
Figure 9, one major component is the fitting of an asymmetric
non-separable spatio-temporal model. Such models have been
proposed in the past, although not used for local wind fields.
In this research, we use a modified version of the asymmetric
non-separable spatio-temporal model proposed in [7]. We
briefly explain the model for this paper to be self contained.

In general, a spatio-temporal model is defined as the sum of
a mean term and a zero-mean normally distributed error εεε with
covariance ΣΣΣ such that Y = Mz + εεε, where Y is the N × 1
vector of wind speeds, M is a pre-specified design matrix and
z is a vector of coefficients. The key issue here is to define ΣΣΣ
using a parametric form. For the model in [7], its parametric
covariance function can be expressed as follows:

Ka(u, h) = σ2

{
(1− λ)KNS(u, h) + λKT (u, h)

}
+η1{||u||=|h|=0},

(2)

where KT is an asymmetric correlation function to be given
below and KNS is a non-separable symmetric correlation
function such that:

KNS(u, h) =
1− δ

1 + α|h|2

(
exp

[
− c||u||

(1 + α|h|2)
β
2

]
+

δ

1− δ
1{||u||=0}

)
.

(3)

In (2) and (3), 1{·} is an indicator function, u = (u1, u2)T

is the spatial lag consisting of longitudinal and latitudinal
components u1 and u2 and || · || is the Euclidean norm. The
parameters α and c determine the temporal and spatial ranges,
whereas 0 ≤ δ < 1 and η are the spatial and spatio-temporal
nugget effects, respectively, such that α, c and η are all non-
negative, and σ2 > 0 is the spatio-temporal variance. The
non-separability parameter β represents the strength of the
spatio-temporal interaction and the asymmetry parameter λ
represents the lack of symmetry; β, λ ∈ [0, 1].

There are different approaches to define KT . A simpler one
is defined in [7] as a Lagrangian compactly supported function:

KT (u, h) =

(
1− 1

2||V||
||u−Vh||

)
+

, (4)

where (·)+ = max(·, 0) and V = (V1, V2)T is a two-
dimensional vector having a longitudinal and latitudinal com-
ponent, respectively, and is defined based on the knowledge
of the weather system. For example, if the dominant wind
is known to be strictly westerly, then V is chosen to be
(V1, 0)T , i.e., a non-zero longitudinal wind velocity reflecting
the traveling of the wind along the longitudinal axis. A
generalized version of KT is proposed in [32], which is,
instead of using a constant vector, defines V as a random
variable that follows a multivariate normal distribution, i.e.,
V ∼ N (µµµ, D2 ). As such, KT is defined as follows:

KT (u, h) =
1√

|12×2 + h2D|
exp

[
− (u− hµµµ)T

(12×2 + h2D)−1(u− hµµµ)
]
,

(5)

where | · | in (5) denotes the matrix determinant. Our research
shows that using the generalized KT boosts the forecast
quality, and for this reason, our forecast model uses the KT

in (5). This does not come as a surprise since local wind
dynamics are highly random, and as such, V is best described
as random rather than constant. We refer to this asymmetric
non-separable model hereinafter as ASYM.

2) Seperable spatio-temporal models: By setting β = λ =
0 in ASYM, we get a symmetric separable model. In the results
section, we use two variants of this separable model: SEP1 and
SEP2. The model SEP1 borrows the estimated parameters of
ASYM but sets β = λ = 0. As for SEP2, we first set β =
λ = 0 before parameter estimation, and then freely estimate
the remaining parameters from the data.

3) Prediction using spatio-temporal models: A method of
prediction is to establish a functional relationship between
the output, e.g. the wind speed at a future time, and the
inputs, e.g. the wind speed measurements obtained in the
past. The functional relationship is characterized by a model
structure specified through the chosen spatio-temporal models.
The model’s parameters are estimated, or learned, using the
historical training data. Specifically, for ASYM, SEP1, and
SEP2, a Maximum Likelihood Estimation (MLE) is used to
estimate the covariance parameters as well as the vector z in
the mean structure.

Once all parameters are estimated (or learned), a future
wind speed value can be calculated using the wind speed
observations collected up to the current time; this calculated
value is known as the prediction or forecast. The specific
prediction mechanism used in this paper is called “kriging”
and it is a standard approach to obtain predictions based on
spatio-temporal models in the spatial statistics and geo-statistic
literature [33]. The kriging mechanism computes the spatio-
temporal predictions Ŷ at a location so and a time to as a
linear combination of the vector of observed spatio-temporal
data points Y, such that Ŷ (so, to) = ΦΦΦY. The vector of the
linear combination coefficients, Φ, is computed as in (6).
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ΦΦΦ = {ΣΣΣ−1 −ΣΣΣ−1M(MTΣΣΣ−1M)−1MTΣΣΣ−1}k
+ΣΣΣ−1M(MTΣΣΣ−1M)−1mo,

(6)

where Σ is the covariance matrix that is computed depending
on the model choices mentioned above, be it ASYM, SEP1 or
SEP2, the vector k contains the covariances between Y and
Y (so, to). For a constant mean spatio-temporal model, as used
in this research, M reduces to 1N×1 and mo = 1.

4) Persistence model: Forecasts based on persistence mod-
els are widely used in the renewable industry and are simply
obtained by extending the current wind charactersitics for the
look-ahead horizons such that Ŷi,(j+h) = Yij , ∀h. We refer
to this model as PER.

5) Autoregressive moving average (ARMA) model: We
would like to compare ASYM against a classical time series
method which does not account for spatial correlation on the
wind farm (and thus no spatio-temporal asymmetry). Please
note that spatio-temporal models (ASYM, SEP1 and SEP2)
can be looked at as generalizations of time-series models, since
they account for both spatial and temporal correlations.

A common approach for time-series modeling and fore-
casting is the autoregressive moving average (ARMA) model,
which is defined by the orders of the autoregressive and the
moving average parts, p and q respectively, and a set of
parameters {a, b1, .., bp, c1, ..., cq}. An ARMA(p, q) model for
a spatial location i is expressed as in Equation (7).

Yi(t) = a+

p∑
l=1

blYi(t− l) +

q∑
l=1

clε(t− l) + ε(t), (7)

where ε ∼ N(0, σ2
ts). We fit an ARMA model using the

command arima in the R package stats. Our analysis
suggests that a better prediction is achieved by using low-
order, rather than high-order ARMA models. This aligns
with the recommendations of [17] and [14] who suggest that
low-order ARMA models are more suitable for short-term
forecasts. Therefore, we set p = q = 1 and fit an ARMA(1, 1)
model for each turbine out of the 200 locations at the wind
farm. As such, we generate 200 independent forecasts and then
compute the overall aggregate forecast error.

6) Support vector machines (SVMs): Machine learning
approaches have been reported to benefit wind forecasting.
Amongst those, support vector machines (SVMs) are a popular
choice and have been previously implemented for time-series
wind speed and power forecasting [19], [34], [35]. Simply
speaking, SVM performs a nonlinear mapping of the data into
a high-dimensional feature space, as shown in Equation (8):

Yi(t) =
d∑

j=1

βjφj(xi(t)) + β0, (8)

where xi(t) is an explanatory input to be defined later,
{φj}dj=1 are the so-called feature basis functions and {βj}dj=0

are the parameters to be estimated from the data [19]. For an
SVM model, instead of explicitly defining the feature basis
functions, a kernel function is specified that defines the inner
product in the feature space. This is referred to in the machine
learning literature as the “kernel trick” [36]. Following the

same logic made above regarding the suitability of most recent
lagged values with respect to short-term forecasts, we set
xi(t) = Yi(t − 1). We fit an SVM model for the time series
training data of each turbine of the 200 locations at the wind
farm. Specifically, we use the command svm in the R package
e1071 and a radial basis kernel function, which is a common
choice in the SVM literature [36]. We refer to this model as
SVM.

7) Hybrid forecast of ASYM & SVM: A growing trend in
the wind forecasting literature is to hybridize multiple data-
driven methods to achieve better prediction accuracy [37],
[38]. We follow an approach similar to [37], which was
originally proposed for integrating classical time-series models
with neural networks for wind speed forecasting. Specifically,
we first fit ASYM to the spatio-temporal training data. The
choice of ASYM as the base model is motivated by our goal
to capture the spatio-temporal dynamics and asymmetries on
the wind farm. We then fit an SVM to the residuals obtained
by ASYM to capture any non-linearities that are not covered
by the base model. The final hybrid model has an additive
form as in Equation (9):

Yi(s, t) = Y A
i (s, t) + ESi (s, t) + ei, (9)

where Y A
i (s, t) is the ASYM model fit, EAi (s, t) represents

the SVM model fit to the spatio-temporal residuals after the
ASYM fit, and ei is the final residual term. We refer to the
hybrid model in Equation (9) as HYB.

B. Case study

We demonstrate the merit of our procedure on four prevail-
ing periods from different times of the year. For all the periods,
we select 6 hours for model training. We will forecast up to 4-
hours ahead, i.e., h = {1, 2, 3, 4}. Our choice for the training
period is motivated by observing that the shortest prevailing
period length, as shown in Section III, is about 6 hours. As
such, a training period of 6 hours more or less guarantees
temporal homogeneity and stationarity over the training data,
allowing for a reliable model estimation. Furthermore, for
short-term wind prediction, previous studies [14], [39], [40]
showed that using a longer history of wind measurements is
not necessarily helpful, as evident by the low time lag order
used in the time series models. For the testing horizon, our
collaborating industry partner (who is also the data provider)
is interested in 2-hour ahead forecasts for various purposes.
At time t, it is preferable to have the forecast at t + 1 and
t+2, so that when it is t+1, the old forecast at t+2 can still
be used as the 1-hour ahead forecast, while the model starts
running an update with a new forecast for the next two hours.
This updating process is conducted in a rolling forward fashion
on an hourly basis. For research purposes, we do not stop at
the 2-hour ahead, but rather evaluate the forecast accuracy
for longer horizons (up to 4 hours), albeit not needed by our
industry collaborator.

As mentioned previously, in ASYM, V ∼ N (µµµ, D2 ). To
specify µµµ and D, we make use of the average wind speed Ȳ and
average wind direction θ̄ of the training data as follows. First,
we set ||µµµ|| = Ȳ . Then, given θ̄, we compute the wind velocity
vector in degrees, by decomposing ||µµµ|| into longitudinal and
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TABLE II
LOG-LIKELIHOODS OF THE ASYMMETRIC VERSUS THE SEPARABLE

MODELS. BOLD-FACED VALUES INDICATE THE BEST PERFORMANCE.

Period Month ASYM SEP1 SEP2
1. October, 2010 -2087.84 -2091.69 -2089.19
2. December, 2010 -1980.29 -2263.43 -2030.04
3. January, 2011 -1796.45 -1826.90 -1799.82
4. June, 2011 -2181.68 -2463.77 -2185.45

latitudinal components, denoted by v̂1 and v̂2, respectively.
These components will be used as the estimate for µµµ and their
signs would represent the wind directionality information. In
our current study, we found that when the 2 × 2 matrix D
is chosen as a diagonal matrix with its diagonal entries set
to ||µµµ||, the parameter estimation procedure produces higher
MLE values, suggesting a better fit. This revelation surprises
us a bit as the traditional wisdom would estimate D from the
training data. One of our ongoing pursuits is to understand
and then devise the optimal way for setting these parameters
in the non-separable models.

The MLE is implemented in R using the routine
nlm. For instance, for a prevailing period in January,
2011, θ̄ = 122.28◦, Ȳ = 20.15 km/hr, (v̂1, v̂2) =
(−0.20◦, 0.10◦) and the MLE’s are {σ̂2, ν̂, α̂, ĉ, η̂, β̂, λ̂} =
{19.22, 0.18, 0.46, 0.35, 3.35, 0.99, 0.47}. The estimate for the
mean term is 21.98 km/hr. The values for β̂ and λ̂ indicate the
need to consider spatio-temporal interaction and asymmetry.

The log-likelihoods for ASYM, SEP1 and SEP2 are pre-
sented in Table II. The log-likelihood values for ASYM are
higher than those of SEP1 and SEP2 for all the periods,
suggesting a higher explanatory power in favor of the asym-
metric model and the importance of incorporating this physical
phenomenon in spatio-temporal modeling.

Next, we make forecasts based on the models presented
in Section IV-A and evaluate them in terms of Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE). The
results are illustrated in Table III. Please note that for Period
2, the testing data for h = 4 had a large amount of missing
values when our industrial collaborator provided the data, and
for this reason, we were not able to assess the forecast quality
for that particular forecast horizon. We, therefore, compute
the aggregate error based on the first 3-hour ahead forecasts
for Period 2. For Periods 1, 3 and 4, the aggregate measure
reported is the average over all 4-hour ahead forecasts.

It is also known that an important goal for power engineers
is to accurately predict power production, in addition to wind
speed forecasts. In practice, turbine-specific power curves are
provided by the manufacturer and are used to assess the
prediction accuracy of competing models. Since we do not
readily have these power curves at hand, we use the binning
method over the available one-year worth of data to estimate
the turbine-specific power curves. The binning method is a
nonparametric method commonly used in the wind industry
[41] and is based on discretizing the wind speed domain into
a number of bins and then outputting the average power value
for each bin as an estimate of power generation. Using the
estimated power curves, we predict the power generated at
each turbine given the wind speed forecasts. We compare the

competing models in terms of RMSE in Table IV. Please note
that for confidentiality reasons, we have normalized the power
output in the range of [0, 1], so that the values reported in Table
IV are the ratio relative to the maximum turbine power.

The results presented in Tables III and IV show that the fore-
casts based on asymmetric non-separable model outperform
those based on separable model (SEP1 and SEP2), persistence
model (PER), time-series model (ARMA), and machine learn-
ing model (SVM), in terms of both wind speed and wind power
forecasting. The improvement of ASYM over the separable
models is explained by capturing the strong asymmetries
discovered in Section III, whereas the improvement over
ARMA and SVM is mostly due to the characterization of
spatial correlations, and subsequently the asymmetry, both of
which the time-series models fail to capture.

Furthermore, hybridizing ASYM with SVM (the HYB
model) appears to achieve a further enhancement in prediction
accuracy over the ASYM only approach, demonstrating the
additional benefit brought by the machine learning method.
The improvements of HYB over ASYM range from 1% to
7%, and on average 3.5%, for wind speed forecast, and up to
8%, but on average 4.0%, for wind power forecast.

Combining the strength of the asymmetrical modeling and
machine learning, in terms of wind speed forecast, HYB
improves, on the average of the four periods, 22.5% in
RMSE (24.3% in MAE, same below) over SEP1, 8.0% (9.7%)
over SEP2, 19.5% (19.0%) over PER, 21.2% (24.5%) over
ARMA(1,1) and 22.9% (25.1%) over SVM. In terms of
wind power forecast, HYB on average improves in terms
of reduction in RMSE 23.5% over SEP1, 9.4% over SEP2,
18.2% over PER, 22.8% over ARMA(1,1), 24.3% over SVM.
These results are aligned with the findings made in Section
III that local wind fields are strongly asymmetric at the fine-
scale spatio-temporal resolutions and as such, spatio-temporal
models that capture such physical phenomenon are expected
to perform well in short-term forecasts.

V. CONCLUSION

Spatio-temporal wind farm analytics can provide insights
to minimize uncertainty while using the wind resource. We
demonstrate that, contrary to common practice, local wind
fields are strongly asymmetric. This asymmetry is detected
upon implementing a set of spatio-temporal adjustments that
unearth the fine-scale spatio-temporal dynamics. The asymme-
try pattern changes spatially and temporally, in both magni-
tude and direction. As such, the traditional separable spatio-
temporal models appear to be overly-simplified in modeling
farm-level wind dynamics. Given these findings, an enhanced
procedure for short-term wind forecasting was devised and
shown to outperform the commonly used forecast methods
based on persistence, time-series, machine learning, and sep-
arable spatio-temporal models.
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TABLE III
RMSE AND MAE OF WIND SPEED FORECASTS. MISSED THE DATA FOR h = 4 AND PERIOD 2 IN THE ORIGINAL DATASET. BOLD-FACED VALUES

INDICATE THE BEST PERFORMANCE. THE PERCENTAGE IMPROVEMENTS ARE THE ERROR INFLATION RATE RELATIVE TO HYB.

RMSE MAE
Period Forecast h = 1 h = 2 h = 3 h = 4 Average % Imp. h = 1 h = 2 h = 3 h = 4 Average % Imp.

1 ASYM 0.95 1.37 2.70 2.86 2.14 1% 0.80 1.18 2.48 2.64 1.77 1%
SEP1 1.23 1.63 2.92 3.03 2.34 9% 1.06 1.45 2.72 2.81 2.01 12%
SEP2 1.01 1.50 2.85 2.99 2.26 6% 0.86 1.31 2.63 2.77 1.89 7%
PER 1.29 1.72 2.98 3.16 2.42 12% 1.05 1.49 2.80 2.90 2.06 15%

ARMA(1,1) 1.63 2.06 3.48 3.62 2.83 25% 1.31 1.83 3.29 3.35 2.47 29%
SVM 1.61 1.91 3.33 3.44 2.70 21% 1.40 1.69 3.14 3.18 2.35 25%
HYB 0.95 1.36 2.69 2.85 2.13 0.79 1.17 2.46 2.62 1.76

2 ASYM 1.42 2.53 2.31 – 2.14 4% 1.04 2.28 2.09 – 1.80 5%
SEP1 2.77 3.25 2.65 – 2.90 29% 2.19 2.80 2.30 – 2.43 30%
SEP2 1.64 2.62 2.30 – 2.22 7% 1.29 2.36 2.06 – 1.90 10%
PER 1.83 2.88 2.57 – 2.47 17% 1.49 2.55 2.27 – 2.10 19%

ARMA(1,1) 1.99 3.05 2.78 – 2.64 22% 1.62 2.81 2.52 – 2.31 26%
SVM 2.42 3.68 3.41 – 3.21 36% 2.19 3.41 3.10 – 2.87 39%
HYB 1.25 2.45 2.27 – 2.06 0.89 2.19 2.04 – 1.71

3 ASYM 0.87 0.94 1.02 1.35 1.06 2% 0.72 0.77 0.85 1.17 0.88 2%
SEP1 1.21 1.25 1.21 1.52 1.31 20% 0.99 1.04 1.01 1.30 1.08 21%
SEP2 0.88 1.09 1.14 1.50 1.17 11% 0.73 0.92 0.97 1.31 0.98 13%
PER 1.01 1.07 1.36 1.51 1.25 17% 0.81 0.84 1.05 1.20 0.98 13%

ARMA(1,1) 1.11 1.32 1.30 1.65 1.36 24% 0.93 1.15 1.14 1.43 1.16 26%
SVM 1.03 1.16 1.34 1.68 1.33 21% 0.84 0.94 1.07 1.40 1.06 19%
HYB 0.89 0.91 1.00 1.31 1.04 0.72 0.74 0.83 1.13 0.85

4 ASYM 1.27 1.45 1.87 3.94 2.37 7% 1.00 1.20 1.48 3.73 1.85 6%
SEP1 3.38 2.45 2.66 4.19 3.24 32% 2.68 1.99 2.13 3.75 2.64 34%
SEP2 1.41 1.59 1.99 3.80 2.40 8% 1.13 1.33 1.61 3.60 1.91 9%
PER 1.88 2.10 2.53 5.28 3.25 32% 1.49 1.71 2.06 4.78 2.51 31%

ARMA(1,1) 2.07 1.77 2.14 3.81 2.58 14% 1.67 1.44 1.76 3.51 2.09 17%
SVM 1.71 1.74 2.15 3.89 2.54 13% 1.43 1.44 1.71 3.60 2.05 15%
HYB 1.26 1.43 1.92 3.50 2.21 0.99 1.18 1.54 3.26 1.74

TABLE IV
RMSE OF WIND POWER PREDICTIONS. BOLD-FACED VALUES INDICATE
THE BEST PERFORMANCE. THE PERCENTAGE IMPROVEMENTS ARE THE

ERROR INFLATION RATE RELATIVE TO HYB.

P h ASYM SEP1 SEP2 PER ARMA SVM HYB
1 1 0.10 0.13 0.11 0.13 0.17 0.16 0.10

2 0.17 0.21 0.19 0.20 0.24 0.23 0.17
3 0.37 0.39 0.38 0.38 0.44 0.43 0.36
4 0.40 0.42 0.42 0.42 0.48 0.45 0.40

Av. 0.29 0.31 0.30 0.31 0.36 0.34 0.28
% 1% 7% 5% 6% 19% 16%

2 1 0.13 0.31 0.17 0.19 0.22 0.29 0.12
2 0.25 0.36 0.27 0.30 0.33 0.43 0.24
3 0.24 0.30 0.25 0.28 0.32 0.41 0.24
4 – – – – – – –

Av. 0.22 0.33 0.23 0.26 0.29 0.38 0.20
% 4% 36% 11% 21% 29% 45%

3 1 0.10 0.14 0.11 0.12 0.13 0.13 0.10
2 0.12 0.15 0.14 0.12 0.16 0.14 0.11
3 0.12 0.14 0.14 0.14 0.16 0.15 0.11
4 0.17 0.19 0.19 0.18 0.21 0.20 0.16

Av. 0.13 0.16 0.15 0.14 0.17 0.16 0.12
% 3% 17% 13% 9% 22% 18%

4 1 0.17 0.34 0.18 0.25 0.27 0.22 0.17
2 0.19 0.31 0.20 0.28 0.23 0.23 0.18
3 0.24 0.33 0.26 0.33 0.28 0.28 0.24
4 0.42 0.46 0.39 0.62 0.41 0.42 0.35

Av. 0.25 0.36 0.26 0.38 0.30 0.29 0.23
% 8% 34% 9% 37% 20% 17%
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